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Abstract—Vision-based detection of vehicles at urban intersec-
tions is an interesting alternative to commonly applied hardware
solutions such as inductive loops. The standard approach to
that problem is based on a background model consisting of
independent per-pixel Gaussian mixtures. However, there are
several notable shortcomings of that approach, including large
computational complexity, blending of stopped vehicles with
background and sensitivity to changes in image acquisition
parameters (gain, exposure). We address these problems by
proposing the following three improvements: (i) dispersed and
delayed background modeling, (ii) modeling patch gradient
distributions instead of absolute values of individual pixels,
and (iii) significant speed-up through use of integral images.
We present a detailed performance comparison on a realistic
dataset with handcrafted groundtruth information. The obtained
results indicate that significant gains with respect to the standard
approach can be obtained both in performance and computa-
tional speed. Experiments suggest that the proposed combined
technique would enable robust real-time performance on a low-
cost embedded computer.

I. INTRODUCTION

In this paper we consider vehicle detection at urban in-
tersections. Traditionally, this problem has been solved by
inductive loop sensors capable of detecting the presence of
a vehicle. However, applying inductive loops for vehicle
detection is expensive, primarily due to the need to conduct
construction works and to stop the traffic during the installation
as well as for maintenance. Therefore, the traffic management
companies search for alternative solutions which would enable
easy sensor replacement and maintenance. Computer vision
techniques are very suitable for this task.

The usual computer vision scenario involves a fixed-view
camera above the road and suitable algorithms to detect
moving objects of appropriate size. This leads us to the well
known problem of background modeling for which numerous
solutions have been proposed. For the application scenario
which involves day and night video capture, it is necessary to
have an adaptive background model. Another constraint that
should be taken into account is that the target system should be
suitable for mounting at road infrastructure elements. There-
fore, it would be beneficial to develop algorithms that could
run on embedded hardware, which would also significantly
reduce the installation costs.

We first considered the baseline background modeling ap-
proach based on per-pixel Gaussian mixtures, and evaluated

it in the typical urban intersection scenario. This preliminary
evaluation identified several important problems.

1) during the red light phase, the vehicles stop for a rela-
tively long period and due to the background adaptation
tend to influence the background model;

2) the classical running average model with exponential
learning curve [12] tends to overemphasize the influence
of the waiting vehicles;

3) automatic camera adaptation causes significant changes
of the image in some situations, leading to miss-
detections;

4) the detection of the vehicles of the color similar to the
color of the road is often unsuccessful.

In order to address these problems we evaluate several
improvements to the baseline background modelling approach.
Firstly, we delay the model used for object detection in
order to reduce the influence of waiting cars to their own
detection. The idea here is to use the background model built
before the arrival of the stopped cars and thus avoid using an
infected model. Secondly, we attempt to reduce the influence
of waiting cars by introducing a more appropriate weighting of
the incoming frames through a two-stage background model.
Thirdly, we attempt to reduce the dependence on absolute
pixel values by building gradient-based background models. In
order to improve the resistance to noise and at the same time
reduce computational complexity, we refrain from considering
individual pixels and instead model the gradient distribution
above an overlapping set of small rectangular image patches.

II. RELATED WORK

Computer vision-based approaches to the estimation of
traffic flow parameters have been the subject of a lot of recent
research. A common approach to separate foreground objects
from the background scenery is based on background mod-
elling. In such approaches, a statistical model that describes the
background state of each pixel is constructed and subsequently
compared to the current video frame. Pixels in which the
difference is significant are considered to belong to foreground
objects.

A number of methods for background model construction
has been proposed. Especially popular have been time-adaptive
Gaussian mixture models [14], [12], [15]. In these methods,
each pixel is represented with a set of weighted Gaussian



distributions. Based on the assumption that background is
visible most of the time in each pixel position, distributions
are ordered according to their weights, and those more relevant
are considered to model the background, while the remaining
model the foreground. The per-pixel models are updated with
each new observation, with older observations losing influence
over time.

