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Abstract:

We consider performance evaluation of the state-of the-art solution for recovering the relative

pose between two calibrated views. Our focus is on planar scenes which are not tractable by

algorithms which do not enforce the so-called calibrated constraint. The capability to cope with

planar scenes has therefore been stressed as an important advantage of the novel five-point

algorithm. However, we show that for planar and nearly planar scenes there is a considerable

degradation of the five-point algorithm performance under noise. This is especially the case for

sidewise motion, for which substantially better motion hypotheses can be obtained by homogra-

phy decomposition. The differences are even greater when more than five points are available,

since the accuracy of the homography approach scales better. We also note that, contrary to the

previous claims, the five point algorithm is not a method of choice even in non-planar overcon-

strained contexts, since the performance of the classical 8pt algorithm can be greatly improved

by equilibration. Thus, the results imply that the five-point algorithm is the best option only

for non-planar scenes in minimal cases (as a hypothesis generator in a RANSAC scheme).

At the price of a perhaps acceptable performance deterioration, the five point algorithm could

be used for planar scenes as well, but only for prevalently forward motion.

1 Introduction

We consider the problem of recovering the relative pose [5] (or relative orientation [6]) between

the two images of a nearly planar scene. The relative pose consists of rotation and translation

(up to an unknown scale factor) relating the metric coordinates of the two camera frames. It

is known that two views of a plane can be explained by up to two relative poses, and that

the ambiguity arises when all imaged points are closer to one of the two cameras [7]. This

ambiguity can not be resolved without further information such as a third view of the scene

or a priori knowledge about the orientation of the imaged plane.
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In general, the relative pose can be recovered only if the images have been acquired with

calibrated cameras, allowing the points to be expressed in normalized coordinates. In this

calibrated context, the epipolar constraint gives rise to the essential matrix, which yields a

unique decomposition into the sought motion parameters [8]. Previous research predominantly

addressed the more general projective or uncalibrated context, resulting in algorithms which

could recover some geometric information even in images acquired by arbitrary cameras. The

most widely known among these is the eight-point linear algorithm [6], which still provides

competitive performance, especially when the procedure is properly equilibrated. Equilibra-

tion of a linear system can be viewed as a superset of normalization [4], and corresponds to

multiplying the matrix of the system with appropriately chosen weight matrices from both

sides [10]. However, the uncalibrated algorithms can not be applied to planar scenes, even

when the cameras are calibrated [4]. This is because, for planar scenes, the epipolar constraint

is satisfied by an infinite number of matrices, regardless of the number of correspondences

[8]. The occurrence of this multiplicity of solutions is often referred to as planar degeneracy

[15, 1, 3]. The dimension of the solution space can be lowered in the calibrated context by

complementing the epipolar constraint with the enforcement of the characteristic algebraic

structure of the essential matrix. This involves solving of a system of cubic equations which

has been achieved only recently [11]. The main advantage of the new algorithm is that it can

be applied to subsets of only five correspondences. In a typical random sampling environment,

this ensures faster guessing in presence of outliers and, together with a fair execution speed,

can significantly release the computational burden in a real-time application.

The five-point algorithm can return up to 10 motion hypotheses. A disambiguation can be

performed by looking at the reprojection error of a sixth point [12]. In the ambiguous planar

case without noise, two of the above hypotheses will perfectly satisfy all available constraints.

However, this ambiguity would need to be addressed in any approach, so that the five-point

algorithm has been recommended even in the case of planar scenes [11, 14]. The proposed

disambiguation approach relies on a third view of the scene [11]. This solution is attractive

due to its generality: nearly the same algorithm can be used both in cases of planar and

volumetric scenes. However, the accuracy of the recovered relative pose in the presence of

ambiguity has not been appropriately investigated in the previous research. This paper aims

at filling that void, by comparing the five-point algorithm to the approach based on the

homography decomposition. Additionally, an independent evaluation of other experiments

from [11] is performed and the discovered discrepancies are brought to attention.

2 The planar ambiguity

It is widely known that there is a linear relation between the corresponding homogeneous [9]

points qi1 and qi2 in two images of a planar scene [7]. The resulting transformation P2 → P2 is



known as homography, and can be represented as a 3× 3 matrix H, such that H · qi1 = qi2 ∀i.

The homography is uniquely defined by the geometry of the two cameras (R,T), and the

normal n and the distance d defining the plane n⊤x = d in the frame of the first camera:

H = R +
1

d
T · n⊤ (1)

The reverse procedure is also possible. Using the recovered homography between the two

sets of corresponding points, one can inquire about the relative pose and the geometry of the

imaged plane. Unfortunately, the solution is not unique since each homography generates 8

decomposition hypotheses [2]. By enforcing the visibility constraint for all point correspon-

dences (i.e. that the target is in front of both cameras), one arrives to at most two physically

valid hypotheses. The ambiguity occurs only if all of the observed points are closer to one

of the two cameras [7]. This occurs quite often in practice, making the proper treatment of

the ambiguous case compulsory. The ambiguity is always present for predominantly forward

motion (which is characteristic for navigation), but it may even occur for sidewise motion

depending on the position of the planar target.

