
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Efficient Ladder-style DenseNets
for Semantic Segmentation of Large Images

Ivan Krešo Josip Krapac Siniša Šegvić
University of Zagreb, Faculty of Electrical Engineering and Computing

ikreso@realnetworks.com josip.krapac@zalando.de sinisa.segvic@fer.hr

Abstract—Recent progress of deep image classification models has provided a great potential for improving related computer vision
tasks. However, the transition to semantic segmentation is hampered by strict memory limitations of contemporary GPUs. The extent of
feature map caching required by convolutional backprop poses significant challenges even for moderately sized Pascal images, while
requiring careful architectural considerations when input resolution is in the megapixel range. To address these concerns, we propose
a novel ladder-style DenseNet-based architecture which features high modelling power, efficient upsampling, and inherent spatial
efficiency which we unlock with checkpointing. The resulting models deliver high performance and allow training at megapixel
resolution on commodity hardware. The presented experimental results outperform the state-of-the-art in terms of prediction accuracy
and execution speed on Cityscapes, VOC 2012, CamVid and ROB 2018 datasets. Source code at https://github.com/ivankreso/LDN.

F

1 INTRODUCTION

S EMANTIC segmentation is a computer vision task in
which a trained model classifies pixels into meaningful

high-level classes. Due to being complementary to object lo-
calization, it represents an important step towards advanced
image understanding. Most attractive applications include
autonomous control [1], intelligent transportation [2], photo
editing [3] and medical imaging [4]. Early approaches opti-
mized a trade-off between multiple local classification cues
(texture, color etc), and their global agreement [5]. Later
work improved these ideas with non-linear embeddings [6],
multi-scale analysis [7], depth [8], and improved spatial
consistency [9], [10]. However, none of these approaches
has been able to match the improvement due to deep
convolutional models [7], [11].

Deep convolutional models have caused an unprece-
dented rate of computer vision development. Much recent
attention has been directed towards residual models (also
known as ResNets) [12], [13] in which each processing step
is expressed as a sum between a compound non-linear
unit and its input. This introduces an auxiliary information
path which allows a direct gradient propagation across the
layers, similarly to the flow of the state vector across LSTM
cells. Recent approaches replicate and exceed the success
of residual models by introducing skip-connections across
layers. Our work is based on densely connected models
(also known as DenseNets) [14] in which the convolutional
units operate on concatenations of all previous features at
the current resolution. This encourages feature sharing and
discourages overfitting [14], while also favouring the gradi-
ent flow towards early layers. Our semantic segmentation
experiments show that DenseNet-based models outperform
their counterparts based on ResNets [13] and more recent
dual path networks [15]. Besides outstanding generaliza-
tion, DenseNets carry a great memory-saving potential due
to extensive feature reuse. However, this potential is not eas-
ily materialized due to inefficient activation caching during
automatic differentiation. We show that this can be effec-

tively alleviated by extensive gradient checkpointing [16]
which leads to five-fold reduction of memory requirements.

In general, deep segmentation models must decrease the
spatial resolution of deep layers in order to enable train-
ing under strict GPU memory limitations. Subsequently,
deep features have to be carefully upsampled in order to
generate correct predictions at semantic borders and small
objects. Most previous work reduces the subsampling by
dilated filtering [17], [18], [19], [20], [21]. We take another
approach, where deep features are upsampled by exploiting
activations from earlier layers. Different than previous such
methods [4], [22], [23], [24], [25], we conjecture that upsam-
pling requires much less capacity than the downsampling
path. Consequently, we propose a minimalistic upsampling
datapath which is very well suited for efficient processing
of large images.

This paper presents an effective lightweight architec-
ture for semantic segmentation of large images, based on
DenseNet features and ladder-style [26] upsampling. We
propose several improvements with respect to our previous
work [27], which lead to better accuracy and faster execu-
tion while using less memory and fewer parameters. Our
consolidated contribution is three-fold. First, we increase
computational efficiency by subsampling the representation
in the middle of a DenseNet block. Second, we propose an
efficient ladder-style upsampling datapath which requires
less memory and achieves a better IoU/FLOP trade-off
than related previous work [4], [22]. Third, we unlock the
potential of our method for memory-efficient training with
a novel checkpointing approach. Our method now requires
less than half memory than ResNet with in-place activated
batchnorm [20]. These contributions strike an excellent bal-
ance between prediction accuracy and model complexity.
Experiments on Cityscapes, CamVid, ROB 2018 and Pascal
VOC 2012 demonstrate state-of-the-art recognition perfor-
mance and competitive inference speed.

https://github.com/ivankreso/LDN

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

2 RELATED WORK

Early convolutional models for semantic segmentation had
only a few pooling layers and were trained from scratch
[7]. Later work built on feature extractors pre-trained on
ImageNet [12], [14], [28], which produce 32× subsampled
representations. This improved generalization [29] and re-
duced the training footprint due to smaller resolution of
feature tensors. Early upsampling approaches leveraged
trained filters [30] and cached max-pool switches [31]. Many
recent approaches modify some strided layers to produce
non-strided output while doubling the dilation factor of all
subsequent convolutions [18], [32]. This decreases the extent
of subsampling while preserving pre-trained semantics of
the feature extractor.

However, we believe that dilated filtering should be used
sparingly [33] or completely avoided [27], [34] due to follow-
ing two shortcomings. First, dilated filtering substantially
increases the training footprint and inference complexity,
and thus hinders single-GPU training and real-time infer-
ence. Practical implementations alleviate this by recovering
only up to the last two subsamplings, which allows subse-
quent inference at 8× subsampled resolution [17], [18]. Sec-
ond, dilated filtering treats semantic segmentation exactly
as if it were ImageNet classification: each pixel is classified
independently from its neighbours. This does not feel right
since we know that neighboring pixels are highly correlated
in practice.

We therefore prefer to keep the downsampling and re-
store the resolution by blending semantics of deep features
with location accuracy of the earlier layers [35]. This en-
courages the deep layers to discard location information and
focus on abstract image properties [26]. Practical realizations
avoid high-dimensional features at output resolution [35]
by ladder-style upsampling [4], [26], [34]. In symmetric
encoder-decoder approaches, [4], [22], [31] the upsampling
datapath mirrors the structure of the downsampling data-
path. These methods are unable to process large images or
deliver high execution speed due to excessive upsampling
complexity. Ghiasi et al [23] blend predictions (instead of
blending features) by prefering the deeper layer in the
middle of the object, while favouring the earlier layer near
the object boundary. Pohlen et al [36] propose a two-stream
residual architecture where one stream is always at the
full resolution, while the other stream is first subsampled
and subsequently upsampled by blending with the first
stream. Lin et al [24] perform the blending by a sub-model
comprised of 8 convolutional and several other layers in
each upsampling step. Islam et al [37] blend upsampled
predictions with two layers from the downsampling dat-
apath. This results in 4 convolutions and one elementwise
multiplication in each upsampling step. Peng et al [25] blend
predictions produced by convolutions with very large ker-
nels. The blending is performed by one 3×3 deconvolution,
two 3×3 convolutions, and one addition in each upsampling
step.