A comparison of several different background subtraction
algorithms for detecting moving vehicles and pedestrians in
urban traffic video sequences is given in [4]. The tested
algorithms are classified as non-recursive (including simple
frame differencing, median filtering, linear predictive filtering
and non-parametric estimate of the pixel density function)
or recursive (approximated median filter, Kalman filter and
mixture of Gaussians). The evaluation is performed on four
different video sequences with manually annotated moving
objects in ten frames in each sequence as a ground truth.
The algorithms are then evaluated by measuring precision and
recall for different algorithm parameters. Mixture of Gaussians
produces the best results, but median filtering offers a simple
alternative with competitive performance. Frame differencing
produces significantly worse results than all the other schemes.

Herrero and Bescós [9] provide another detailed overview
and an evaluation of commonly used background subtraction
techniques. The approaches covered by the overview are
divided into simple (frame differencing, running average, me-
dian filtering), unimodal (Gaussian or chi-square modelling)
and multimodal (mixtures of Gaussians, mean-shift algorithm,
kernel density estimation and hidden Markov models). Eval-
uation is performed on video sequences from the dataset
introduced in [13], obtained by combining separately recorded
foreground and background videos, so the segmentation masks
are known. The evaluation results suggest that chi-square
modelling performs best in most scenarios. However, the
authors note that mixtures of Gaussians and simple median
filtering performed especially well in cases of highly dynamic
backgrounds. Overall, the experimental findings in the evalu-
ation supports the notion that relatively good results can be
obtained with very simple techniques.

A more recent evaluation of bacground subtraction tech-
niques with an emphasis on video surveillance is given by
Brutzer et al. [3]. Nine background subtraction methods are
compared at the pixel level. To alleviate the problem of
ground truth collection, the authors rendered complex arti-
ficial scenes that address several challenges in background
subtraction: gradual and sudden illumination changes, dynamic
background, objects similar to background, shadows, initial-
ization with foreground objects present and noise. The top-
performing method is ViBe, a method proposed by Barnich
and Van Droogenbroeck [1]. ViBe introduces several interest-
ing innovations, e.g. storing a history of actual pixel values for
a given pixel instead of building a statistical model, having a
random update policy, doing background initialization from
a single frame by assuming that neighboring pixels share a
similar temporal distribution, etc.

Most background techniques assume a single rate of adap-

tation that determines how adaptive the model is to the change
in pixel value. However, this can be inadequate in scenes
such as traffic intersections, where objects move at a variety
of speeds. A fast-adapting algorithm can miss detection of
parts of homogeneous moving objects, since they quickly
become part of the background. On the other hand, slow
adapting algorithm leave long trails (”ghosts”) behind initially
stationary objects that suddenly start to move, such as cars
waiting at the crossroad. Algorithms with slow adaptation
rate are also more sensitive to sudden global illumination
changes. To cope with this, Cheung and Kamath [5] propose a
dual-stage algorithm that first builds a foreground mask using
a slow-adapting Kalman filter, and then validates individual
foreground pixels by a simple moving object model, built using
foreground and background statistics as well as the frame
difference.

Another approach was suggested by Harville [8]. He pro-
posed a framework for guiding evolution of pixel-level mixture
of Gaussians models by using feedback from higher-level
modules, such as module for person detection and tracking, or
module for detection of rapid changes in global illumination,
camera gain or camera position. The feedback of each module
can be classified either as positive, which serves to enhance
correct foreground segmentation, or as negative, which aims
to adjust the pixel-level background model in order to prevent
the re-occurrence of detected foreground mistakes.

