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Abstract—We consider geoinformation inventory systems
containing locations and types of traffic signs and road sur-
face markings in a given geographical region. Such systems
allow a human operator to assess the current state of the
traffic infrastructure by comparing a recent georeferenced
video with the prescribed state stored in the inventory. We
are concerned with automating this assessment procedure
(as well as the initial creation of the inventory) by designing
appropriate computer vision modules. In this paper, we
briefly present our research project, provide a review of
suitable computer vision techniques, and present in more
details two techniques which proved most promising in
preliminary experiments. The two presented techniques
are traffic sign detection by boosted Haar wavelets, and
enhancement of surface markings by applying steerable
filters to suitably preprocessed images. The experiments have
been performed on individual real images acquired from a
moving vehicle by a single perspective camera. The obtained
results are provided and discussed.

I. INTRODUCTION

Traffic safety is an important issue in our society
[1], which critically depends on compliance of traffic
control devices with relevant regulations. The compliance
needs to be periodically assessed in order to be able to
detect hazardous situations due to stolen, broken, erased,
removed or otherwise inadequate devices (traffic signs
and surface markings). The assessment responsibility is
typically assigned to local authorities with limited re-
sources, which usually delegate the implementation to
external contractors [2]. Thus, the assessment frequency
and the resulting safety standards directly depend on the
efficiency of the assessment procedure.

We consider an effective and affordable technology to
achieve high compliance standards of road and railway
traffic control devices. The technology is based on (i)
locating the elements of the traffic control infrastructure
in a georeferenced video, and (ii) storing the extracted
information in a geoinformation inventory system [3], [4],
[5], [6]. Georeferenced video is acquired by synchronizing
acquisition of image frames with the readings obtained
from a GPS receiver. In order to increase the accuracy,
the GPS localization is usually combined with relative
localization techniques [7] such as odometry and inertial
sensors [3], [S]. Once the inventory with the prescribed
state of the traffic infrastructure is created, the assessment
becomes a significantly simpler task. It suffices to acquire
a recent georeferenced video and check the presence and
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visibility of all elements from the inventory. Thus, the
creation of the traffic inventory, which is often referred
to as mapping, is in principle performed only once, while
the assessment is performed periodically, several times
per year, depending on the available funding. Geometric
relations during the assessment are depicted in Figure 1.

Fig. 1. Geometric relations between the camera, car, and the assessed
road section (Qsign is recovered during mapping, Qcar is measured).

Both the mapping and the assessment stage of the
considered technology require that the elements of the
traffic infrastructure are somehow located in the input
video. Since performing that by hand is a tedious task,
automatization approaches based on computer vision were
evaluated by several previous research projects. A system
presented in [5] focuses on accurate automatic mapping
of traffic signs in stereo images acquired from a moving
vehicle. The spatial displacement between the GPS re-
ceiver and the calibrated stereo rig has been recovered by
a special calibration setup featuring a known 3D structure.
Similar two systems based on monocular vision have been
presented in [3], [6]. A slightly different approach relies
on a handheld device incorporating a GPS receiver and a
camera [4], [8]. Such approach, where the operator carries
the sensing and computing device in her hands, is best
suited for crowded areas in city centres.

In this paper, we present our current activities on a
research project' aimed at providing automatic assessment
and mapping capabilities to a geoinformation based traffic
inventory system. The main goal of the project is to
design effective computer vision techniques for detecting
the traffic control infrastructure. In particular, here we
focus on (i) detection and mapping of surface markings
and curbs, and (ii) detection and recognition of traffic
signs. The obtained results are eventually going to be im-
plemented as components of an existing geoinformation

IThe project web page is at http://www.zemris.fer.hr/~ ssegvic/mastif



inventory system [9] which currently makes no use of
computer vision, but instead relies on manual detection
by human operators. Compared to previous works, our
current research contribution is in the fields of (i) mapping
of surface markings, and (ii) detection of traffic signs. In
the future work, we would like to reinforce the detection
by temporal [10] and contextual [11] constraints, by using
the cues obtained from camera motion and global context
of the interpreted road scene, respectively.

The paper is structured as follows. Section II presents
the existing geoinformation inventory system developed
at the partner organization. The relevant computer vision
techniques are reviewed in Section III. Sections IV and
V present our preliminary results towards the detection of
traffic signs and mapping of surface markings. The paper
is concluded in Section VI by a short discussion of the
obtained results and some directions for the future work.