Contrary to previous approaches, we conjecture that it
is much more difficult to recognize semantic classes than
to delineate semantic borders. We therefore argue for an
asymetric encoder-decoder approach consisting of a pow-
erful backbone and efficient upsampling. Each upsampling

step has only one 3×3 convolution whereby the number
of feature maps is much lower than in the corresponding
layers of the downsampling path [27]. To the best of our
knowledge, such organization has not been previously used
for semantic segmentation, although there exists related
work in object detection [34], and instance-level segmen-
tation [38]. Note that our lateral connections differ from
[23], [25], [37], since they blend predictions, while we blend
features. Blending features improves the modelling power,
but is more computationally demanding. We can afford to
blend features due to efficient upsampling and gradient
checkpointing which will be explained later.

Pretrained convolutional representations are not directly
applicable to large images due to insufficient receptive
range. This issue typically shows up in large indistinctive
regions which are common in urban scenes. These regions
are often projected from nearby objects, which makes them
very important for high-level tasks (as exemplified by cir-
cumstances of the first fatal incident of a level-2 autopilot).
Some approaches address this issue with dilated convo-
lutions [18], [33], however sparse sampling may hurt the
accuracy due to aliasing. The receptive range can also be
enlarged by increasing the model depth [37]. However,
the added capacity may result in overfitting. Correlation
between distant parts of the scene can also be modelled
with long-range connections [10], [39]. However, these may
be unsuitable due to large capacity and computational
complexity. A better ratio between receptive range and
complexity is achieved with spatial pyramid pooling (SPP)
[17], [40], [41] which augments the features with their spatial
pools over rectangular regions of varying size.

To the best of our knowledge, there are only two previ-
ous works on DenseNet-based semantic segmentation [21],
[22]. However, these approaches fail to position DenseNet as
the backbone with the largest potential for memory-efficient
feature extraction. This potential is caused by a specific
design which encourages inter-layer sharing [14] instead
of forwarding features across the layers. Unfortunately,
automatic differentiation is unable to exploit this poten-
tial due to concatenation, batchnorm and projection layers.
Consequently, straightforward DenseNet implementations
actually require a little bit more memory than their residual
counterparts [27]. Here we show that the problem can be
resolved with checkpointing [14], [16]. Previous work on
checkpointed segmentation models considered only resid-
ual models [20], and achieved only two-fold memory reduc-
tion. On the other hand, our custom checkpointing scheme
is specifically crafted for our architecture, and is therefore
able to achieve up to six-fold memory reduction with respect
to the baseline.

3 THE PROPOSED ARCHITECTURE

The proposed architecture consists of two datapaths which
roughly correspond to two horizontal rails in Figure 1. The
downsampling datapath includes a customized DenseNet
feature extractor [14], and a lightweight spatial pyramid
pooling module (SPP) [17]. The feature extractor transforms
the input image into convolutional features F by gradually
reducing spatial resolution, and increasing the number of
feature maps (top rail in Fig. 1). The SPP module enriches

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

s
t
e
m

(
1

l
a
y
e
r
) DB1

(2·6 layers)

256×512
f=256

TD

DB2
(2·12 layers)

128×256
f=512

TD

TU
256×512
f=128

Loss
(one-hot labels)

TU
128×256
f=128

SPP
16×32
f=256

DB3a
(2·12 layers)

64×128
f=640

TD

TU
64×128
f=256

D

DB3b
(2·12 layers)

32×64
f=1024

TU
32×64
f=256

DB4
(2·16 layers)

16×32
f=1024

Aux loss
(soft labels)

Aux loss
(soft labels)

Aux loss
(soft labels)

Aux loss x5
(soft labels)

F
CCLA

1024×2048
f=19

Fig. 1. Diagram of the proposed segmentation architecture. Each processing block is annotated with dimensions of the resulting feature tensor in
case of DenseNet-121 and Cityscapes input (f denotes the number of feature maps). We split the dense block DB3 in order to enlarge receptive
range, improve speed and reduce the memory footprint. The transition-up (TU) blocks blend low-resolution semantic features with high-resolution
low-level features. The classifer (CLA) projects features to 19 semantic maps and bilinearly upsamples them to the input resolution.

F with context information, and produces context-aware
features C. The upsampling datapath transforms C into
high-resolution semantic predictions (bottom rail in Fig. 1)
by exploiting fine details from the downsampling datapath.

3.1 Feature extraction

Our feature extractor consists of densely connected blocks
(DB) and transition layers (TD, D) (cf. Figure 1). Each DB is
a concatenation of convolutional units, while each convo-
lutional unit operates on a concatenation of all preceding
units and the DB input [14]. We customize the original
DenseNet design by splitting DB3 into two fragments (DB3a
and DB3b), and placing a strided average-pooling layer (D)
in-between them. This enlarges the receptive field of all con-
volutions after DB3a, while decreasing their computational
complexity. In comparison with dilated filtering [18], this ap-
proach trades-off spatial resolution (which we later restore
with ladder-style blending) for improved execution speed
and reduced memory footprint. We initialize DB3b filters
with the original ImageNet-pretrained weights, although
the novel pooling layer alters the features in a way that
has not been seen during ImageNet pretraining. Despite this
discrepancy, fine-tuning succeeds to recover and achieve
competitive generalization. The feature extractor concludes
by concatenating all DB4 units into the 64× subsampled
representation F.

3.2 Spatial pyramid pooling

Spatial pyramid pooling captures wide context information
[17], [40], [41] by augmenting F with average pools over
spatial grids. We first project F to d/2 maps, where d

C 1×1, f=d/2
h×w

P h×h stride h

P h/2×h/2 stride h/2

P h/4×h/4 stride h/4

P h/8×h/8 stride h/8

C 1×1, f=d/8
1×w/h

C 1×1, f=d/8
2×2·w/h

C 1×1, f=d/8
4×4·w/h

C 1×1, f=d/8
8×8·w/h

↑h/8×

↑h/4×

↑h/2×

↑h×

C 1x1, f=d/4
h×w

F
h×w×d

C
h×w×d/4

c
o
n
c
a
t

Fig. 2. The proposed SPP module. P, C, and ↑ denote pooling, con-
volution and bilinear upsampling. We introduce two modifications with
respect to [17]: i) we adapt the grid to the aspect ratio of input features
F, and ii) we reduce the dimensionality throughout the module in order
to decrease memory footprint and discourage overfitting.

denotes the dimensionality of features in F. The resulting
tensor is then average-pooled over four grids with 1, 2, 4,
and 8 rows. The number of grid columns is set in accordance
with the image size so that all cells have a square shape.
We project each pooled tensor to d/8 maps and then bilin-
early upsample to the common resolution. We concatenate
all results with the projected F, and finally blend with a
1×1×d/4 convolution. The resulting context-aware feature
tensor C is h×w×d/4 where h=H/64, w=W/64, while
H,W denotes the input resolution. If we use DenseNet-121
(d=1024), C has 48 times less dimensions than the input
image.