To improve the robustness of vehicle detection against
illumination changes and small camera movements, as well
as the ability to track vehicles in case of occlusions and
crowded events, Batista et al. [2] propose a dual-stage ap-
proach consisting of pixel-level and block-level stages. The
pixel-level stage uses a multi-layered and adaptive background
modeling, based on three image models. Two of them are
used to model the dynamics of the background allowing the
system to cope with intensity variations, while the third is used
in the cleaning/validation process, being a direct copy of the
past image. The block-level stage performs a 8x8 block-region
analysis to label the blocks belonging to different vehicles and
track them over a stack of images.

As a part of the University of South California Clever
Transportation Project, Kim et al. [10] propose a system for
real-time traffic flow analysis. The system aims to replace
traffic loop detectors with cameras utilizing computer vision
techniques. A special coprocessor, the Viewmont video an-
alytics coprocessor, has been provided by Intel, who is a
partner on the project. The coprocessor is specifically tailored
toward video processing, enabling significant speed-up when
compared to a conventional CPU. At the time of writing there
is no information about the coprocessor on Intel’s webpage,
and it does not seem to be commercially available. In order
to use the system, one needs to define a region of interest
where the traffic is most visible, and within it a series of
virtual lines spanning across individual lanes. Background
is subtracted using frame averaging, and moving objects are
extracted. Morphological operations are applied to obtain crisp
boundaries of the moving objects and remove noise. Passing



of the vehicles is detected by counting the relative proportion
of pixels belonging to moving objects crossing a virtual line
to the total number of pixels comprising the line. In the
evaluation, the results obtained by the system are compared to
the output from real loop detectors. The main two identified
problems are dense traffic and vehicle shadows.

III. THE STANDARD APPROACH AND ITS SHORTCOMINGS

All background modelling approaches assume that each
particular image pixel in most video frames is projected from
the background scenery. Thus, a fair estimate of the actual
background should be obtainable by some kind of an average
pixel value across many frames. By comparing the actual value
with the estimated model a pixel can finally be classified into
either the background or the foreground class.

Pixel averaging is usually achieved by fitting a Gaussian
mixture model with few components (n=2 or n=3) to each
individual pixel over a number of frames. Multiple components
are useful since they can account for small camera motions due
to vibrations. The recovered variances allow to perform the
classification by taking into account the actual camera noise.

In order to avoid the need for storing a large number of
video frames, the standard background modelling approach
estimates the required per-pixel Gaussian mixtures by em-
ploying the exponential moving average. In this approach,
the evolution of the single component model (µ, σ) at the
pixel (x, y) of the current image Ik can be described with the
following equations (note that the free parameter α regulates
the adaptivity of the model).

µk[x, y] = αIk[x, y] + (1 − α)µk−1[x, y] , (1)

σ2
k[x, y] = α(Ik[x, y] − µk[x, y])2 + (1 − α)σ2

k−1[x, y] . (2)

These equations are easily extended to the multi-component
case by weighting the contribution of the current pixel with
the distances from the component centers [15]. The model
needs to be initialized on a suitable video sequence either by
straight-forward Gaussian fitting (one component) or by the
EM algorithm (multiple components).

Unfortunately, it is very difficult to find the parameter α of
the standard approach (2) which achieves an optimal ballance
between robustness to stopped objects and adaptivity to daily
illumination changes. If α is too large, stopped cars start
disturbing the model. If α is too small, the model will not
be adaptive enough to follow illumination changes due to
meteorological conditions. This could be improved by storing
a history of values for each given pixel [1] and calculating the
correct running average:

µk[x, y] =

k−1∑
i=k−N

Ii[x, y] , (3)

σ2
k[x, y] =

k−1∑
i=k−N

(Ii[x, y] − µk[x, y])2 . (4)

However, we refrain from that approach due to memory
requirements which would be difficult to meet on a low-
cost embedded computer. The standard approach is also very

sensitive to global changes of the camera acquisition parame-
ters, which occur whenever large white or black vehicle enter
the field of view. Finally, the standard approach makes it
difficult to process more than one video stream on a low-cost
embedded computer. These shortcomings shall be addressed
in the following subsections.

