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Abstract— We address the automatic recognition of road
safety attributes according to the iRAP methodology. We formu-
late the problem as a separate multi-class classification of each
iRAP attribute in georeferenced video clips that correspond
to particular road segments. We propose a solution based on
an efficient multi-task model with shared features, which can
recognize all attributes with a single forward pass and learn in
an end-to-end fashion. We perform experiments on a novel real
dataset acquired along 1850 km of public roads in Bosnia and
Herzegovina, in which all iRAP attributes have been annotated
by human experts. We express recognition accuracy as per-
attribute macro-F1 scores due to a significant class imbalance
present within most attributes. We thoroughly validate different
variants of our model, analyze the contributions of several
hyper-parameters, and report recognition accuracy on the
independent test set.

I. INTRODUCTION

With more than 1.35 million people killed on roads
throughout the world each year, road traffic crashes are
among the world’s most significant public health and injury
prevention problems [1]. Improvements in traffic infras-
tructure and road safety engineering decrease the risk and
severity of crashes. Introduction of safe roadsides, sidewalks,
pedestrian crossings, bicycle paths and other road safety
attributes results in fewer road deaths and injuries.

The International Road Assessment Programme (iRAP) is
a registered charity [2]. It aims to eliminate high-risk roads
by proposing the iRAP star rating — a robust, evidence-
based approach for road-safety assessment [3]. iRAP Star
Rating is a simple and objective measure of the in-built
safety of the road, with 5-star roads being the safest and
1-star roads the most unsafe. The rating is produced by
calculating the Star Rating Score for each 100-meter road
segment and then averaging over longer lengths [4]. The
Star Rating Score is calculated from 52 attributes (or risk
factors) for a particular road segment [5]. According to iRAP
terminology, assigning values to road segment attributes is
denoted as attribute coding.

iRAP attributes are described in detail by the iRAP Coding
Manual [2]. IRAP attributes can be assessed with on-site
surveys by teams of experts [6]. However, off-line operation
can be advantageous due to opportunity to perform repeated
assessments [7], [8]. Currently, most off-line assessments
are performed manually by trained experts which code
attributes by annotating georeferenced video. Though faster
and cheaper than live surveys, manual off-site assessment is
still expensive, time-consuming, and prone to error.
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Although a substantial amount of research has been di-
rected towards automatic inspection of traffic infrastruc-
ture, such as traffic sign [9] and road markings detection
[10], there have been only a few attempts to automatically
recognize road-safety features in video [6], [7], [8]. As
opposed to human coders, automatic coding is objective and
consistent through time. It benefits from more data, so it
keeps improving as more roads are coded. It can also be used
as an internal validation tool for human coders, It can also
potentially speed-up manual coding by pre-coding a video
that an expert coder only needs to check and verify [11].

A crucial step of the iRAP coding process is quality assur-
ance, where 10% of the coded roads needs to be checked by
accredited experts. This process, if done automatically using
Al, could be extended to 100% and sped up, That could result
in more accurate, dependable, and valuable assessments.

This paper provides a preliminary feasibility study for
automatic iRAP attribute recognition [12]. We address this
problem throughout a multi-task learning approach [13]. Our
model recovers shared features by leveraging a pre-trained
convolutional backbone [14], [15] and a spatial pyramid
pooling module [16]. The shared features are concatenated
with per-attribute attention pools and fed to per-attribute
classifiers. We test various combinations of backbones, out-
put layers, loss functions, input sequence lengths, image
dimensions, and explore the impact of color jittering. We
evaluate the contribution of each design decision that we
vary in experiments. We show per-attribute results of our
best model, and discuss class imbalance and other problems
which hamper correct recognition of some attributes.

II. RELATED WORK

There has been much previous research in areas related to
road safety, such as localization of control devices [9], [17],
recognition of fleet-management attributes [18], or semantic
segmentation [19], [20]. These works are related to our task,
but they target only a subset of the attributes that we address.

