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Introduction

• We present a novel vision framework for scalable map-
ping and localization, enabling fault-tollerant feature-oriented
appearance-based navigation in outdoor environments:

– the mapping and navigation stages are considered sepa-
rately, as an interesting and not completely solved problem;

– the employed hierarchical environment representation has
a graph of key-images at the top (scalability), and local
3D reconstructions at the bottom (feature prediction);

– both mapping and localization framework components rely
on a differential tracker featuring warp with isotropic scal-
ing and affine contrast compensation [4].

Fig. intro1. Appearance-based navigation: the navigation
task (left), and the first eight key-images (right).

• The topological representations have been used by the robotic
community, in the context of range sensors; we introduce this
idea to computer vision, together with [2, 3].

• Although related to [2, 3], our work is novel since it better
exploits the power of multi-view geometry techniques.

• We share the problem with [1], but employ different tech-
niques and do not require global consistency:

– by posing weaker requirements we obtain scalable real-time
mapping and can close loops regardless of the drift;

– experiments with 15000 landmarks have been per-
formed without any performance degradation.

Mapping

• The mapping component extracts point features from the
learning sequence, constructs the environment graph and an-
notates its nodes and arcs with geometric information.

Fig.map1. The linear environment graph. Nodes contain
images Ii, features Xi and scale factors si. Arcs contain
match arrays Mi and the two-view geometries Wi.

• The devised automatic solution uses the tracker to find the
stablest features in the current subrange of the sequence:

– the features are tracked until the reconstruction error be-
comes high or the number of tracked points becomes low;

– then the current frame is discarded, while the previous
frame is registered as the new node of the graph.
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Fig.map2. Mapping results (1900 images along 150 m):
feature counts |Mi| and reprojection errors σ(Wi) (left),
reconstructed camera poses (right), 29 key-images (bottom).

• Disjoint parts of the env. graph (circular sequences, general
tracking failures) are connected by wide-baseline matching.

Localization

• Initialization: wide-baseline matching the current image
with the two key-images incident to the actual arc:

– the correspondences are used to recover the three-view ge-
ometry (3vg), and locate the mapped features.

Fig. loc1. Three groups of features considered for tracking.

•Feature prediction: the tracked features are used to esti-
mate two-view geometries Wt:i(Ii, It) and Wt:i+1(Ii+1, It):

– from these we recover 3vgs (It, Ii+1, Ii+2) and (It, Ii, Ii+1)
by a decomposed approach.
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Fig. loc2. Feature prediction in action. Tracked features
and rejected projections are designated with squares and
crosses. The bottom row shows the references and optimized
warps for the features 146 (left) and 170 (right).

•Maintaining the topological location: very important
since the success of tracking and robot control relies on it:

– the employed criterion: 〈−Ri+1
⊤ · ti+1, tt:i+1〉 < 0.

Mapping and localization on a circular sequence

• We consider the learning sequence loop-clouds, taken along
a circular path of approximately 50 m.

• Fig. loop1 ilustrates the mapping sensitivity w.r.t. parameters:
(i) minimum count of features n, (ii) maximum allowed repro-
jection error σ, and (iii) the tracking RMS threshold R:

– the presence of node 0’ indicates that the cycle at the topo-
logical level has been closed by wide-baseline matching;

– the right-most map in Fig. loop1 was deliberately con-
structed using suboptimal parameters: our navigation ap-
proach works regardless of the accumulated drift.

• Fig. loop2(left) ilustrates the capability of the localization com-
ponent to traverse a topological cycle:

– the navigation sequence was obtained during two rounds
roughly along the same circular physical path;

– the first round was used for mapping (loop-clouds,
cf. Fig. loop1) while the localization is performed along the
combined sequence, involving two complete rounds;

– the localization was successful in both rounds.

• Fig. loop2(right) shows results on sequence loop-sunlight

acquired along a similar circular path in bright sunlight:

– despite the different imaging conditions (cf. Fig. loop3), the
localization was successful except in arcs 10, 11 and 12;

– the illumination difficulties were aggravated by a featureless
tree and a considerable curvature of the learning path;

– Fig. loop3 shows the localization after the reinitialization in
arc 13, where the buildings behind the tree begin to appear.
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Fig. loop1. Mapping results on the circular sequence loop-clouds.
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Fig. loop2. Counts of tracked points while localizing on loop-clouds

(2 rounds, left) and loop-sunlight (1 round, right).
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Fig. loop3. Tracking features from key-image loop-clouds:12 (left)
in loop-sunlight:#509 (middle). Enlarged features are on the right.

Real-time navigation results

• The robot control has been imlemented by a simple visual ser-
voing scheme; the steering angle ψ is determined as:
ψ = −λ (xt − x∗) , where λ ∈ R+ .

• We show an experiment on the map shown in Fig.nav1, offering
a variety of driving conditions: narrow sections, slopes and
driving under a building (see [5] for more experiments):

– the speed was set to 30 cm/s in turns, otherwise 80 cm/s,

– five reinitializatioins were required, as shown in Fig. nav1,

– between A and B the robot drove over 740 m despite the
occlusions such as is shown in Fig. nav2.
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Fig. nav1. Graph of 320 nodes mapping a 1.1 km reference path.

Fig. nav2. Navigation along the map from Fig. nav1. The features re-appear after being occluded and disoccluded by a moving car.

Conclusions

• The poster presents a novel framework for scalable feature-
oriented appearance-based navigation.

• The framework combines 3D prediction with 2D navigation:

– the global topological map ensures unlimited scalability;

– the local geometric representation enables recovery from
tracking failures through feature prediction;

– the desired feature positions in the next key-image allow
simple and effective 2D navigation by visual servoing.

• The framework allows large-scale navigation without requir-
ing a geometrically consistent global view of the environment:

– in the experiment with a circular path, the navigation pro-
ceeds regardless of the extent of the drift;

– the framework is applicable in interconnected environ-
ments, where global consistency may be difficult to enforce.

• Very encouraging results in realistic experiments:

– real-time navigation in public areas with other moving ob-
jects and moderate-to-large changes in imaging conditions;

– difficulties: illumination variations, featureless areas, sharp
turns, nearby vegetation.

• The main performance bottleneck is CPU power:

– most of the processing time is spent within the multi-
resolution point feature tracker [4];

– the mapping and localization throughput on a notebook
with CPU equivalent to P4@2Ghz is 5 Hz and 7 Hz (cca 1
m/s) on 320 × 240 gray–level images;

– a working system using only small images suggests that
vision-based autonomous transportation is getting close.
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