IV. THE PROPOSED IMPROVEMENTS TO THE BASELINE
APPROACH

A. Two stage background model

In order to deal with long term illumination changes and
stopped cars becoming part of the background model after
a prolonged period of waiting for the traffic light change,
we propose the following background modelling approach.
Specific to this approach is that we build two background
models and that is why we call it the two stage approach.
The first model in our two stage approach is the baseline
background model and it is updated with every frame of the
video. The second model is refreshed every N frames with
the representation from the first model that is 2N frames old.
This way we disperse and delay the contribution of the images
that were used for updating the first model and hopefully
we create a model that is more robust and deals better with
aforementioned problems. Also we keep our model adaptive
to long term changes and we do not lose information because
of the first stage model that is updated with every frame.
Both single stage (baseline approach) and two stage model
use exponential running average to update with the current
frame. Each frame contribution in both single stage and two
stage background model is discussed and presented.

The frame contribution in the standard model (2) features
the contribution C(1)

k in the frame k:

C
(1)
k = α , (5)

C
(1)
k−1 = α(1 − α) , (6)

C
(1)
k−2 = α(1 − α)2 . (7)

Let the index of the current frame again be given by k.
Then the frame contribution of the two stage dispersed and
delayed model in the frame i can be expressed in terms of
the contribution of the standard one-stage model C(1)

i and the
update parameter β:

C
(2)
i =

b k−i−1
N c∑

j=0

β(1 − β)j · C(1)
i+j·N (8)

The two contribution models are shown in Figure 1. In
comparison with the standard model (left), in the two stage
model the frame contribution is dispersed and the domination
of the most recent frames in the final contribution is reduced.

B. Addressing sudden changes of pixel brigthness

Sudden changes of pixel brigthness may occur either due
to non-linear illumination variations such as clouds (dis-
)occluding the sun or vehicle lights, or due to automatic
adaptation of acquisition parameters (gain, shutter). The latter



Fig. 1. Background model contribution depending on the frame number in the
standard approach (left, α = 0.001), and in the proposed two stage approach
(right, α = 0.001, β = 0.5, N=3000).

usually occur due to large vehicles with extremely light or
extremely dark colours. Background models based on absolute
pixel values do not deal very well in those situations because
absolute pixel values can change significantly and cause false
positive detections to occur. We have considered two different
approaches to deal with this problem by designing background
models with built-in invariance to absolute pixel brightness:

1) Modeling the gradient distributions: The simplest way
to achieve invariance to absolute pixel brightness is to design
a model working on image gradient. Image gradient is tricky
to work with, since it is not informative in flat regions. Hence
we aggregate the gradient information over image patches and
represent its distribution in the form of a histogram of oriented
gradients (HoG) [6]. Finally, we build the background model
consisting of a number of such histograms, recovered over a
collection of image patches.

In the implementation, we first divide the image area under
the virtual inductive loops into cells grouped in overlapping
blocks. Then we calculate the HoG descriptors for each cell
and create a normalized feature vector from histogram values
for each block. Since the blocks are overlapping, each cell
contributes to more than one block. This way we get a model
that is more invariant to sudden changes of local brightness,
colour contrasts and shadow appearance.

2) Structure-texture decomposition: This approach is based
on the image denoising algorithm [11], [7] which represents
the input image f as a combination of structure u (represen-
tation at the coarse scale) and texture α (additive noise and
fine details), as shown in Equation (9).

f = u+ η (9)

Performing this denoising process on images with a low
amount of additive noise suppresses the texture component
of an image and leaves the structure of the image intact.
We get the texture component η by subtracting the structure
component u from the original image f and use it to build a
brightness invariant background model.

