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Abstract

We present semantic segmentation experiments with a
model capable to perform predictions on four benchmark
datasets: Cityscapes, ScanNet, WildDash and KITTI. We
employ a ladder-style convolutional architecture featuring
a modified DenseNet-169 model in the downsampling dat-
apath, and only one convolution in each stage of the up-
sampling datapath. Due to limited computing resources,
we perform the training only on Cityscapes Fine train+val,
ScanNet train, WildDash val and KITTI train. We evaluate
the trained model on the test subsets of the four benchmarks
in concordance with the guidelines of the Robust Vision
Challenge ROB 2018. The performed experiments reveal
several interesting findings which we describe and discuss.

1. Introduction
Semantic image segmentation provides rich information

on surrounding environment, which presents clear applica-
tion potential in many domains. However, there are chal-
lenges which are still to be solved before this exciting tech-
nique becomes ready for the real world.

Firstly, assessing the prediction uncertainty is necessary
if we wish to be able to warn downstream processing ele-
ments when model predictions are likely to be wrong. Half
of the solution consists in detecting image regions which
are completely different from the training images and there-
fore fall in the category of out-of-distribution examples [4].
The other half of the solution is to detect regions which are
poorly learned or inherently hard to classify [6], that is to
recognize parts of the scene where our models consistently
fail to produce correct results.

Furthermore, there is little previous research on seman-
tic segmentation models which are suitable for recognizing
different kinds of environments in images with no photog-
rapher bias. Before performing experiments presented in
this report we did not know whether such models could be
trained without one domain knowledge interfering with an-

other. We also did not know how much capacity is required
in order to produce state of the art predictions in different
scenarios.

The Robust Vision Challenge provides a good testbed to
address these questions. Diversity of the included datasets
poses challenges to models which may be biased towards a
single dataset while not generalizing well on others. Simul-
taneous training on diverse datasets provides an opportunity
to learn representations which produce good and robust re-
sults in a multitude of environments.

This report presents main findings gathered while partic-
ipating in the ROB 2018 challenge. We describe the em-
ployed model [8], detail the training procedure and present
main insights obtained during our experiments.

2. Datasets

We train our common model on the following four train-
ing subsets: Cityscapes Fine train+val, WildDash, KITTI
train and ScanNet train. Due to limited computing re-
sources and limited time we chose to leave other prospective
datasets for future work. Thus, we did not train on Berkeley
Deep Drive, Vistas and Cityscapes coarse, although we did
initialize our training with parameters learned on ImageNet
[11]. The rest of this section provides a brief overview of
each of the four training datasets.

2.1. Cityscapes

The Cityscapes dataset [1] contains images from the
driver’s perspective acquired in cities from Germany and
neighbouring countries. The dataset provides 2MPx images
split into train, val and test subsets, where the semantic la-
bels for the test subset are not publicly available. There are
19 label classes used for evaluation which we train upon.
Train and val subsets consist of 2975 and 500 finely anno-
tated images, respectively. The dataset also provides 20 000
coarsely annotated images which we do not use in any of
our experiments.
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2.2. WildDash

The WildDash dataset contains a small selection of
worldwide driving images with a strong potential to present
difficulties for recognition algorithms. The dataset contains
70 validation and 156 testing images which are grouped
into ten specific hazardous scenarios such as blur, wind-
screen interference, lens distortion etc. The image resolu-
tion is 1920x1080px while the semantic annotations follow
the Cityscapes labeling policy. As in other datasets, the test
labels are not publicly available.

This dataset is unique since the test subset contains a
number of heavily distorted and out-of-distribution images
whose correct pixel-level predictions may either be the ex-
act class or the class ”Void” (both cases are counted as true
positives). The negative images must be treated in the same
way as the rest of the dataset, which suggests that aspir-
ing models should include a method for detecting out-of-
distribution patches in input images.

Due to some labeling inconsistencies (e.g. terrain vs
vegetation and car vs truck) we follow the ROB practice
and evaluate WildDash performance with the category iIoU
metric.