The planar ambiguity is illustrated on an experiment involving a noiseless artificial planar

dataset. Figure 1 shows two images of 9 co-planar points giving rise to two concurrent re-

constructions. Assume that the physically correct solution is the one at the left side of the

figure, and let the front camera move in a circle around the back camera in a way that the

target remains visible. Then the ambiguity ceases to exist when the front camera reaches a

position in which some points of the target become closer to the back camera. The concurrent

decomposition then becomes noticeably wrong, since the reconstruction of the target “rips

apart” in a way that the “discriminating” points are reconstructed behind the both cameras.

Figure 1: Two images of 9 planar points (middle) and the two reconstructions (left, right).

3 Experimental results

The recovery of the relative pose is usually performed in the following three steps: (i) rejection

of erroneous correspondences using random sampling, (ii) re-estimation on the set of inliers,



and (iii) iterative refinement by bundle adjustment. Note that the second step is also very

important, since the success of the bundle adjustment greatly depends on a correct initial

solution [13]. The analysis is therefore performed for (i) minimal cases with exact solutions,

and (ii) overconstrained cases where the noise in input data is reduced by redundancy.

3.1 The experimental setup

The experiments have been performed on artificial noisy data. The employed setup is similar

to [11], but additional specifications are provided in order to ensure the repeatability of the

results. For each camera, the referential left-oriented coordinate system is set so that the

image plane is defined by the equation z = 1. For both cameras the horizontal field of view is

45◦. The geometry of the camera pair is defined by the angle θ, which defines the translation

direction in the x-z plane. The rotation of the 2nd camera around the common y axis is set

in a way that its optical axis passes through the centroid of the imaged points. Thus, θ = 0

implies forward motion with no rotation. The random point cloud is instantiated in a volume

visible by both cameras, placed between two parallel planes perpendicular to the optical axis

of the first camera. The distance from the first camera to the closer plane of the volume is

always 10 baselines, while the distance between the planes (depth) is varied between 0 and 5

baselines. The distribution of the points in the volume is uniform. The points are projected to

the two images, and both image coordinates are perturbed with a zero-mean Gaussian noise

[4]. The standard deviation of the noise is expressed in pixels of a 352×288 image as σ = 1.0.

The experiments involve 10000 applications to random samples of point correspondences.

The multiple hypotheses provided by the 5pt algorithm are first disambiguated by requiring

that all of the reconstructed 3D points be in front of both cameras. In the minimal cases,

the 5pt algorithm is tested on samples of six points, where the sixth point is used to select

the best among the surviving hypotheses [12]. The selection can be based either on the

reprojection or on the Sampson error [4], with similar suboptimal but acceptable results. In

the overconstrained cases, near optimal disambiguation can be achieved by looking at overall

reprojection error induced by a triangulation scheme assuming the error in one image [11].

The experiments address the distribution of the angular error in the recovered translation

direction as the harder part in recovering the relative pose [10, 11]. As in [11], experiments

with minimal cases consider the first quartile of the error distribution q1{∆T}, while the

median value med{∆T} is used to characterize overconstrained cases. The experiments were

performed in Matlab and C++ using the implementations of the five-point algorithm provided

by the authors1), and within the library VW342) from the University of Oxford, respectively.

1) http://vis.uky.edu/∼stewe/FIVEPOINT/
2) http://www.doc.ic.ac.uk/∼ajd/Scene/Release/vw34.tar.gz



3.2 Comparison of the 5pt and 8pt algorithms for non-planar scenes

The results obtained for non-planar scenes with depth=5 are presented in Figure 2, depending

on the groundtruth translation direction. The algorithm labeled 5pt-ideal shows the results

obtained by taking into account the best hypothesis from each sample of five correspondences:

this provides a notion of the success of the disambiguation schemes relying on the 6th point

(minimal cases) and the overall reprojection error (overconstrained cases). In the minimal

cases, the results confirm the previous findings that the 5pt algorithm is a better option than

the 8pt algorithm. However, the results reported in [11] (figure 12, middle) approximately

match only for forward motion: our results for sidewise motion are 100% worse, while the

extremum at 50◦ is 50% higher. In our experimental setup, a notable improvement for θ ∈

(30◦, 90◦) has been noticed for an enlarged field of view and the same pixel size.
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Figure 2: Translation error ∆T in degrees plotted against the groundtruth translation direction

θ for depth=5, in minimal (q1{∆T }, left) and overconstrained cases (50 points, med{∆T }, right).

In the overconstrained cases, the 5pt algorithm is compared with standard (8pt-standard) [6],

normalized (8pt-hartley) [4] and equilibrated (8pt-muehlich) [10] 8pt algorithm. The results

disprove the claims from [14], that the 5pt algorithm is the most consistent option when more

points are available, since the equilibrated 8pt is better or equal for all translation directions.

