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O Future challenges:
0 simultaneous detection of different sign classes

0 generic detection of table-like objects
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INTRODUCTION: MOTIVATION

Why would we like to detect traffic signs in images?
0 on-board applications: driver assistance, autonomous driving

O off-board applications: road safety inspection
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INTRODUCTION: MOTIVATION

Why would we like to detect traffic signs in images?
0 on-board applications: driver assistance, autonomous driving

O off-board applications: road safety inspection

Why do we need road safety inspection?

O crucial for detecting safety issues of a road in

operation

O in practice, the inspection mainly concerns
anomalies of the traffic control devices:
0 damaged, covered, worn-out or stolen signs

0 erased or incorrectly painted surface markings

O safety determined by assessment frequency
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INTRODUCTION: MOTIVATION (2)

In current commercial practice inspec-
tion is performed by expensive and sub-

jective human experts
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INTRODUCTION: MOTIVATION (2)

In current commercial practice inspec-
tion is performed by expensive and sub-

jective human experts

An innovation opportunity: automate inspection of the elements of

traffic infrastructure in order to achieve better service for less money
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INTRODUCTION: CHALLENGES

O low precision (false positives) O lateral displacement
O multiple responses O distance along the optical axis
O localization inaccuracy 0 non-standard orientation
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INTRODUCTION: OPEN QUESTIONS

O multi-class detection of O a principled approach to deal

ideogram-based signs with layout variability

O detecting foreground motion
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DATA: ASSUMPTIONS

We consider SDTV video acquired from the driver's

perspective along the Croatian local roads
(720x576 pixels, HFOV=48°)
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DATA. ANNOTATION

Large sample collections required for proper test and training

We developed a custom software tool

(Marker) to collect samples from video

We systematically annotated many hours of

production video provided by partners

(all kinds of traffic signs were annotated)
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DATA. ANNOTATION

Large sample collections required for proper test and training

We developed a custom software tool

(Marker) to collect samples from video

We systematically annotated many hours of
production video provided by partners
(all kinds of traffic signs were annotated)

We collected about 7500 annotations of different sign classesue s o oaa @ o0



DATA: FOCUS

We focus on the class of danger warning signs since:
O most frequent: 3000 of 7500 annotations total (almost 50%)
O well standardized according to the Vienna Convention (1968)

O research results likely relevant for other ideogram-based signs
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O most frequent: 3000 of 7500 annotations total (almost 50%)
O well standardized according to the Vienna Convention (1968)

O research results likely relevant for other ideogram-based signs
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This leaves out only the direction signs, some signs from the information

class and additional panels.
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DATA: DATASETS

We organize the 3000 annotated samples of danger warning signs into
two datasets:

O T2009: 2000 signs acquired with interlaced camera
O T2010: 1000 signs acquired with a progressive camera
O we use T2009 for training (left), T2010 for evaluation (right)
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DATA: DATASETS

We organize the 3000 annotated samples of danger warning signs into
two datasets:

O T2009: 2000 signs acquired with interlaced camera

O T2010: 1000 signs acquired with a progressive camera

O we use T2009 for training (left), T2010 for evaluation (right)

1 iy 'f

Both the datasets and our annotation program can be freely downloaded
from the web site of our research project:

O project home: http://www.zemris.fer.hr/ “ssegvic/mastif/index_en.shtml
O datasets: http://www.zemris.fer.hr/“ssegvic/mastif/datasets.shtml

O marker: http://www.zemris.fer.hr/ ssegvic/mastif/marker/marker.zip
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BASELINE DETECTION: ALTERNATIVES

Approaches based on detecting primitives such as colour and geometry
resulted in insufficient detection and poor precision:

0 colour-based detection with hardwired thresholds over HSI
O Hough transform approach for circular signs

O radial symmetry for triangular signs

Much better results achieved when looking at pixels directly:

O sliding window approach: binary classifi-

cation at all image positions and scales

O advantage: work directly with sensed data

(focus on grey-scale appearance)

O liabilities: complexity (10° queries/image), large training datasets
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BASELINE DETECTION: BHC PROS