3.3 Ladder-style upsampling

Ladder-style upsampling recovers fine details through a
series of efficient transition-up (TU) blocks. Each TU block
blends the preceding representation along the upsampling
path (Ui−1) with a skip-connection from the corresponding
densely connected block (DBx). Ui−1 has strong semantics
while DBx has more spatial detail. The output Ui gets the
best of both worlds. We first upsample Ui−1 so that the
two representations have the same resolution. Subsequently,
we project DBx to a lower-dimensional space so that the
two representations have the same number of feature maps.
This balances the relative influence of the two datapaths
and allows blending by simple summation. Subsequently,
we reduce the dimensionality of the sum with 1×1 con-
volution, and blend the result with 3×3 convolution to
deliver the output Ui as shown in Fig. 3. The described
blending procedure is recursively applied along the up-
sampling datapath. The last transition-up block produces
features at the resolution of the DenseNet stem. Finally, the
CLA module recovers dense predictions by projection onto
semantic classes and 4× bilinear upsampling. The proposed

C 1×1
f=128+

C 1×1
f=256

C 3×3
f=256

DBx
h×w×d

Ui-1
h/2×w/2×256

Ui
h×w×256

↑2×

Fig. 3. The proposed transition-up module (UP in Fig. 1). C, and ↑
denote convolution and bilinear upsampling. The number of feature
maps in Ui−1 and Ui varies according to Fig. 1. Minimalistic design
ensures fast inference (only one 3×3 convolution), and low memory
footprint (few convolutions, low feature dimensionality).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

design has much fewer parameters than the downsampling
datapath and therefore discourages overfitting as we show
in the experiments.

4 GRADIENT CHECKPOINTING

Semantic segmentation requires a lot of caching during
backprop, especially for large input resolutions. This may
lead to difficulties due to strict limitations of GPU RAM. For
example, it is well known that small training batches result
in poor learning due to unstable batchnorm statistics. This
problem can not be overcome by accumulating backward
passes, and therefore hinders the accuracy of the model.

The extent of backprop-related caching can be reduced
with gradient checkpointing [16]. The main idea is to in-
struct forward pass to cache only a carefully selected subset
of all activations which are denoted as gradient checkpoints.
The subgraph between two gradient checkpoints is denoted
as a checkpointing segment. The backward pass iterates
over all checkpointing segments and processes them as
follows: i) forward pass activations are recomputed starting
from the checkpoint, and ii) the gradients are computed via
the standard backward pass. The local cache is released as
soon as a segment is processed, before continuing to the next
segment.

We note that segment granularity affects space and time
efficiency. Enlarging the checkpoint segments always re-
duces the memory footprint of the forward pass. However,
the influence to backward pass memory requirements is
non-trivial. Larger segments require more memory individ-
ually as they need to re-compute all required activations
and store them in the local cache. At some point, we start
to lose the gains obtained during forward pass. Our best
heuristic was to checkpoint only outputs from 3×3 con-
volutions as they are the most compute-heavy operations.
In other words, we propose to re-compute the stem, all
projections, all batchnorms and all concatenations during
the backward pass. Experiments show that this approach
strikes a very good balance between maximum memory
allocation in forward and backward passes.

The proposed checkpointing strategy is related to
the previous approach [14] which puts a lot of ef-
fort into explicit management of shared storage. How-
ever, here we show that similar results can be obtained
by relying on the standard PyTorch memory manager.
We also show that custom backprop operations can be
completely avoided by leveraging the standard PyTorch
module torch.utils.checkpoint. Finally, we propose
to achieve further memory gains by checkpointing out-
puts of 3×3 convolutions. This implies re-computing the
stem, transition-down and transition-up blocks, and each
DenseNet unit except the 3×3 convolution. To the best of
our knowledge, this is the first account of applying exten-
sive checkpointing for semantic segmentation.

5 EXPERIMENTS

Most of our experiments target road-driving images since
the corresponding applications require large input resolu-
tion (subsections 5.2, 5.3, and 5.4). For completeness, we also
present results on photographic collections (5.5), and abla-
tion experiments (5.6). Finally, we show that our method is

extremely memory-efficient when used with checkpointing
(5.7).

5.1 Training details and notation
We train our models using AMSGrad [42], [43] with the
initial learning rate 4 · 10−4. The learning rate is decreased
after each epoch according to cosine learning rate policy.
We divide the learning rate by 4 for all pre-trained weights.
Batch size is an important hyper-parameter of the optimiza-
tion procedure. If we train with batch size 1, then the batch-
norm statistics fit exactly the image we are training on. This
hinders learning due to large covariate shift across different
images [44]. We combat this by training on random crops
with batch size 16. Before cropping, we apply a random
flip and rescale the image with a random factor between
0.5 and 2. The crop size is set to 448, 512 or 768 depending
on the resolution of the dataset. If a crop happens to be
larger than the rescaled image, then the undefined pixels
are filled with the mean pixel. We train for 300 epochs unless
otherwise stated. We employ multiple cross entropy losses
along the upsampling path as shown in Figure 1. In order to
promote efficient learning, auxiliary losses are formulated
on the native k× subsampled resolution as cross-entropy
between predictions ŷ and soft targets yk:

Laux
k = − k2

WH

∑
rc

∑
f

yk
rcf log ŷrcf . (1)

The soft targets correspond to the distribution of one-hot
labels yOH in the corresponding k×k window:

yk
rc =

1

k2

∑
∆r∆c

yOH
kr+∆r,kc+∆c . (2)

We apply loss after each upsampling step, and to each of the
four pooled tensors within the SPP module. The loss of the
final predictions and the mean auxiliary loss are weighted
with factors 0.6 and 0.4, respectively. These values were
validated on the Cityscapes dataset. After the training, we
recompute the batchnorm statistics as exact averages over
the training set instead of decayed moving averages used
during training. This practice slightly improves the model
generalization.

We employ the following notation to describe our ex-
periments throughout the section. LDN stands for Ladder
DenseNet, the architecture proposed in Section 3. The sym-
bol d→u denotes a model which downsamples the input
resolution d times, and then uses ladder-style upsampling
to produce predictions subsampled u times. For example,
LDN121 64→4 denotes the model shown in Figure 1. Simi-
larly, DDN and LDDN denote a dilated DenseNet, and a di-
lated DenseNet with ladder-style upsampling. The symbol
d ↓ denotes a model which reduces the input resolution d
times and has no upsampling path. MS denotes multi-scale
evaluation on 5 scales (0.5, 0.75, 1, 1.5 and 2), and respective
horizontal flips. IoU and Cat. IoU denote the standard mean
IoU metric over classes and categories. The instance-level
mean IoU (iIoU) metric [45] emphasizes contribution of
pixels at small instances, and is therefore evaluated only
on 8 object classes. The model size is expressed as the
total number of parameters in millions (M). FLOP denotes
the number of fused multiply-add operations required for
inference on a single 1024×1024 (1MPx) image.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

5.2 Cityscapes
Cityscapes has been recorded in 50 cities during daylight
and fine weather [45]. It features 19 classes, many dynamic
objects, and varying scene layout and background. Our
experiments target the finely annotated dataset consisting
of 2975 training, 500 validation, and 1525 test images of
1024×2048 pixels.