Some approaches tackle iRAP attribute classification using
an intermediate semantic segmentation step, from which they
then extract the attributes [8]. These approaches are more
related to our work. However, producing a training dataset for
semantic segmentation requires dense pixel-level annotation
and consequently implies significant annotation effort. That
is a much slower and more tedious process than simply re-
using the attributes provided by human coders as image-wide



annotations. Furthermore, a semantic segmentation model
only gets the learning signal from segmentation labels, and
not from attribute class labels. Thus, such a model learns
features that are optimal for semantic segmentation, not
necessarily for our actual task. There is also a possibility
of error propagation due to the isolated training of model
components. For those reasons, we opt for an end-to-end
system that we train to predict the classes of all considered
attributes directly from video frames, without the intermedi-
ate segmentation step.

Song et al. [21] try to go even further by predicting the
Star Rating Score of a road segment directly from video. We
avoid directly inferring the star rating in order to preserve
the explainability of our model’s decisions. The Star Rating
Score can be calculated directly from attribute values. We
do not want to encumber our model with the additional task
of learning a formula that is already known.

III. ATTRIBUTES

Here we briefly list and describe the 7 attribute categories
used to determine the iRAP Star Rating Score.

1) Attributes for road details and context: Most of these
attributes contain metadata about the coding process (coder
name, coding date, road name, etc.). The only attribute that
can be coded is Divided carriageway.

2) Observed flow attributes: These attributes are obtained
by counting appearances of various road users - motorcycles,
bicycles, and pedestrians - in recorded segments. We do not
consider attributes from this category since observing the
traffic flow from a single video is bound to result in high
variance estimates. That being said, we plan to address these
attributes in future work.

3) Speed limit attributes: These attributes are coded ac-
cording to the speed limit, which has to be deduced from
traffic signs and local regulations regarding road type and
post-intersection policy. In this work, we do not consider
attributes from this category since the existing research [9]
suggests that the problem of traffic sign detection is mostly
solved and hence not a priority.

There is one attribute in this category that does not code
a speed limit - Speed management. It is concerned with the
presence of infrastructure features that reduce the operating
speed. We chose not to address it since it only had 20 positive
examples in the whole dataset.

4) Mid-block attributes: Mid-block attributes make up the
bulk of all coding work. They are concerned with objects on
the road median (as opposed to objects on the roadside) and
within the road surface itself. We discard two attributes from
this category (Service road, Centre line rumble strips) due to
the scarcity of positive examples in the dataset.

5) Roadside severity: These attributes encode the most
severe object on each roadside (passenger-side and driver-
side), and their distances from the road. They are among the
most challenging attributes for a classifier to learn because
of a couple of reasons. First, the front dashboard camera
captures just a fraction of each roadside. That is why, in our
experiments, we also test a model that operates on sequences

of image frames. These sequences are assembled to contain
frames from two preceding road segments, along with the
current one.

Second, various objects (houses, fences, trees) can appear
on the roadside simultaneously, which complicates the esti-
mation of the severity level for the road user. iRAP coding
manual requires that these attributes are affected only by the
most severe object, which is a very weak form of supervision
[17]. To determine the severity of any given pair of roadside
object type and its distance from the road, the coding manual
defines a priority list. It contains all the possible pairs sorted
with decreasing severity. Out of all the potential objects
appearing on the roadside at various distances, the model has
to predict only the most severe one. This is rather difficult
for monocular recognition models since they need to learn to
regress metric distances without being explicitly instructed
to do so. A model that correctly recognizes a roadside object
present in the segment may get penalized if that object turns
out not to be the most severe one. In general, such kind of
inference can be learned, but it requires much more training
data than simple detection of objects which define the visual
class.

Apart from the aforementioned roadside severity attributes,
this class also includes the attribute Shoulder rumble strip.
We do not address it since there is no occurrence of shoulder
rumble strips in the entire dataset (all examples are negative).

6) Intersections: This category contains attributes such
as Intersection quality and Intersection type, which are
combined to evaluate the risk of an intersection [2]. Both
of these attributes are difficult to recognize. Intersection
quality includes several soft factors such as sight distance or
deflection angles, which are not easy to learn. Intersection
type contains 17 kinds of intersections, such as merge lane,
roundabout, and railway crossing. These classes are well
defined, but the many options make it easy to miss the right
answer.