2.3. KITTI

The KITTI dataset [3] has been collected in Karlsruhe,
Germany while driving through the city itself and the sur-
rounding area. It provides 200 images for training and 200
images for testing at 1242x370px. The dataset uses the
Cityscapes labeling policy, same as the previous three driv-
ing datasets.

2.4. ScanNet

The ScanNet dataset [2] is the only indoor dataset used.
It is by far the largest dataset of the four, consisting of nearly
25 000 training and 962 test images. This introduces a large
distribution disbalance between indoor and driving labels
which needs to be suitably handled. There are 20 semantic
classes common to indoor scenery. The image resolution
varies, while most images have 1296×968px.

3. Method
We use a custom fully convolutional model based on

DenseNet-169 [5]. The model features a ladder-style up-
sampling path [12, 10, 9, 8] which blends high quality se-
mantics of the deep layers with fine spatial detail of the early
layers. The model produces logits at 4× subsampled resolu-
tion which we upsample to the input resolution with bilinear
interpolation, and feed to the usual cross-entropy loss with
respect to one-hot groundtruth labels.

The main differences with respect to our previous work
[8] are as follows. First, we have replaced all concatenations
in the upsampling path with summations. This increased

the efficiency of our upsampling path without losing any
IoU accuracy in validation experiments. Following that, we
have increased the number of convolution filters in the up-
sampling path from 128 to 256 because we assumed that
128 feature maps could lead to underfitting while training
on all four ROB 2018 datasets. Second, we replace the con-
text layer at the end of the downsampling path with a spatial
pyramid pooling block very similar to [13]. Third, we re-
move the auxiliary loss at the end of the downsampling path
and replace it with a novel auxiliary loss which we call the
pyramid loss. The components of the new loss are defined
in terms of softmax predictions obtained from representa-
tions obtained right after feature blending units within the
upsampling path at 64×, 32×, 16× and 8× subsampled res-
olution. We do not upsample these auxiliary predictions to
the input resolution as in the main loss. Instead, we define
the pyramid loss components as cross-entropy between soft-
max predictions and the groundtruth distribution over class
labels in the N×N boxes where N denotes the correspond-
ing subsampling factor.

During training we oversample Cityscapes, KITTI and
WildDash images multiple times in order to achieve 2:1 ex-
ample ratio with respect to ScanNet in each epoch. Mixing
outdoor and indoor images into each batch was very impor-
tant in order to get batchnorm moving population statistics
that correctly approximates batch statistics on both tasks.
For data augmentation, we apply random scale resize be-
tween 0.5 and 2, random crop with 768x768 window size
and random horizontal flip with 0.5 probability. These hy-
perparameter values are shared for all datasets. We used the
Adam optimizer [7] with the base learning rate of 4e−4 and
additionally divide the learning rate by a factor of 4 for the
ImageNet pre-trained subset of parameters. The contribu-
tion weight of the pyramid auxiliary loss was set to 0.4. We
set the batch size to 8 and train the common model for 200k
iterations. The training took around 3 days on one Titan Xp
GPU.

4. Results
We apply the common model to the test subsets of all

four datasets, collect the model predictions and map them
to the required formats of the individual benchmarks where
necessary (Cityscapes). We analyze the obtained results and
present the most interesting findings.

4.1. Mapping predictions to the dataset formats

A common model for the ROB semantic segmentation
challenge has to predict at least 39 object classes: the 19
driving classes from Cityscapes and 20 indoor classes from
ScanNet. The benchmark scripts for WildDash, KITI and
ScanNet datasets automatically map foreign class indices to
the negative classes ”Void” (Cityscapes) or ”Ignore” (Scan-
Net). The Cityscapes benchmark is oblivious of ScanNet



indices and therefore we had to manually remap ScanNet
predictions to the class ”Void” (we had very few such pix-
els as shown in Table 1).

Note that the negative classes (”Void” and ”Ignore”) are
separate form the 39 object classes. Predictions of negative
classes do not contribute to true positives on Cityscapes,
KITTI and ScanNet, however they still may improve per-
formance since they do not count as false positives. How-
ever, negative predictions constitute true positives in several
WildDash images.