Boosted Haar cascades: a great approach to detect objects in images
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BASELINE DETECTION: BHC PROS

Boosted Haar cascades: a great approach to detect objects in images
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BASELINE DETECTION: BHC PROS

Boosted Haar cascades: a great approach to detect objects in images
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Haar classifier: Haar feature + threshold + polarity

boosted classifier: an ensemble of simple

Haar classifiers

the cascade consists of boosted classifiers

with increasing complexity

(most queries will be negative!)
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BASELINE DETECTION: BHC CONS

Although very good, boosted Haar cascades do not provide enough

performance for automated operation:

O strong dependence on sign size

0 colour may help only with large signs [bonacillcvww]
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BASELINE DETECTION: BHC CONS

Although very good, boosted Haar cascades do not provide enough

performance for automated operation:

O strong dependence on sign size

0 colour may help only with large signs [bonacillcvww]

O unsatisfactory precision, 50% or lower

0 BHCs poor at generalizing over unseen negatives

O localization accuracy leaves to desire:

0 we care because bad localization hurts recognition [itsc10]!

detections count

10

2 6 8
normalized localization error [pixels] Traffic sign detection: Baseline detection (3) 13/34



METHOD: APPROACH

Cascading classifiers of increasing complexity works great.

Traffic sign detection: Method 14/34



METHOD: APPROACH

Cascading classifiers of increasing complexity works great.

The proposed approach follows the same track:
O configure BHC for high recall (skip heuristic grouping!)

O devise additional techniques to improve precision and localization

Traffic sign detection: Method 14/34



METHOD: APPROACH

Cascading classifiers of increasing complexity works great.

The proposed approach follows the same track:
O configure BHC for high recall (skip heuristic grouping!)

O devise additional techniques to improve precision and localization

These additional techniques can be computationally expensive without

hurting overall performance!

O our BHC-s (2000 training samples, 95% recall) typically let by less
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METHOD: APPROACH

Cascading classifiers of increasing complexity works great.

The proposed approach follows the same track:
O configure BHC for high recall (skip heuristic grouping!)

O devise additional techniques to improve precision and localization

These additional techniques can be computationally expensive without

hurting overall performance!

O our BHC-s (2000 training samples, 95% recall) typically let by less

than 10 false positives per image!

The concept of heterogeneous classification cascades can be further
applied at the level of temporal detection sequences in video!
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METHOD: THE BIG FIGURE

The devised detection pipeline:
O baseline detection by boosted Haar cascades

O introduce a strong classifier in the additional cascade stage to
Improve precision
O enforce temporal consistency by differential tracking to improve

localization accuracy and further improve precision

O enforce learned contextual constraints to further improve precision
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The last two stages operate on detection tracks: temporal sequences of

traffic sign position, scale and appearance
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METHOD: ADDITIONAL STRONG CLASSIFIER

A heterogeneous cascade for object detection in images [bonacillcvww]:
0 use boosted Haar cascade for fast rejection of easy negatives

O use a strong classifier to decide about the hard cases

0 suitable ANN applied to a HOG descriptor T
0 similar results achieved by SVM+HOG A
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METHOD: ADDITIONAL STRONG CLASSIFIER

A heterogeneous cascade for object detection in images [bonacillcvww]:
0 use boosted Haar cascade for fast rejection of easy negatives

O use a strong classifier to decide about the hard cases
0 suitable ANN applied to a HOG descriptor T
0 similar results achieved by SVM+HOG A
How do we combine the BHC and ANN+HOG?

O train a BHC for max recall and reasonable precision on T2009

O train ANN+HOG on BHC false positives collected on T2009

O perform detection by applying ANN+HOG to the BHC survivors
O important: the above must be performed before the grouping step
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METHOD: ADDITIONAL STRONG CLASSIFIER (2)

The results:
O precision: 57% — 89%!
O recall: only slightly worse!

O localization: slightly better!
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METHOD: ADDITIONAL STRONG CLASSIFIER (2)

The results: The surviving false positives:
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Detection rate (left) and localization accuracy (right), BHC (red) and
BHC || ANN+HOG (blue), depending on the sign size:

1

O precision: 57% — 89%!