Table 1 validates several popular backbones coupled
with the same SPP and upsampling modules. Due to
hardware constraints, here we train and evaluate on half
resolution images, and use 448×448 crops. The first sec-

TABLE 1
Validation of backbone and upsampling architectures on Cityscapes
val. Both training and evaluation images were resized to 1024×512.

Class Cat. Model FLOP
Method IoU iIoU IoU size 1MPx

DN121 32↓ 66.2 46.7 78.3 8.2M 56.1G
LDN121 64→4 75.3 54.8 88.1 9.5M 66.5G
LDN121 32→4 76.6 57.5 88.6 9.0M 75.4G
LDN169 32→4 75.8 55.5 88.4 15.6M 88.8G
LDN121 32→2 77.5 58.9 89.3 9.4M 154.5G
ResNet18 32→4 70.9 49.7 86.7 13.3M 55.7G
ResNet101 32→4 73.7 54.3 87.8 45.9M 186.7G
ResNet50 32→4 73.9 54.2 87.8 26.9M 109.0G
DPN68 32→4 74.0 53.0 87.8 13.7M 59.0G
DDN-121 8↓ 72.5 52.5 85.5 8.2M 147.8G
LDDN-121 8→4 75.5 55.3 88.3 8.6M 174.8G
LDDN-121 16→4 75.8 55.9 88.4 8.9M 87.0G

tion presents the DN121 32↓ baseline. The second sec-
tion presents our models with ladder-style upsampling.
The LDN121 64→4 model outperforms the baseline for 10
percentage points (pp) of IoU improvement. Most of this
improvement occurs on very small objects (due to blending
with high-resolution features) and very large objects (due to
enlarged spatial context caused by increased subsampling,
64 vs 32). Note that LDN121 32→4 slightly outperforms
LDN121 64→4 at this resolution due to better accuracy at
semantic borders. However, the situation will be opposite
in full resolution images due to larger objects (which re-
quire a larger receptive field) and off-by-one-pixel annota-
tion errors. The LDN169 32→4 model features a stronger
backbone, but obtains a slight deterioration (0.8pp) with
respect to LDN121 32→4. We conclude that half resolution
images do not contain enough training pixels to support
the capacity of DenseNet-169. The LDN121 32→2 model
shows that further upsampling doubles the computational
complexity while bringing only a slight IoU improvement.
The third section demonstrates that residual and DPN back-
bones achieve worse generalization than their DenseNet
counterparts. The last section presents the models which
avoid the resolution loss by dilated convolutions. The DDN-
121 8↓ model removes the strided pooling layers before
the DenseNet blocks DB3 and DB4, and introduces dila-
tion in DB3 (rate=2) and DB4 (rate=4). The SPP output
is now 8× downsampled. From there we produce logits
and finally restore the input resolution with bilinear up-
sampling. The LDDN-121 8→4 model continues with one
step of ladder-style upsampling to obtain 4× downsampled

predictions as in previous LDN experiments. We observe
a 3pp IoU improvement due to ladder-style upsampling.
The LDDN-121 16→4 model dilates only the last dense
block and performs two steps of ladder-style upsampling.
We observe a marginal improvement which, however, still
comes short of LDN121 32→4 from Table 1. Training the
DDN-121 4↓ model was infeasible due to huge computa-
tional requirements when the last three blocks operate on
4× subsampled resolution. A comparison of computational
complexity reveals that the dilated LDDN-121 8→4 model
has almost 3× more FLOPs than LDN models with sim-
ilar IoU performance. Finally, our memory consumption
measurements show that LDDN-121 8→4 consumes around
2× more GPU memory than LDN121 32→4. We conclude
that dilated models achieve a worse generalization than
their LDN counterparts while requiring more computational
power.

Table 2 shows experiments on full Cityscapes val images
where we train on 768×768 crops. We obtain the most in-
teresting results with the LDN121 64→4 model presented in
Figure 1: 79% IoU with a single forward pass and 80.3% with
multi-scale (MS) inference. Models with stronger backbones
(DenseNet-169, DenseNet-161) validate only slightly better.
We explain that by insufficient training data and we expect
that successful models need less capacity for Cityscapes
than for a harder task of discriminating ImageNet classes.

TABLE 2
Validation of various design options on full-resolution Cityscapes val.

Class Cat. Model FLOP
Method IoU IoU size 1MPx

LDN121 32→4 78.4 90.0 9.0M 75.4G
LDN121 64→4 79.0 90.3 9.5M 66.5G
LDN121 128→4 78.4 90.1 9.9M 66.2G
LDN161 64→4 79.1 90.2 30.0M 138.7G
LDN121 64→4 MS 80.3 90.6 9.5M 536.2G

Table 3 compares our models with the state-of-the-art
on validation and test sets. Our models generalize better
than or equal to all previous approaches, while being much
more efficient. In particular, we are the first to reach 80% IoU
on Cityscapes test with only 66.5 GFLOP per Mpx. Table 4
presents a comparison with efficient approaches. It reports
normalized processing time according to GPU conversion
factors proposed in [29]. Label dws denotes depthwise
separable convolutions in the upsampling path (cf. Table 9).
Figure 4 plots the best performing models from Tables 3 and
4 in (IoU,TFLOP) coordinates. The figure clearly shows that
our models achieve the best trade-off between accuracy and
computational complexity.

5.3 CamVid
The CamVid dataset contains images of urban road driving
scenes. We use the 11-class split from [31], which consists
of 367 training, 101 validation, and 233 testing images. The
resolution of all images is 720×960. Following the common
practice, we incorporate the val subset into train because
it is too small and too easy to be useful for validation. We
train all models from random initialization (RI), and by fine-
tuning the parameters pre-trained on ImageNet (PT). We

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 3
Comparison with the state-of-the-art when training only on Cityscapes

fine. FLOP metrics marked with ’†’ include only the backbone.

IoU Tflop@1Mpx
Method Backbone Val Test single scale

LKM [25] rn50 d32↓ 77.4 76.9 0.110†

TuSimple [46] rn101 d8↓ 76.4 77.6 0.720†

SAC-multiple [47] rn101 d8↓ 78.7 78.1 0.720†

ResNet-38 [48] wrn38 d8↓ 77.9 78.4 2.110†

PSPNet [17] rn101 d8↓ n/a 78.4 0.720†

Multi Task [49] rn101 d8↓ n/a 78.5 0.720
TKCN [50] rn101 d8↓ n/a 79.5 0.720†

DFN [51] rn101 d32↓ n/a 79.3 0.450†

Mapillary [20] wrn38 d8↓ 78.3 n/a 2.110†

DeepLab v3 [19] rn101 d8↓ 79.3 n/a 0.720†

DeepLabv3+ [33] x-65 d8↓ 79.1 n/a 0.710
DRN [52] wrn38 d8↓ 79.7 79.9 2.110†

DenseASPP [21] dn161 d8↓ 78.9 80.6 0.500†

LDN121 64→4 dn121 64↓ 80.3 80.0 0.066
LDN161 64→4 dn161 64↓ 80.7 80.6 0.139

TABLE 4
Comparison with the state-of-the-art in efficient inference after training

on Cityscapes fine. We report normalized [29] time of FP32
single-scale inference on Titan Xp GPU for 1024×2048 images.