4.2. False-positive detections of foreign classes

This group of experiments explores incidence of false
negative detections due to predictions of foreign classes.
This can be easily evaluated on the test datasets because
there is no overlap between indoor and driving classes.
We look at the number of ”driving” pixels in the ScanNet
test dataset as well as at the number of ”indoor” pixels in
Cityscapes test, WildDash test and KITTI test. The results
are summarized in Table 1. The results show that, perhaps
surprisingly, cross-dataset training resulted in negligible in-
crease of false positive detections due to sharing the model
across different kinds of scenery.

driving classes (%) indoor classes (%)
Cityscapes 99.857 0.143
WildDash 97.649 2.351

KITTI 100 0
ScanNet ≈ 0 ≈ 100

Table 1. Incidence of foreign pixels in the test subsets of the
four datasets. The rows correspond to the four datasets while the
columns correspond to the two groups of classes. We see that
cross-dataset training causes very few false positive pixels and
therefore results in a negligible performance hit.

Most foreign pixels in Cityscapes test images are located
on the car hood which is ignored during training. Figure 1
shows the only Cityscapes test image with a relatively large
group of predictions to foreign classes. There were zero de-
tections of foreign classes on KITTI, and only 8 detections
of foreign classes on ScanNet. Most of foreign pixels on
WildDash test are located in negative images and are there-
fore treated as true positives (we explore this in more detail
later).

4.3. Detecting negative WildDash pixels

Closer inspection of WildDash test images revealed that
almost all pixels classified as ScanNet occur in the negative
WildDash images. We illustrate three such images in Fig-
ure 2. The figure shows that Cityscapes detections are often
correct (people, building) or almost correct (indoor walls as
building, lego pavement as road).

Table 2 shows the difference in category iIoU perfor-
mance between our submissions M DN and LDN2 ROB to

Figure 1. The only Cityscapes test image in which a large group
of pixels was misclassified into indoor classes. The graffiti on the
building (white pixels) were classified as the indoor class ”wall”.

Figure 2. Negative WildDash images (top), model predictions
(middle) and out-of-distribution pixels for the WildDash dataset
(bottom). In the bottom row we colored all pixels classified as
Cityscapes classes in black. The remaining colored pixels are
treated as the ”Void” class during evaluation.

the WildDash benchmark. Both submissions correspond to
instances of the model described in Section 3 trained with
similar optimization settings. The submission M DN maps
all indoor predictions to the class Cityscapes ”Wall”. The
submission LDN2 ROB leaves outdoor predictions as they
were, which means that the benchmark script automatically
maps them to class ”Void”. By treating ScanNet predic-
tions as the WildDash negative class, LDN2 ROB submis-
sion achieved 9.1 percentage points improvement in cate-
gory iIoU. This improvement gives hope that we could es-
timate prediction uncertainty by simply assessing the likeli-
hood of the foreign classes. In other words, we could train
our future models in supervised or semi-supervised manner
on diverse datasets and use the prediction of foreign classes
(that is, classes that are not supposed to appear in this par-
ticular image) as a flag that the predictions are uncertain.



submission ID ScanNet classes negative iIoU
mapped to category (%)

M DN ”Wall” 32.2
LDN2 ROB ”Void” 42.8

Table 2. Results of our two submissions to the WildDash bench-
mark (M DN and LDN2 ROB). LDN2 ROB improves the per-
formance on negative WildDash test images by mapping ScanNet
predictions to out-of-distribution pixels.

4.4. Reduction of overfitting in the upsampling path

Early experiments showed very poor accuracy of the
Ladder-DenseNet architecture on the WildDash test dataset.
Further experiments with a simpler model based on bilinear
upsampling resulted in better performance. Consequently,
we hypothesized that the model with the ladder-style up-
sampling suffers from overfitting in the upsampling path.
We attempt to alleviate this problem by regularizing the
model with the pyramid loss described in Section 3 (i.e.
by adding a classification head at each upsampling level),
which resulted in significant improvement. We illustrate
these effects in Table 3 which shows that the recognition
accuracy significantly increases when we add pyramid loss.
The table also shows that the benefits reproduce on the
Berkeley Deep Drive dataset (note that we do not train on
Berkeley Deep Drive in any of the experiments).