In this category, we discard the attributes Intersection
channelization and Intersecting road volume. The former
has too few positive examples in the dataset. The latter
is concerned with the average daily number of vehicles
passing through the segment from the intersecting road. It
would not be realistic to estimate this number from a few
seconds of video that captures the particular intersection.
The information for this attribute is usually gathered from
a different source.

7) Vulnerable road user facilities and land use: These
attributes concern the presence of various facilities for pedes-
trians and cyclists, as well as the area type and land use at
the segment.

We do not address the attribute School zone warning since
its class distribution is nearly identical to the attribute School
zone crossing supervisor. We also discard Pedestrian fencing,
Facilities for motorcycles, and Facilities for bicycles due to
the scarcity of positive examples in our dataset.

Some attributes have fine-grained classes of very low
frequency. In such cases, we group those rare fine-grained
classes into coarser ones. For example, the attribute "Inter-



section type" has 4 different classes for variants of a 3-
leg intersection. They are the following: 3-leg, 3-leg with
a protected turn lane, 3-leg signalized, and 3-leg signalized
with a protected turn lane. We group these classes into a
coarser class containing all 3-leg intersections variants. Since
we use one shared model for all attributes, it will be easy to
extend it to predict the remaining attributes that are not yet
covered when more training data becomes available.

IV. DATASET

We perform experiments on a novel road-safety corpus
acquired along 1850 km of public roads in Bosnia and
Herzegovina. Even though the iRAP Star Rating Score
considers 100-meter road segments, the corpus is coded
over 10-meter segments to get better estimates by averaging.
There are about 185,000 10-meter segments in the dataset.
Human experts have annotated each of them with all 52 iRAP
attributes as part of a regular iRAP coding campaign. Most
of these segments span about 30-40 frames, although this
depends on road and traffic conditions during acquisition.
All videos are recorded in 2704x2028 RGB format at 25
frames per second.

We create the dataset for our recognition experiments by
exploiting geographical information from the iRAP coding
database. Each iRAP record corresponds to a 10-meter road
segment. It contains the values of the 52 iRAP attributes
and the GPS coordinates of the segment’s two endpoints.
We leverage these GPS coordinates to find video frames that
correspond to each of the two endpoints. We first find the two
closest GPS references in the corresponding georeferenced
road video and then interpolate the GPS location using the
estimated vehicle speed. Finally, we assign all intermediate
frames to that particular segment.

In our experiments, we work with image frames resized to
384x228 and 768x576. Images were resized without crop-
ping or changing the aspect ratio. We make our experiments
feasible by using only a subset of all videos containing about
40,000 segments. About 28,500 segments are in the training
set, while the validation set and the test set each contain
about 5,500 segments. Our single-frame models operate on
the middle frame of the corresponding segment. Our multi-
frame models operate on sequences of 3 middle frames from
the current and the two previous segments. All our models
predict the values (labels) of the considered 33 attributes.

Some attributes suffer from an extreme class imbalance in
the sense that nearly all the segments in the dataset belong to
one class, while all other classes have much fewer segments.
For example, the attribute Pedestrian crossing - side road is
dominated by examples of the class No crossing that make
up 99,6% of the training set. The two remaining classes -
Unsignalised crossing and Signalised crossing - account for
only 0,25% and 0,15% of training set examples.

V. MODELS

Each segment in our dataset is annotated with all 33
attributes. Hence, we can train a single multi-task model
with a shared backbone [13] to recognize all attributes with

a single forward pass, as illustrated in Figure 1. Note that
the backbone has to learn features that are good for multiple
different tasks. This may regularize the learning algorithm
by favorizing features that are good generally [22]. Deep
convolutional models are known for having enough capacity
to learn features for multiple different tasks [23]. Also, the
train time is significantly reduced since we do not need to
train a different model for each attribute.

We test two standard convolutional backbones: ResNet-
18 [14] and DenseNet-121 [15] (CNN in Figure 1). After
the backbone, we perform spatial pyramid pooling [16]
(SPP in Figure 1) with grid dimensions (6, 3, 2, 1). Our
SPP module starts with a 1x1 convolution that reduces the
number of the feature maps to 128. It proceeds by pooling
and completes with another 1x1 convolution for each grid
size, which reduces the depth from 128 to 42. The SPP layer
produces a fixed-size output regardless of the input image
size and captures information at different scales. We flatten
and concatenate SPP outputs for all grid dimensions into a
single vector, concluding the shared part of the network.