IoU Tflop ms
Method Backbone Val Test 1Mpx Titan Xp

ERFNet [53] erfnet d8↓ 71.5 69.7 0.055 89.0
SwiftNet [29] rn18 d32↓ 75.4 75.5 0.052 22.7
LinkNet [54] rn18 d32↓ 76.4 n/a 0.201 108.8
BiSeNet [55] rn18 d8↓ 74.8 74.7 0.049 29.4
LRN18 32→4 rn18 32↓ 76.1 n/a 0.056 23.5
LRN50 32→4 rn50 32↓ 77.5 n/a 0.109 52.0
LDN121 dws dn121 64↓ 78.9 n/a 0.054 42.6
LDN121 64→4 dn121 64↓ 79.0 79.3 0.066 40.7

train on 512×512 crops for 400 epochs with pre-training,
and 800 epochs with random init. All other hyperparameters
are the same as in Cityscapes experiments. Table 5 shows
our results on full-resolution CamVid test. The conclusions
are similar as on half-resolution Cityscapes val (cf. Table 1),
which does not surprise us due to similar input resolutions.
LDN121 32→4 wins both in the pre-trained and in the
random init case, with LDN121 64→4 being the runner-up.
Table 6 compares our best results with the related work on

TABLE 5
Single-scale inference on full-resolution CamVid test with ImageNet

pre-training (PT) and random initialization (RI).

PT RI Model FLOP
Method IoU IoU size 1MPx

LDN121 32→4 77.3 70.9 9.0M 75.4G
LDN121 64→4 76.9 68.7 9.5M 66.5G
ResNet18 32→4 73.2 70.0 13.3M 55.7G
ResNet50 32→4 76.1 69.9 26.9M 109.0G
ResNet101 32→4 76.7 69.4 45.9M 186.7G

0.063 0.125 0.25 0.5 1 2
TFLOP

70

72

74

76

78

80

m
Io

U

LDN121-DWS

LDN121

LDN161 DenseASPP DRN

LKM

DeepLabv3+

Mapillary

DFN

ERFNet

PSPNet
TuSimpleLinkNet

SwiftNetRN18

BiSeNet

Fig. 4. Accuracy vs forward pass complexity on Cityscapes test (green)
and val (red) for approaches from Table 3. LDN121 is the first method to
achieve 80% IoU while being applicable in real-time.

CamVid test where, to the best of our knowledge, we obtain
state-of-the-art results.

TABLE 6
Comparison of our models with the state-of-the-art on CamVid test. We

use multi-scale inference in experiments on full resolution.

Method Backbone ImgNet Resolution IoU

Tiramisu [22] DenseNet half 66.9
FC-DRN [56] DenseResNet half 69.4
G-FRNet [57] VGG-16 X half 68.8
BiSeNet [55] Xception39 X full 65.6
ICNet [58] ResNet-50 X full 67.1
BiSeNet [55] ResNet-18 X full 68.7

LDN121 16→2 DenseNet half 69.5

LDN121 32→4 DenseNet full 71.9

LDN121 16→2 DenseNet X half 75.8

LDN121 32→4 DenseNet X full 78.1

5.4 Cross-dataset generalization
We explore the capability of our models to generalize across
related datasets. Mapillary Vistas [59] is a large road driv-
ing dataset featuring five continents and diverse lighting,
seasonal and weather conditions. It contains 18000 training,
2000 validation, and 5000 test images. In our experiments,
we remap annotations to 19 Cityscapes classes, and resize
all images to width 2048. The KITTI dataset contains road
driving images recorded in Karlsruhe [60]. It features the
Cityscapes labeling convention and depth reconstruction
groundtruth. There are 200 training and 200 test images. All
images are 370×1226.

Table 7 shows that training only on Cityscapes results in
poor generalization due to urban bias and constant acqui-
sition setup. On the other hand, models trained on Vistas
generalize much better due to better diversity of the training
dataset. Training on both datasets achieves the best results.

We briefly describe our submission [61] to the Robust
vision challenge held at CVPR 2018. The semantic segmen-
tation challenge featured 1 indoor (ScanNet), and 3 road-
driving (Cityscapes, KITTI, WildDash) datasets. A quali-
fying model had to be trained and evaluated on all four

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 7
Cross-dataset evaluation on half-resolution images. We train separate

models on Cityscapes, Vistas and their union, and show results on
validation sets of three driving datasets. These experiments present an

older variant of LDN121 64→4 which splits DB4 instead of DB3.

Training Cityscapes Vistas KITTI
Method dataset IoU IoU IoU

LDN121 64→4 s4 Cityscapes 76.0 44.0 59.5
LDN121 64→4 s4 Vistas 68.7 73.0 64.7
LDN121 64→4 s4 Cit. + Vis. 76.2 73.9 68.7

benchmarks, and it had to predict at least 39 classes: 19 from
Cityscapes and 20 from ScanNet. We have trained a LDN169
64→4 model on Cityscapes train+val, KITTI train, WildDash
val and ScanNet train+val. Our submission ROB_LDN had
received the runnner-up prize. Unlike the winners [20], our
model was not trained on any additional datasets like Vistas.

5.5 Pascal VOC 2012
PASCAL VOC 2012 [62] contains photographs from private
collections. There are 6 indoor classes, 7 vehicles, 7 living
beings, and one background class. The dataset contains 1464
train, 1449 validation and 1456 test images of variable size.
Following related work, we also train on 10582 images from
the AUG set [63]. Due to annotation errors in the AUG
labels, we first train for 100 epochs on AUG, and then fine-
tune for another 100 epochs on train (or train+val). We use
512×512 crops and divide the learning rate of pretrained
weights by 8. All other hyperparameters are the same as in
Cityscapes experiments. Table 8 shows that our models set
the new state-of-the-art among models which do not pre-
train on COCO.

TABLE 8
Experimental evaluation on Pascal VOC 2012 validation and test.

Val Test
Method AUG MS IoU IoU
DeepLabv3+ Res101 X X 80.6 n/a
DeepLabv3+ Xcept X X 81.6 n/a
DDSC [64] X n/a 81.2
AAF [65] X X n/a 82.2
PSPNet [17] X X n/a 82.6
DFN [51] X X 80.6 82.7
EncNet [66] X X n/a 82.9
LDN121 32→4 76.4 n/a
LDN169 32→4 X X 80.5 81.6
LDN161 32→4 78.6 n/a
LDN161 32→4 X 80.4 n/a
LDN161 32→4 X X 81.9 83.6

5.6 Ablation experiments on Cityscapes
We interpret the operation of our models by disabling an in-
creasingly large portion of the backbone tail, and evaluating
the accuracy of the pruned model. We disable convolutional
units by setting their output to zero. In order to allow
pruning in all processing blocks, we preserve all transition-
down units and 1×1 convolutions in residual connections.