C. Speeding up frame processing

One of our goals was to achieve real-time detection system
that could run on an embedded computer with a low perfor-
mance processor. In order to accomplish this we introduce
HoG calculation using integral image which is a data structure

and algorithm for quickly and efficiently calculating the sum
of values in a rectangular region of interest inside the image.
We calculate gradients for each cell in a single pass over
the image and once the integral image has been computed
we can calculate the value of a specific rectangular cell in a
constant time and that results in a significant speed-up over
the straightforward MoG approach. Frame processing time is
measured and presented in the following section, Table III.

V. EXPERIMENTS

In order to evaluate the proposed detection models we
have collected three realistic videos acquired at real urban
intersections. Each detection model has a set of hyperparame-
ters affecting detection performance. For example, background
model learning rate is a hyperparameter of the detection model.
Hyperparameters of the considered detection models are first
trained by exhaustive grid-search on validation subsets. The
detection models with best hyperparameters are finally evalu-
ated on independent test subsets.
A. Datasets

We have performed experiments using three test videos
taken by a camera placed on top of a traffic light post (cf. Fig.
2). The video footage from the first video is is taken during
daylight hours and it is far better than the other two in terms of
image quality and camera stability. The first video consists of
27500 frames showing one urban intersection. The background
models are initially trained on the first 10000 frames. Of the
remaining 17500 frames, 7500 were used for validation, 10000
for testing and every fifth frame was manually marked as a
validation or a test sample. Therefore, the validation subset
consists of a total of 1500 images and the test set contained
2000 images. The second and the third videos are acquired
from a different location by a low cost camera producing
images with a lot of noise. Additionally, there is significant
background motion caused by the wind shaking the camera.
The second video is taken during afternoon, and it consists of
27500 frames divided in 10000 frames for pre-training of the
background model, 7500 for validation and 1000 for testing.
The third video is taken during night-time and it consists of
37500 frames divided in 10000 frames for pre-training, 10000
for validation and 17500 for testing.

Fig. 2. Representative frames from the dataset 1 (left), dataset 2 (middle)
and the dataset 3 (right).

The following rules were followed when annotating images
in all three videos:

1) Frames in which the vehicle is completely covering the
virtual loop area were marked as positives;

2) Frames in which the loop is completely empty were
marked as negatives;



3) Frames where the loop area is partially covered were
discarded.

Using this annotation policy, we have effectively reduced our
first dataset to 1086 validation and 1561 test images, the
second dataset was reduced to 1302 validation and 1781 test
images and the third to 1365 validation and 3128 test images.
B. Validation

The next phase in experiments included validating parame-
ters for each of the proposed background models. We decided
to validate single stage MoG and HoG models, delayed
MoG model and finally two stage dispersed and delayed
MoG and HoG models. For each parameter affecting these
background models we defined a definite set of possible values
and performed validation tests using grid search optimisation
approach to evaluate every possible detection model with
a certain combination of parameter values. When validat-
ing standard models, the parameters taken into consideration
were the learning rate, pixel difference threshold in MoG
models for determining foreground pixels, maximum number
of Gaussian mixtures in a MoG model and the difference
threshold for a single cell needed to indicate the detection in
HoG models. When validating dispersed and delayed models
we introduce the learning rate of the short term standard
model, the dispersed and delayed model learning rate and the
number of frames used for building our short term model.
We were interested in optimisation of the aforementioned
parameters and wanted to determine at which level each of
these parameters affects our results.

We evaluated detection model performance by measuring
its precision and recall and calculating the average precision
AP as the area under the precision-recall curve. If we denote
the precision and recall in k-th data point by P (k) and r(k),
then the AP can be determined as follows:

AP =

n∑
k

P (k)∆r(k) (10)

Our reference parameter for drawing precision-recall curves
was percentage of virtual loop covered by the vehicle for
MoG models, and cell detection threshold for HoG models.
For each considered approach we have found the best set of
hyperparameters by exhaustive search on all three validation
subsets. The identified best detection models are evaluated on
independent test sets, as presented in the next section.
C. Testing

The six considered detection approaches are evaluated on
the three independent test subsets. The obtained average
precisions are summarized in Table I.