O recall: only slightly worse!

O localization: slightly better!
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METHOD: ADDITIONAL STRONG CLASSIFIER (3)
Some results (blue: BHC, red: ANN+HOG):
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METHOD: CONSISTENCY

Idea: require that detection sequences be temporally consistent [mvall]

O top: raw detection chain, bottom: the desired detection track
A KA D DDA A N
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Approach:
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METHOD: CONSISTENCY

Idea: require that detection sequences be temporally consistent [mvall]

O top: raw detection chain, bottom: the desired detection track
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Approach:

O track many detection hypotheses along the sequence

O pick the one which receives most detections!

Benefits in comparison to detection chaining:
O reject false positives which are i) temporally inconsistent or ii) large

O better localization due to i) lack of grouping, and ii) integrating

Traffic sign detection: Method (6) 19/34
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METHOD: CONSISTENCY (2)

Implementation details:

O seed a new detection track hypothesis in the interior of each

detection displaced from all active hypotheses
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METHOD: CONSISTENCY (2)

Implementation details:

O seed a new detection track hypothesis in the interior of each

detection displaced from all active hypotheses

O track all hypotheses in parallel by combining the detector and the

tracker (somewhat in the spirit of particle filter)

0 group overlapping hypotheses into clusters corresponding to distinct

physical signs
O when all hypotheses of a cluster are lost, pick the hypothesis with

most evidence from raw detections
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METHOD: CONSISTENCY (3)

Results:
O near 100% recall on the system level

O 2 false positives in 11000 traffic images

(vs 14 with a criterion based on detection chains)

[0 measurable improvement in localization accuracy
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METHOD: CONSISTENCY (3)

Results:
O near 100% recall on the system level

O 2 false positives in 11000 traffic images

(vs 14 with a criterion based on detection chains)

[0 measurable improvement in localization accuracy

Raw detection responses (top) vs detection tracks (bottom):
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raw detections

detection tracks
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normalized non—overlapping area
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METHOD: CONSISTENCY (4)

Some hard cases:

Traffic sign detection: Method (9) 22/34



METHOD: SPATIO-TEMPORAL CONSTRAINS

Focus on spatio-temporal properties of traffic sign occurences:
O at which image locations and scales the signs typically occur?
O which typical trajectories do the signs follow?

O learn a discriminative model for classifying detection tracks into

signs and not-signs

Traffic sign detection: Method (10) 23/34



METHOD: SPATIO-TEMPORAL CONSTRAINS (2)

Camera type and placement do not change = can reason in pixels!

Traffic sign detection: Method (11) 24/34



METHOD: SPATIO-TEMPORAL CONSTRAINS (2)

Camera type and placement do not change = can reason in pixels!

Vehicle speed does change = look at sequences of x/scale and y/scale!

detection ordinal numper . scae

Traffic sign detection: Method (11) 24/34



METHOD: SPATIO-TEMPORAL CONSTRAINS (2)

Camera type and placement do not change = can reason in pixels!

Vehicle speed does change = look at sequences of x/scale and y/scale!

Not all signs are visible

unknown data points!
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METHOD: SPATIO-TEMPORAL CONSTRAINS (3)

We tested the concept before we developed the strong classifier in the
additional cascade stage
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METHOD: SPATIO-TEMPORAL CONSTRAINS (3)

We tested the concept before we developed the strong classifier in the
additional cascade stage

Best recognition achieved with Bayesian networks and imputation
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The best classifier managed to discard 82% false positives while
retaining 98% recall
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TOWARDS MULTI-CLASS DETECTION: OVERVIEW

Why would we like to have one multi-class detector instead of n
single-class detectors?
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Because for |deogram based traffic signs n > 20!

How about parallelization?

O MIMD (multicore): linear detection speedup on a quad core CPU

0 however, affordable many-cores are not coming anytime soon

O SIMD (GPU): not suitable for implementing cascades
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TOWARDS MULTI-CLASS DETECTION: OVERVIEW

Why would we like to have one multi-class detector instead of n
single-class detectors?