The left graph in Figure 5 compares LDN121 and LRN50
models after pruning an equal portion of convolutional
units from the last two processing blocks of the backbone.
We observe that DenseNet converges faster than ResNet, al-
though ladder-style upsampling encourages both backbones
to recognize small classes (eg. traffic sign) in early layers.
The right graph shows per-class performance of pruned
LDN121 models. We observe that small and less complex
classes (bicycle, pole, traffic sign and road) are recognized
by early layers, while hard and large classes (truck, bus and
train) are recognized in deeper layers. This can be viewed
as a kind of self-regularization: although the back-end of the
backbone can have a huge capacity, this capacity is not used
for detecting easy classes.

Table 9 evaluates the impact of auxiliary loss, SPP,
and depthwise separable convolutions on generalization
accuracy. The experiment labeled NoSPP replaces the SPP
module with a single 3×3 convolution. The resulting 1.5pp
performance drop suggests that SPP brings improvement
even with 64 times subsampled features. The subsequent
experiment shows that the SPP module proposed in [17]
does not work well with our training on Cityscapes. We
believe that the 1.4pp performance drop is due to inade-
quate pooling grids and larger feature dimensionality which
encourages overfitting. The NoAux model applies the loss
only to final predictions. The resulting 1.2pp performance
hit suggests that auxiliary loss reduces overfitting to low-
level features within the upsampling path. The DWS model
reduces the computational complexity by replacing all 3×3
convolutions in the upsampling path with depthwise sep-
arable convolutions. This improves upsampling efficiency
while only marginally decreasing accuracy.

TABLE 9
Impact of auxiliary loss, SPP, and depthwise separable convolutions on

generalization accuracy on full-resolution Cityscapes val.

Model FLOP
Method IoU size 1MPx

LDN121 64→4 NoSPP 77.5 10.2M 66.7G
LDN121 64→4 SPP [17] 77.6 10.6M 66.9G
LDN121 64→4 NoAux 77.8 9.5M 66.5G
LDN121 64→4 DWS 78.6 8.7M 54.2G
LDN121 64→4 79.0 9.5M 66.5G

Table 10 shows ablation experiments which evaluate the

block3 block4
conv units preserved per-block

0

20

40

60

80

100

Io
U

mIoU: DN121
mIoU: RN50
tr. sign: DN121
tr. sign: RN50
bicycle: DN121
bicycle: RN50

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
conv units preserved (%)

0

20

40

60

80

100
bicycle
pole
road
tr. light
truck
bus
train

Fig. 5. Influence of pruning convolutional units from the backbone tail
to the Cityscapes val accuracy (there was no re-training). DenseNet
is more resilient than ResNet (left). DenseNet recognizes small object
classes in early layers, which saves later capacity for large classes
(right).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

impact of data augmentations on generalization. We observe
that random image flip, crop, and scale jitter improve IoU
by almost 5pp, and conclude that data augmentation is of
great importance for semantic segmentation.

TABLE 10
Impact of data augmentation to the segmentation accuracy (IoU) on

Cityscapes val while training LDN121 64→4 on full images.

augmentation: none flip flip/crop flip/crop/scale
accuracy (IoU): 74.0 75.7 76.7 79.0

5.7 Gradient checkpointing
Table 11 explores effects of checkpointing to the memory
footprint and the execution speed while training the default
LDN model from Figure 1. The columns show i) the maxi-
mum memory allocation while training with batch size 6, ii)
the maximum batch size we could fit into GPU memory, and
iii) the corresponding training speed in frames per second
(FPS). We start from the straightforward baseline and grad-
ually introduce more and more extensive checkpointing.
The checkpointing approaches are designated as follows.
The label cat refers to the concatenation at the input of a
DenseNet unit. The labels 1×1 and 3×3 refer to the first
and the second BN-ReLu-conv group within a DenseNet
unit. The label stem denotes the 7×7 convolution at the
very beginning of DenseNet [14], including the following
batchnorm, ReLU and max-pool operations. Labels TD and
TU correspond to the transition-down and the transition-up
blocks. The label block refers to the entire processing block
(this approach is applicable to most backbones). Parentheses
indicate the checkpoint segment. For example, (cat 1×1
3×3) caches only the concatenation inputs, while the first
batchnorm, the 1×1 convolution and the second batchnorm
are re-computed during backprop. On the other hand, (cat
1×1) (3×3) means that each convolution is in a separate
segment. Here we cache the concatenation inputs and the
input to the second batchnorm, while the two batchnorms
are recomputed. Consequently, training with (cat 1×1 3×3)
accommodates larger batches.

Now we present the most important results. Check-
pointing the (cat 1×1) subgraph brings the greatest savings
with respect to the baseline (4.5 GB), since it has most
feature maps on input. Nevertheless, checkpointing the
whole DenseNet unit (cat 1×1 3×3) frees further 3 GB.
Finally, checkpointing stem, transition-down and transition-
up blocks relieves additional 1.8 GB. Altogether, this results
in a more than five-fold reduction of memory requirements,
from 11.3 GB to 2.1 B.

Experiments with the label (block) treat each dense block
as a checkpoint segment. This requires more memory than
(cat 1×1 3×3) because additional memory needs to be
allocated during re-computation. The approach (cat 1×1)
(3×3) is similar to the related previous work [14]. These
experiments show that the smallest memory footprint is
achieved by checkpointing the stem, transition-down and
transition-up blocks, as well as each DenseNet unit as a
whole.

Table 12 shows that our checkpointing approach allows
training the LDN161 model with a six-fold increase of batch

TABLE 11
Impact of checkpointing to memory footprint and training speed. We

train LDN 32→4 on 768×768 images on a Titan Xp with 12 GB RAM.

Memory Max Train
Checkpointing variant bs=6 (MB) BS FPS

baseline - no ckpt 11265 6 11.3
(3x3) 10107 6 10.5
(cat 1x1) 6620 10 10.4
(cat 1x1) (3x3) 5552 12 9.7
(block) (stem) (TD) (UP) 3902 16 8.4
(cat 1x1 3x3) 3620 19 10.1
(cat 1x1 3x3) (stem) (TD) (UP) 2106 27 9.2

size with respect to the baseline. On the other hand, the only
previous checkpointing technique for semantic segmenta-
tion [20] yields only a two-fold increase of batch size.

TABLE 12
Comparison of memory footprint and training speed across various

models. We process 768×768 images on a Titan Xp with 12 GB RAM.

Uses Memory Max Train
Model Ckpt bs=6 (MB) BS FPS

LDN161 32→4 20032 3 5.6
ResNet101 32→4 15002 4 7.8
LDN121 32→4 11265 6 11.3
ResNet50 32→4 10070 6 11.6
ResNet18 32→4 3949 17 24.4
LDN161 32→4 X 3241 19 4.4
LDN121 32→4 X 2106 27 9.2

5.8 Qualitative Cityscapes results

Finally, we present some qualitative results on Cityscapes.
Figure 6 shows predictions from different stages of the
upsampling path. Predictions from early layers miss most
small objects, however ladder-style upsampling succeeds to
recover them after blending with high-resolution features.