3.3 Five-point algorithm and planar scenes

In the presence of planar ambiguity, the five-point algorithm produces both feasible motions,

among other hypotheses. The presented disambiguation schemes often show little preference

among the two motions, resulting in a loss of about 50% hypotheses, as illustrated in Fig-

ure 3 for minimal cases. The figure shows that the resulting distributions are bimodal only

for unrealistically small noise. When the scene gains depth, the mode of the distribution

corresponding to the correct motion (∆T=0) becomes more and more distinct.

To assess the adequacy of the 5pt algorithm for planar scenes, in Figure 4 we compare it to the

specialized solution based on the decomposition of the planar homography (hg). Both contexts

are addressed, with respect to whether the additional information required for resolving the

planar ambiguity is available or not. The former “ideal” context is simulated in algorithms
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Figure 3: Frequency distribution of the translation error (∆T ) for the 5pt algorithm with 6

points and θ=15◦. Number of observations (ordinate) is plotted against ∆T (abscissa) in the

interval [0, 90◦]. The varied parameters are depth of the scene and noise in pixels σ.

5pt-ideal and hg-ideal, by taking into account the best among the returned hypotheses.

In minimal cases, it makes sense to compare algorithms operating on the same number of

points: 5+1pt(6) and hg(6), and 5pt-ideal(5) and hg-ideal(5). The results suggest that

the homography approach is hindered by the problems similar to those presented in Figure 3.

Nevertheless, the homography generally provides superior performance except for the forward

motion where it is only slightly better.
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Figure 4: Results for planar scenes in minimal cases (left), minimal cases with ideal disambigua-

tion (middle), and overconstrained cases (right).

It is straightforward to verify that, in the considered experimental setup, the planar ambiguity

can not be resolved for directions |θ| less than approximately 64.9◦. Then a corner of the

artificial volume becomes equidistant from the two cameras, and the points which are closer

to the first camera can be used for disambiguation [7]. This direction also roughly corresponds

to the greatest difference between the “regular” and ideal algorithms, implying the greatest

extent of the planar ambiguity. In the overconstrained cases, one must resort to additional

information in order to ensure useful results for the ambiguous configurations which occur so

often. This can be seen in Figure 4 (right), where only chance and numerical predisposition

define the exact position of the median of a “regular” overconstrained algorithm between

the two modes of the distribution. Nevertheless, the conclusion is much clearer than in the

minimal cases. The experiments suggest that the homography takes much better advantage

of the additional points, making its advantage indisputable. An optimal general procedure

therefore would need to rely on a criterion for optimal model selection such as reprojection

error or [15]. Finally, Figure 5, illustrates that the above figures do not change significantly
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Figure 5: Log-ratio of the accuracy against the depth. Left: θ=0◦, middle: θ=45◦, right: θ=90◦.

As before, we consider q1{∆T } and med{∆T } in minimal and overconstrained cases, respectively.

even for near-planar scenes. In the case of homography, the deviations are equivalent to

additional noise and result in graceful performance degradation. The two approaches level-off

approximately at depth=2 (minimal cases) and depth=4 (overconstrained cases).

3.4 Results for other parameters of the experimental setup

The presented experimental setup has been chosen in order to be able to compare our results

with the previous work [11]. Many other experiments have been performed and qualitatively

similar results have been obtained, while some variation trends have been identified. Experi-

ments with other noise parameters σ = {0.2, 0.5, 1.5} have shown that the relative performance

of the homography with respect to the 5pt algorithm increases with noise, while the opposite

is true for the equilibrated 8pt algorithm. The performance of the homography approach for

forward motion increases for different orientations (30◦, 60◦) of the target plane. The perfor-

mance of the homography for sidewise motion decreases for a severely slanted target (60◦).

Smaller target distance (2,5 baselines) results in improvement of the 8pt algorithm and dete-

rioration of the homography approach. In all overconstrained experiments, the 5pt algorithm

was outperformed either by homography or the equilibrated 8pt algorithm. Homography was

better than the 5pt algorithm in all experiments with minimal cases and planar scenes.

4 Conclusion

The paper addressed performance evaluation of the recent five-point algorithm for recovering

the relative pose. The results differ from what has been claimed in previous research, and

imply that the five point algorithm is definitely not a preferable solution in the overconstrained

context. In the minimal context, the five-point algorithm is a method of choice for non-

planar scenes and can also be successfully applied to planar scenes, though a homography

with the same number of points is likely to score better, especially for sidewise motion. The

homography approach tends to provide a more accurate result in the planar case, since it

generates a unique solution, which accounts for both feasible motions. The epipolar geometry

on the other hand gives rise to two essential matrices, which amplifies uncertainty in the



presence of noise. Additionally, the homography fully constrains the mutual position between

the two point matches, while the epipolar geometry is limited to the distance from the epipolar

line. The above is confirmed by the experiments which show that the differences in accuracy

are strongly correlated with the extent of planar ambiguity (the mutual distance between the

two solutions), but persist even in configurations in which the duality is absent. The obtained

experimental results suggest that the choice of the algorithm for recovering the relative pose is

highly context dependent. It therefore seems that a general solution should make an attempt

to choose the best among the three options (8pt, 5pt, hg). The design of the appropriate tests

in the calibrated context is an open area for the future research.
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