Dataset WildDash BDD
Pyramid loss No Yes No Yes

Flat 67.2 66.5 70.9 74.6
Construction 18.1 16.8 51.9 52.4

Object 13.4 24.1 29.8 34.3
Nature 72.1 71.9 65.5 65.6

Sky 67.7 66.6 66.9 67.8
Human 30.4 36.0 45.4 46.2
Vehicle 44.1 54.5 75.6 76.3
mIoU 44.7 48.1 58.0 59.6

Table 3. Category IoU on WildDash val and Berkeley Deep Drive
val for the model trained on Cityscapes only. We observe large
improvements on objects, humans and vehicles. Both training and
prediction was performed on half image resolution in this experi-
ment.

Further inspection of semantic predictions along the up-
sampling path showed that some overfitting in the ladder-
upsampling remains despite the pyramid loss. We illustrate
these effects in Figure 3. The image clearly shows that the
prediction accuracy gradually decreases as we transition to-
wards finer resolutions (top right). We believe that solving
this issue might be an interesting direction for future work.

Finally, we show what happens on WildDash test when
we include WildDash val to the training set. The effect
is not easy to quantify since WildDash benchmarks allows
only three submissions per researcher. We therefore per-
form qualitative analysis in several WildDash test images

Figure 3. Semantic segmentation predictions of a WildDash val
image (top left) at different levels of the upsampling path by a
model trained on Cityscapes only. The resolution increases from
bottom to top and from right to left. We note that the accuracy gets
worse as we transition from the coarsest resolution (bottom right)
to the finest resolution (top right). Both training and prediction
was performed on half image resolution in this experiment.

and show the results in Figure 4. We see that only 70 Wild-
Dash val images succeeds to significantly impact the model
despite being used along 3500 images from the Cityscapes
dataset.

Figure 4. Segmentation results when training on Cityscapes +
WildDash val (middle row) vs. training on Cityscapes only (bot-
tom row). Both training and predictions was performed on half
image resolution in this experiment.

4.5. Overall results

We have submitted the results of our common model to
the ROB 2018 challenge under the identifier LDN2 ROB.
The obtained results on all four datasets are summarized in
Table 4.



dataset metric our result best result our rank
KITTI class IoU 63.5 69.6 3
ScanNet class IoU 44.0 48.0 2
Cityscapes class IoU 77.1 80.2 2
WildDash category IoU 54.5 59.1 3

Table 4. Results of our common model LDN2 ROB at the four
semantic segmentation benchmarks.

5. Discussion
The presented experiments resulted in several interest-

ing findings. Initial experiments with ladder-style models
resulted in very poor cross-dataset performance. Closer in-
spection revealed that small errors had been multiplying
along the upsampling datapath. This likely occured due
to blending convolutions being overfit to the Cityscapes ur-
ban scenes with ideal weather conditions and a high-quality
HDR camera. These effects might be even larger in models
with more capacity in the upsampling datapaths. Experi-
ments have showed that this problem can be successfully
mitigated with suitable auxiliary losses and training on the
WildDash val subset.

The second interesting result is that ScanNet training sig-
nificantly improved recognition of out-of-distribution pixels
on WildDash test. In fact, many such pixels were detected
as some of the ScanNet classes and were therefore treated
as true positive predictions. This raises hopes that future
models will be able to detect unusual parts of the scene for
free, only by virtue of being trained on a more diverse set
of classes.

Further, we found that simultaneous training on multi-
ple datasets resulted in virtually no performance hit with
respect to training only on one dataset. In fact, less than
0.01 percent of valid in-distribution pixels in all three driv-
ing dataset test sets were recognized as one of the ScanNet
indoor classes. Conversely, only 8 out of around billion pix-
els in ScanNet test were recognized as one of the Cityscapes
driving classes.

Finally, we found that batch composition represents an
important ingredient of cross-dataset training. The train-
ing convergence improved substantially when we switched
from training on single-dataset batches to training on cross-
dataset batches. We hypothesize that the improvement oc-
curred due to more stable training of batchnorm layers.
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