Note that the approach based on texture images (tex-
ture+MoG) has been evaluated only in the hardest conditions
(night-time, test subset 3) due to huge computational require-
ments. The obtained results are superior to all other approaches
(cf. Table II) despite the fact that the decomposition has been
performed with the default parameter λ [7].

The comparison of precision-recall curves is shown in Figs.
3, 4 and 5. Desired operating conditions for each detection

TABLE I
AVERAGE PRECISION ON THE THREE INDEPENDENT TEST SUBSETS.

Method AP 1 AP 2 AP 3
MoG single stage (validated) 98,07% 75,81% 84,07%

MoG delayed (validated) 99,86% 80,29% 49,01%
MoG two stage (validated) 99,43% 82,89% 55,67%

HoG single stage (validated) 99,77% 78,88% 91,26%
HoG two stage (validated) 99,80% 86,59% 91,84%

texture + MoG (not validated) - - 97,07%

TABLE II
BEST DETECTION RESULTS IN NIGHT-TIME VIDEO (TEST SUBSET 3)

Method TP TN FP FN
HoG one stage (validated) 191 2890 22 24
HoG two stage (validated) 174 2896 16 41

texture + MOG (not validated) 208 2908 4 7

model are located close to the upper right corner in each
graph. We note that the delayed and the two-stage MoG
models perform very good on daylight datasets but fail during
night-time. A closer examination showed that this is caused
by the delaying which in some cases makes it very hard
for the model to pick-up in time the illumination changes
during twilight. The best performance is obtained by the
HoG detection models who are therefore a clear winner of
this evaluation, if we disregard texture decomposition due to
computational requirements illustrated below. We note that the
two-stage variants do consistently better, especially for the
dataset 2. We believe that combining HoG and HoH (histogram
of hue) features would actually add to current results, and they
shall therefore be revisited in our future work.

Fig. 3. Comparison of precision-recall curves on the test subset 1.

The average frame processing time (model update + de-
tection) for the three main approaches is shown in Table III.
The measurements were obtained using an Intel i5 1.7 GHz
processor. The reason behind fast processing of HoG models
are optimizations based on integral images.

TABLE III
AVERAGE FRAME PROCESSING TIME

Method per-pixel MoG per-patch HoG per-pixel texture+MoG
Time 3 ms 1-2 ms 300-500 ms



Texture decomposition shows great potential for building
background models invariant to brightness changes, but it also
adds a great deal of computational complexity, which makes
it inappropriate for implementations on low cost embedded
computers.

Fig. 4. Comparison of precision-recall curves on the test subset 2.

Fig. 5. Comparison of precision-recall curves on the test subset 3.

VI. CONCLUSION

We have addressed three practical issues which arose while
applying background modelling for detecting vehicle pres-
ence in urban intersection video. Firstly, we have studied
two alternative background models for decreasing sensitivity
to disturbances due to illumination changes and automatic
adjustments in camera hardware (mostly gain and shutter). The
background model based on HOG cells has achieved nearly
the same detection accuracy as texture decomposition while
requiring much less computational resources. Secondly, we
have shown that the HOG background model paired with the
integral gradient images allows to have both the best of all
worlds: the robustness to brightness-related disturbances and
low computational complexity.

Thirdly, we have proposed a two-stage modification to the
widely used Gaussian update approach (exponential moving
average) in order to better approximate the classic running

average in the desired time interval. This modification con-
sistently improved the results of HoG models, but failed for
MoG models during twilight due to fast daylight illumination
changes. Further experiments shall show whether this can be
improved by reducing the delay of the background model.
Future work shall be devoted to the extraction of additional
features such as vehicle class, speed and inter-vehicle dis-
tance. Also we shall dedicate time to achieve combination of
histogram approaches using both oriented gradients and hue
values in order to try to improve presented results.
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