The attribute-specific parts of our network consist of soft
spatial attention pooling [24], [25] (ATT; in Figure 1) and
a fully-connected classifier with softmax activation (FC; in
Figure 1). The attention module receives shared features F
and a learnable query vector q; and produces the attention
pool a;. The query vector and the attention pool have the
same shape: their size is equal to the depth of shared features
F'. The attention vector is determined as a weighted spatial
pool of shared features F. The weights are determined by
a softmax-activated similarity map between the query vector
and the shared features [26]. Finally, the attention pool is
concatenated with SPP output and classified into per-attribute
posteriors P(A;|x).
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Fig. 1. The proposed recognition model feeds convolutional features (F')

into the spatial pyramid pooling module (SPP). The resulting image-wide
representation SPP(F') is concatenated with per-attribute attention pools
a;(F, q;) and processed by per-attribute classification heads FC;. Note that
q; denotes a learnable query vector associated with attribute . In the multi-
frame case, the classification heads receive concatenations of single-image
representations (SPP(F'¢), at;) where t € {1..T'}.

We train our model by averaging per-attribute classifica-
tion loss. We alleviate class-imbalance by using balanced
cross-entropy [27], [28]. The main idea is to promote learn-
ing of rare classes by multiplying the cross-entropy with a
weight that is inversely proportional to the frequency of the
correct class.

To get more spatio-temporal context for recognition, we
also experiment with multi-frame models which observe



images from neighboring segments as well. In this case, we
detach fully-connected layers and independently apply our
single-frame model to all images from the input sequence
of length T. This results in T image-wide representations
(SPP(F,), a;;) for each attribute. Finally, we concatenate
these representations and classify them with per-attribute
fully-connected layers with softmax activation, as we did in
the single-frame model.

We have validated various combinations of network ar-
chitectures, loss functions, input sequence lengths, and im-
age dimensions. Interestingly, none of these models outper-
formed all others on all attributes. Hence, we perform most
of our experiments on model ensembles. In particular, we
have applied model ensembles in our validation experiments
where we want to see whether some design decision makes
a consistent performance impact. We have also used model
ensembles while performing error analysis on the train set
to find hard examples or annotation mistakes.

VI. EXPERIMENTS

We promote fast training on large quantities of training
data by equipping our models with efficient convolutional
backbones ResNet-18 and DenseNet-121 and by reducing
the input resolution. We consider color-jittering as the only
data-augmentation technique. We avoid horizontal flipping
since all videos from a particular country are recorded on
the same side of the road. We also avoid random cropping,
since visual cues for some attributes may appear on the edges
of frames, so we want to preserve them.

We use the Adam optimizer with a batch size of 10 and
weight decay equal to le-3. We do training in two stages.
In the first stage, we train the attention queries, the spatial
pyramid pooling modules, and the classifiers for 4 epochs
with the learning rate set to 5e-5, while keeping the backbone
parameters frozen. Subsequently, we train all parameters for
additional 16 epochs, with the learning rate lowered to 5e-6.
In all experiments, we learn on the train split and evaluate
on the test split of our dataset.

A. Methodology

Our experiments address the following 7 binary design
decisions: i) single-frame vs. multi-frame recognition, ii)
pre-training (ImageNet vs. Vistas), iii) backbone (rnl8 vs.
dnl121), iv) loss balancing, v) attention, vi) input resolution
(384 <288 vs. 768x576), and vii) color jittering.

Each experiment addresses one of the 7 design decisions.
To reduce the noise due to model variance, for each exper-
iment, rather than just comparing two models, we compare
two groups of models. Models in each group have the same
value for the design decision being addressed, while they
vary in the values for the remaining decisions. The two
groups are symmetric: each model from the first group has
its counterpart in the second group, differing only in the
particular binary decision. We assess the impact of each
binary decision by comparing i) average accuracy and ii)
ensemble accuracy of the two model groups.

Note that the total number of trained models N is fewer
than 27 (all possible design decision combinations). That is
because parameterizations pre-trained on Vistas are available
only for the ResNet-18 backbone, and we also avoided
training all models on the larger input resolution due to time
constraints.