Because for ideogram-based traffic signs n > 20!
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How about parallelization?

O MIMD (multicore): linear detection speedup on a quad core CPU
0 however, affordable many-cores are not coming anytime soon

O SIMD (GPU): not suitable for implementing cascades
|[ghorayebO6accv]

To conclude, advances towards logarithmic increase of complexity with
respect to n would be — very interesting!
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TOWARDS MULTI-CLASS DETECTION: INDIVIDUAL

DETECTORS
# training # evaluation recall
2150 886 96.2%
645 377 100%
106 8 87.5%
337 49 98.0%

false alarms/image
4.4
9.7

12.1

12.9

For homogeneous classes (last two rows), fairly good results can be

obtained even with few training samples!
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TOWARDS MULTI-CLASS DETECTION: CBT

Cluster boosted trees [wu07iccv]: H(x)=[H,)....H, ()

a classification approach based on feature sharing

Major advantage with respect to JointBoost:
suitable for detection in a sliding window

O the classification gradually focuses, no need to

H. (x)
calculate all features to evaluate a query! 1 H,(x) H.(x)
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a classification approach based on feature sharing

Major advantage with respect to JointBoost:
suitable for detection in a sliding window

O the classification gradually focuses, no need to

H. (x)
calculate all features to evaluate a query! 1 H,(x) H.(x)

The training proceeds like in usual boosting except that:

Feature

O the tree is split whenever a newly added ...

> itting Point
node has low discriminative power = \Q

Level 2 heo || P hay

\
\

O after the tree is constructed, the thresholds <:

evel 3 | h, h ha

1B

v
H.

are separately retrained for each leaf class :,

Traffic sign detection: Towards multi-class detection (3) 28/34



TOWARDS MULTI-CLASS DETECTION: CBT (2)

The achieved performance (Haar classifiers) and the resulting tree:
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The achieved performance (Haar classifiers) and the resulting tree:
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TOWARDS MULTI-CLASS DETECTION: CBT (2)

The achieved performance (Haar classifiers) and the resulting tree:
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Branch splitting occurs when a newly ZTW"”"“‘W‘,”

added feature is not discriminative (test

is based on Bhattacharya distance)

There is a big performance gap between shared and dedicated features!

0 50% vs 90% for the yield sign

O a possible way to deal with that: introduce more complex features
i n a dva n Ced Sta ges Traffic sign detection: Towards multi-class detection (4) 29/34



TOWARDS MULTI-CLASS DETECTION:. GENERIC
DETECTION

By looking at the pixel variance one can recover the shape of the

tracked object [mvall]:
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TOWARDS MULTI-CLASS DETECTION: GENERIC
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By looking at the pixel variance one can recover the shape of the

tracked object [mvall]:
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We curently research ways to employ this concept for bottom-up

detection of occluding shapes [brkicllscia]

O great potential for detecting all kinds of table-like objects!

O precondition: successful tracking of features at signs
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CONCLUSION

Single-class detection of ideogram-based traffic signs:

O baseline detection (BHC) achieves about 95% recall with mean
relative displacement of 17% and about 1 false positive per image
0 if only large signs are considered, the recall approaches 100%

O additional filter (ANN+HOG) reduces the false positive incidence to

about 1 in 9 images, while retaining recall

O a criterion based on detection chains reduces false positives to
about 1 in 700 images

O temporal consistency reduces false positives to about 1 in 50000,

and improves the mean relative displacement to 12%

O spatio-temporal constraints show potential for resolving the

remaining false positives
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FUTURE WORK

Bridging the gap between multi-class detection with shared-features and
dedicated per-class detectors
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FUTURE WORK

Bridging the gap between multi-class detection with shared-features and
dedicated per-class detectors

Generic detection of table-like objects
Detecting and recognizing direction tables regardless of colour

Detecting and recognizing lane configuration signs
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Thank you for your attention!

This work has been jointly performed by
Karla Brki¢, Zoran Kalafati¢, Axel Pinz and the presenter.

Parts of this work have been performed by our undergraduate students
Igor Bonaci, lvan Kovacek and Ivan Kusali¢.
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