Fig. 6. Impact of ladder-style upsampling to the accuracy of semantic
borders and small objects. We shows predictions recovered from 64×,
32×, 16×, 8×, and 4× subsampled features along the upsampling path.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Figure 7 shows images from Cityscapes test in which our
best model makes mistakes. It is our impression that most
of these errors are due to insufficient context, despite our
efforts to enlarge the receptive field. Overall, we achieve the
worst IoU on fences (60%) and walls (61%).

Fig. 7. Images from Cityscapes test where our model misclassified some
parts of the scene. These predictions are produced by the LDN161
64→4 model which achieves 80.6% IoU on the test set.

Figure 8 shows some images from Cityscapes test where
our best model performs well in spite of occlusions and
large objects. We note that small objects are very well recog-
nized which confirms the merit of ladder-style upsampling.
A video demonstration of a single-scale LDN-121 64→4
model is available here: https://youtu.be/QrB7Np 8GXY.

Fig. 8. Images from Cityscapes test where our best model (LDN161
64→4, 80.6% IoU test) makes no significant errors in spite of large
objects, occlusions, small objects and difficult classes.

6 CONCLUSION

We have presented a novel semantic segmentation ap-
proach based on DenseNet architecture and ladder-style
upsampling. Different than concurrent encoder-decoder ap-
proaches, we argue for an asymmetric architecture with
thick encoder and thin decoder, which assigns much more
capacity to recognition than to localization. In comparison
with widely used dilated approaches, our design substan-
tially decreases computational complexity (both space and
time) while generalizing better.

The proposed design exhibits outstanding spatial effi-
ciency which however has to be unlocked by recomputing
all concats, batchnorms and projections during backprop.
This decreases memory footprint for up to 6× while only
slightly increasing training time. Thus, LDN121 32→4 can
be trained on 768×768 crops with batch size 16 in only 5.3
GB RAM.

We have performed extensive experiments on
Cityscapes, CamVid, ROB 2018 and Pascal VOC 2012.
We achieve state-of-the-art on Cityscapes test without the
coarse training subset (LDN161: 80.6% IoU) as well as on
Pascal VOC 2012 test without COCO pretraining (LDN161:
83.6% IoU). None of the competing approaches is able to
train on a single GPU.

To the best of our knowledge, this is the first DenseNet-
based approach for efficient dense prediction on 2 MPx
images. A TensorRT implementation of our single-scale
LDN121 model processes 1024×2048 images at 25 Hz on a
single Titan Xp, while achieving 79.3% IoU on Cityscapes
test. Suitable directions for future work include further
improvements of run-time speed, as well as exploiting the
reclaimed memory for dense prediction and forecasting in
video.

ACKNOWLEDGMENTS

This work has been supported by the Croatian Sci-
ence Foundation under the project I-2433-2014, and the
European Regional Development Fund under the grant
KK.01.1.1.01.0009.

REFERENCES

[1] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier,
K. Kavukcuoglu, U. Muller, and Y. LeCun, “Learning long-range
vision for autonomous off-road driving,” J. Field Robotics, vol. 26,
no. 2, pp. 120–144, 2009.

[2] A. Petrovai and S. Nedevschi, “Efficient instance and semantic
segmentation for automated driving,” in IV, 2019.

[3] Y. Aksoy, T. Oh, S. Paris, M. Pollefeys, and W. Matusik, “Semantic
soft segmentation,” ACM Trans. Graph., vol. 37, no. 4, pp. 72:1–
72:13, 2018.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in MICCAI, 2015,
pp. 234–241.

[5] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi, “Texton-
boost for image understanding: Multi-class object recognition and
segmentation by jointly modeling texture, layout, and context,”
International Journal of Computer Vision, vol. 81, no. 1, pp. 2–23,
2009.

[6] G. Csurka and F. Perronnin, “An efficient approach to semantic
segmentation,” International Journal of Computer Vision, vol. 95,
no. 2, pp. 198–212, 2011.

[7] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning
hierarchical features for scene labeling,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 8, pp. 1915–1929, 2013.

[8] I. Kreso, D. Causevic, J. Krapac, and S. Segvic, “Convolutional
scale invariance for semantic segmentation,” in GCPR, 2016, pp.
64–75.

[9] P. Krähenbühl and V. Koltun, “Efficient inference in fully con-
nected crfs with gaussian edge potentials,” in NIPS, 2011, pp. 109–
117.

[10] G. Lin, C. Shen, A. van den Hengel, and I. D. Reid, “Efficient
piecewise training of deep structured models for semantic seg-
mentation,” in CVPR, 2016, pp. 3194–3203.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc˙ IEEE, 1998.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770–778.

https://youtu.be/QrB7Np_8GXY

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

[13] ——, “Identity mappings in deep residual networks,” in ECCV,
2016, pp. 630–645.

[14] G. Huang, Z. Liu, G. Pleiss, L. V. D. Maaten, and K. Weinberger,
“Convolutional networks with dense connectivity,” IEEE Trans.
Pattern Anal. Mach. Intell., 2019.

[15] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path
networks,” in NIPS, 2017, pp. 4470–4478.

[16] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets
with sublinear memory cost,” CoRR, vol. abs/1604.06174, 2016.

[17] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in ICCV, 2017.

[18] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, 2018.

[19] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” CoRR, vol.
abs/1706.05587, 2017.

[20] S. Rota Bulò, L. Porzi, and P. Kontschieder, “In-place activated
batchnorm for memory-optimized training of DNNs,” in CVPR,
June 2018.

[21] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang, “DenseASPP for
semantic segmentation in street scenes,” in CVPR, 2018, pp. 3684–
3692.

[22] S. Jégou, M. Drozdzal, D. Vázquez, A. Romero, and Y. Bengio,
“The one hundred layers tiramisu: Fully convolutional densenets
for semantic segmentation,” CoRR, vol. abs/1611.09326, 2016.

[23] G. Ghiasi and C. C. Fowlkes, “Laplacian pyramid reconstruction
and refinement for semantic segmentation,” in ECCV, 2016, pp.
519–534.

[24] G. Lin, A. Milan, C. Shen, and I. D. Reid, “Refinenet: Multi-path
refinement networks for high-resolution semantic segmentation,”
in CVPR, 2017.

[25] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel
matters - improve semantic segmentation by global convolutional
network,” in CVPR, July 2017.

[26] H. Valpola, “From neural PCA to deep unsupervised learning,”
CoRR, vol. abs/1411.7783, 2014.

[27] I. Kreso, J. Krapac, and S. Segvic, “Ladder-style densenets for
semantic segmentation of large natural images,” in ICCV CVR-
SUAD, 2017, pp. 238–245.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in ICLR, 2014, pp. 1–16.

[29] M. Orsic, I. Kreso, P. Bevandic, and S. Segvic, “In defense of pre-
trained imagenet architectures for real-time semantic segmenta-
tion of road-driving images,” in CVPR, 2019.