B. Results

Table I explores the influence of the proposed seven binary
decisions on the recognition accuracy on the validation
dataset. The validation performance improves by about 2.4
percentage points (pp) when the recognition is performed
on sequences of three frames instead of only one frame.
Pre-training the backbone parameters for semantic segmen-
tation on the Vistas dataset increases recognition accuracy
by about 1.2 pp. Using DenseNet-121 instead of ResNet-18
increases accuracy by about 0.9 pp. Loss balancing increases
accuracy by 1.8 pp. Including per-attribute attention pooling
did not significantly impact the results. Resizing the images
to 384x228 preserves the important visual information in
the image since the improvement gained from quadrupling
the number of pixels is not substantial. Finally, as simple
an augmentation procedure as it is, color-jittering increases
accuracy by 1.3 pp.

TABLE I
INFLUENCE OF THE CONSIDERED BINARY DESIGN DECISIONS TO THE
VALIDATION ACCURACY OF THE PROPOSED MODEL.

Design decisions Mean macro-Fl
Average [ Ensemble
Single-frame 56,4 57,5
Multi-frame (T=3) 58,6 59,0
Pre-training on ImageNet 574 574
Pre-training on Vistas 58,5 58,7
Backbone: ResNet-18 56,9 56,1
Backbone: DenseNet-121 57,7 57,2
Loss: standard CE 56,0 56,9
Loss: balanced CE 58,1 58,6
No attention pooling 57,0 58,4
Per-attribute attention pooling 57,1 58,4
Resolution: 384x288 58,3 58,0
Resolution: 768x576 59,3 58,5
No jitter 58,0 58,1
Color jitter 59,3 59,4

The best model configuration has Vistas pre-training,
multi-frame training on color-jittered 384x228 images, bal-
anced cross-entropy loss, and attention pooling. The model
gets an average macro-F1 score of 61.5%. Table II shows the
performance of this configuration on each attribute. We also
report the top-1 accuracy and the majority class baseline.

Numerous attributes show large discrepancies between F1
score and accuracy. This can be caused by imbalance in
the number of examples for different classes of a particular
attribute. Poorly balanced attributes can be reliably identified
by looking for high values of the majority class baseline
(MCB). This is why it is important to have a strict metric
like macro-F1 (M-F1), that penalizes a classifier that ignores
an infrequent class of some attribute.



TABLE II
PER-ATTRIBUTE PERFORMANCE OF OUR BEST SINGLE MODEL. M-F1 -
MACRO-F1, ACC. - ACCURACY, MCB - MAJORITY CLASS BASELINE.

Attribute name

[[ M-F1 | Acc. [ MCB

Delineation 96,3 97,2 73,9
Divided carriageway 96,2 98,1 92,5
Sidewalk - passenger-side 90,7 95,3 70,4
Sidewalk - driver-side 89,5 94,3 84,2
Area type 87,1 87,3 60,9
Street lighting 81,5 84,0 50,4
Roadworks 77,6 99,4 99,1
Land use - passenger-side 71,0 75,0 41,8
Land use - driver-side 70,2 73,4 449
Lane width 65,4 92,4 86,3
Sight distance 63,6 88,6 85,7
Quality of curve 61,3 75,8 59,1
Paved shoulder - passenger-side 60,4 91,7 63,6
Paved shoulder - driver-side 59,8 90,9 67,4
Median type 58,8 91,8 89,4
School zone 58,8 98,1 96,5
Grade 57,7 94,4 97,6
Vehicle parking 56,2 85,9 84,7
Roadside severity - driver-side distance 54,4 66,7 62,3
Roadside severity - passenger-side dist. 54,2 66,9 71,0
Property access points 52,9 75,8 4772
Upgradef cost 52,9 69,3 67,0
Road condition 52,5 89,3 84,1
Curvature 514 69,0 59,1
Sealed road 49,9 99,5 98,2
Pedestrian crossing - inspected road 48,0 99,0 99,1
Roadside severity - passenger-side object 47,9 58,5 20,9
Number of lanes 47,2 97,3 91,4
Pedestrian crossing quality 46,3 98,8 98,9
Intersection quality 45,5 96,9 96,9
Intersection type 43,9 96,9 96,9
Roadside severity - driver-side object 39,7 53,5 21,2
Pedestrian crossing - side road 39,5 99,7 99,6

C. Discussion

Analysis of the obtained results has revealed that some
attributes require a larger temporal context. For instance, the
Street lighting attribute is coded as being present on stretches
of road that can span more than 10 segments between two
street lamps. When we set the temporal context to only three
segments, the recognition head often has insufficient visual
cues to deduce that street lighting is present on that stretch
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of the road. Thus, for future work, we plan to extend our
model to significantly longer image sequences.

Analysis of the hardest train errors (the lowest probability
of the correct class) of ensemble models indicates the oppor-
tunity to detect inconsistent annotations. This opens up the
possibility of using the proposed automatic coding system
as a tool to discover the divergent practices of different
annotators.

D. Explaining the model decisions

Figure 2 shows the performance of our best model on six
input frames from our dataset. Alongside each input image,
we visualize where the model is “looking” for the particular
attribute. The visualizations display the strongest gradient of
the correct logit with respect to the input image [29].

The top row shows recognition of three attributes for
which the model performs well in Table II: Sidewalk -
passenger-side (left), Delineation (middle), Divided carriage-
way (right). In all three cases, the model makes a correct
decision while “observing” feasible image locations: right
sidewalk, middle of the road, and the median strip, respec-
tively.

The bottom row shows the recognition of three attributes
from the bottom of Table II: Pedestrian crossing - side road
(left), Roadside severity - driver-side object (middle), Num-
ber of lanes (right). The model incorrectly predicts that the
sidewise pedestrian crossing is absent, despite “observing”
the correct image location (left). The model also incorrectly
predicts that roadside severity is defined by Safety barrier,
while the correct class is Semi-rigid object (the fence).
This shows why Roadside severity is a difficult attribute:
many classes are hard to differentiate. Note that the street
lighting pole on the left is also a potential roadside severity
object, but the fence overrides it. It may be the case that
multiple roadside objects confuse the model, as suggested
by the dispersed attention. Finally, the model also incorrectly
predicts that there is only one lane in the direction of travel,
which, looking at the image, seems correct. However, that
particular road is a one-way road, meaning that the model
should have predicted 2 lanes. The only indication that this
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Fig. 2. Each image pair highlights regions which are responsible for the model decision. As shown in the images, the chosen attributes are, respectively:
Sidewalk - passenger-side, Delineation, Divided carriageway (top), and Pedestrian crossing - side road, Roadside severity - driver-side object, and Number

of lanes (bottom).



is a one-way road is a traffic sign which appears more than
400m before the segment.

VII. CONCLUSION

We have presented a preliminary feasibility study on auto-
matic recognition of iRAP road-safety attributes by relying
on monocular video as the only input modality. We have
addressed a subset of 33 iRAP attributes with sufficient cov-
erage in our dataset. We have devised a custom convolutional
model specifically for this purpose. Our model transforms the
input video clip into a shared convolutional representation,
which is subsequently classified in a per-attribute multi-task
manner. Thus, inference produces 33 categorical distributions
for each 10-meter segment of the input video. The model is
trained in an end-to-end fashion on actual annotations by
iRAP experts.

Our study shows that the described setup suffers from
many problems that are not present in academic datasets.
Numerous attributes suffer from extreme class imbalance.
Because of that, some very simple models that ignore in-
frequent classes might seem deceptively good. It is easy to
envision a scenario where a rare but dangerous attribute is
missed because the model ignores the rare classes to maintain
high accuracy. We address this problem by learning with the
balanced cross-entropy loss and evaluating accuracy with the
per-attribute macro-F1 metric.

The recognition success wildly varies across the attributes.
Some attributes such as Delineation or Divided carriageway
are ready for full automation, even with our simple model
and a limited quantity of training data. On some other
attributes, our model is not ready for industrial exploitation,
either because of too few training data (Pedestrian crossing,
Sealed road) or because of the sheer difficulty of the recog-
nition problem (Intersection quality, Roadside severity).

Suitable directions for future work include improving the
recognition model, better exploitation of knowledge transfer,
semi-supervised learning, and increasing the quantity of
training data.
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