[30] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 4, pp. 640–651, 2017.

[31] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmenta-
tion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp.
2481–2495, 2017.

[32] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection
using convolutional networks,” in ICLR, 2014, pp. 1–16.

[33] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in ECCV, 2018, pp. 833–851.

[34] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie, “Feature pyramid networks for object detection,” in
CVPR, 2017, pp. 936–944.

[35] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in CVPR, 2015, pp. 3431–3440.

[36] T. Pohlen, A. Hermans, M. Mathias, and B. Leibe, “Full-resolution
residual networks for semantic segmentation in street scenes,” in
CVPR, July 2017.

[37] M. A. Islam, M. Rochan, B. Neil D. B. and Y. Wang, “Gated
feedback refinement network for dense image labeling,” in CVPR,
July 2017.

[38] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,”
in ICCV, 2017, pp. 2980–2988.

[39] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia,
“Psanet: Point-wise spatial attention network for scene parsing,”
in ECCV, 2018, pp. 270–286.

[40] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene cate-
gories,” in CVPR, 2006, pp. 2169–2178.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in
deep convolutional networks for visual recognition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, 2015.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2014.

[43] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam
and beyond,” in ICLR, 2018.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015, pp. 1–9.

[45] M. Cordts, M. Omran, S. Ramos, T. Scharwächter, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes
dataset,” in CVPRW, 2015.

[46] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cot-
trell, “Understanding Convolution for Semantic Segmentation,”
CoRR, vol. abs/1702.08502, 2017.

[47] R. Zhang, S. Tang, Y. Zhang, J. Li, and S. Yan, “Scale-adaptive
convolutions for scene parsing,” in ICCV, Oct 2017.

[48] Z. Wu, C. Shen, and A. van den Hengel, “Wider or deeper:
Revisiting the resnet model for visual recognition,” CoRR, vol.
abs/1611.10080, 2016.

[49] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics,”
in CVPR, 2018, pp. 7482–7491.

[50] T. Wu, S. Tang, R. Zhang, J. Cao, and J. Li, “Tree-structured kro-
necker convolutional network for semantic segmentation,” CoRR,
vol. abs/1812.04945, 2018.

[51] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Learning
a discriminative feature network for semantic segmentation,” in
CVPR, 2018, pp. 1857–1866.

[52] Y. Zhuang, F. Yang, L. Tao, C. Ma, Z. Zhang, Y. Li, H. Jia, X. Xie,
and W. Gao, “Dense relation network: Learning consistent and
context-aware representation for semantic image segmentation,”
in ICIP, 2018, pp. 3698–3702.

[53] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Erfnet:
Efficient residual factorized convnet for real-time semantic seg-
mentation,” IEEE Trans. Intelligent Transportation Systems, vol. 19,
no. 1, pp. 263–272, 2018.

[54] A. Chaurasia and E. Culurciello, “Linknet: Exploiting encoder rep-
resentations for efficient semantic segmentation,” in VCIP. IEEE,
2017, pp. 1–4.

[55] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet: Bilat-
eral segmentation network for real-time semantic segmentation,”
in ECCV, 2018, pp. 334–349.

[56] A. Casanova, G. Cucurull, M. Drozdzal, A. Romero, and Y. Bengio,
“On the iterative refinement of densely connected representation
levels for semantic segmentation,” CoRR, vol. abs/1804.11332,
2018.

[57] M. A. Islam, M. Rochan, S. Naha, N. D. B. Bruce, and Y. Wang,
“Gated feedback refinement network for coarse-to-fine dense se-
mantic image labeling,” CoRR, vol. abs/1806.11266, 2018.

[58] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-time
semantic segmentation on high-resolution images,” in ECCV, vol.
11207, 2018, pp. 418–434.

[59] G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder, “The
mapillary vistas dataset for semantic unde rstanding of street
scenes,” in ICCV, 2017.

[60] H. Alhaija, S. Mustikovela, L. Mescheder, A. Geiger, and C. Rother,
“Augmented reality meets computer vision: Efficient data gener-
ation for urban driving scenes,” International Journal of Computer
Vision (IJCV), 2018.

[61] I. Kreso, M. Orsic, P. Bevandic, and S. Segvic, “Robust se-
mantic segmentation with ladder-densenet models,” CoRR, vol.
abs/1806.03465, 2018.

[62] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams,
J. M. Winn, and A. Zisserman, “The pascal visual object classes
challenge: A retrospective,” International Journal of Computer Vision,
vol. 111, no. 1, pp. 98–136, 2015.

[63] B. Hariharan, P. Arbelaez, L. D. Bourdev, S. Maji, and J. Malik,
“Semantic contours from inverse detectors,” in ICCV, 2011, pp.
991–998.

[64] P. Bilinski and V. Prisacariu, “Dense decoder shortcut connections
for single-pass semantic segmentation,” in CVPR, 2018, pp. 6596–
6605.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

[65] T. Ke, J. Hwang, Z. Liu, and S. X. Yu, “Adaptive affinity fields for
semantic segmentation,” in ECCV, 2018, pp. 605–621.

[66] H. Zhang, K. J. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and
A. Agrawal, “Context encoding for semantic segmentation,” in
CVPR, 2018, pp. 7151–7160.

Ivan Krešo received his MSc degree in com-
puter science from the University of Zagreb. He
spent six years at the Faculty of Electrical En-
gineering and Computing, University of Zagreb,
as a PhD student and teaching assistant. Cur-
rently he is a computer vision scientist at Real-
Networks. His research interests include object
classification and dense prediction for seman-
tic segmentation and detection, as well as self-
supervised and semi-supervised learning.

Josip Krapac received a Ph.D degree from Uni-
versité de Caen Basse-Normandie, France. He
spent two years as a post-doctoral researcher
at INRIA Rennes, France, and three and a half
years as a post-doctoral researcher at University
of Zagreb. Currently he is a senior computer
vision scientist at Zalando, Berlin. His research
interests include image representations for ob-
ject classification, detection and segmentation,
as well as learning with minimal supervision.

Siniša Šegvić received a Ph.D. degree in com-
puter science from the University of Zagreb,
Croatia. He spent a year as a post-doctoral re-
searcher at IRISA Rennes, and another year as
a post-doctoral researcher at TU Graz. He is
currently a full professor at University of Zagreb
Faculty of Electrical Engineering and Comput-
ing. His research addresses efficient convolu-
tional architectures for classification, dense pre-
diction, and dense semantic forecasting.

	Introduction
	Related Work
	The proposed architecture
	Feature extraction
	Spatial pyramid pooling
	Ladder-style upsampling

	Gradient checkpointing
	Experiments
	Training details and notation
	Cityscapes
	CamVid
	Cross-dataset generalization
	Pascal VOC 2012
	Ablation experiments on Cityscapes
	Gradient checkpointing
	Qualitative Cityscapes results

	Conclusion
	References
	Biographies
	Ivan Krešo
	Josip Krapac
	Siniša Šegvic