II. A GEOINFORMATION TRAFFIC INVENTORY

A geoinformation inventory for traffic infrastructure has
been actively developed at the Institute of Transport and
Communications (cf. http://www.ipv-zg.hr) as a software
product named OptaGIS. The developed system has been
a successful tool in providing commercial roar main-
tenance assessment service to local authorities all over
Croatia since 2005. Compared to competing solutions,
OptaGIS offers simpler assessment due to support of
georeferenced video, better interoperability with other
software (AutoCAD, etc), as well as better presentation
capabilities due to support of different coordinate systems
(Gauss-Kriiger, WGS 84, etc).

As illustrated in Figure 2 (left), OptaGIS organizes
the stored data in several layers, each of which can be
configured as visible or not. The most important layers
in our context are the traffic inventory itself and geo-
referenced video acquired from the driver’s perspective.
Georeferenced video enables (i) an additional visualiza-
tion dimension of the mapped road, and (ii) a deferred and
repeatable analysis of the traffic infrastructure, and thus
provides a qualitative improvement over straight-forward
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on-site assessment. The traffic inventory contains all in-
formation about the traffic infrastructure including traffic
signs, surface markings and curbs, as shown in Figure 2
(right). Traffic inventory is especially useful in combina-
tion with georeferenced video, since that ensures simple
procedures for mapping and assessment as sketched in
the Introduction. OptaGIS allows an associative look-up
across different layers: it is possible to display the desired
part of the video by clicking on the mapped sign from the
inventory, and vice versa.

The vehicle used for acquisition of georeferenced video
is shown in Figure 3. Besides a calibrated perspective
camera, the vehicle is equipped with a differential GPS
receiver, as well as with inertial positioning and distance
measuring instruments. Readings of the three positioning
sensors are fused using a Kalman filter.

Fig. 3. The acquisition vehicle from outside (left), and inside (right).

III. REVIEW OF RELEVANT VISION TECHNIQUES

This section reviews computer vision techniques which
are relevant in our context. We first present state of the
art in the detection of road surface markings in III-A,
and then in III-B turn our attention to the recognition of
traffic signs. Finally, we discuss opportunities for future
research in III-C.

A. Detection of road surface markings

Techniques for detection of surface markings and sub-
sequent lane position tracking are needed in a number
of important applications. Firstly, they are an important
ingredient in driver assistance systems [1], [12]. Here, the
extracted lane position is used to detect lane departures
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Fig. 2. Capabilities of the presented geoinformation system: some of the supported data layers (left), and a view of the traffic sign inventory layer
shown above the ortophoto layer (right). Red circles in the right figure denote car positions during the mapping session.



and other dangerous conditions and accordingly warn the
driver. Secondly, lane detection is useful in autonomous
vision based navigation [13], although the current research
is more directed towards unconstrained contexts [14].
Finally, lane detection can also be used for creating
and assessing traffic inventories, which is our current
application.

Most approaches for lane position tracking include
some or all of the following elements [13], [12]:

« a dynamic model of the road and the vehicle

o a detection system for locating lane candidates in
single images,

« a recursive filter capable for refining estimates over
time, by assuming the vehicle and road models.

The road model is usually a low order polynomial (1-3).
The model can be image based [15], [16], or ground-
plane based [13], [12]. The latter model better interacts
with the vehicle model, and more easily incorporates the
parallelism of the lanes.

Many detection approaches have been used, but most
of them are quite elementary and easy to implement.
The approach from [13] utilizes horizontal search lines
in the image plane to detect dark-light-dark grey-value
transitions near the positions predicted by the road model.
By assuming that lanes are the longest linear structures in
the image, the lane directions can be detected by looking
at peaks of a global gradient direction histogram [16]. An
advantage of this approach is that it might be applied for
locating curbs as well. However, detecting peaks in his-
tograms can be tricky, especially in the presence of clutter.
Long straight edges can be reliably detected by steerable
filters [12]. The full lane model is consequently robustly
fitted to the lane candidate pixels in a postprocessing step.

A technique called inverse perspective mapping (IPM)
[17], [12] is especially suitable for lane detection, under
a reasonable assumption of a locally planar road. The
technique allows transforming source images taken from
the driver’s perspective into “inverse-perspective” images
which would have been acquired by a camera aligned
with the road surface normal. Inverse-perspective images
are useful since the lane boundaries appear as parallel
lines with constant width, as illustrated in Figure 4.

Fig. 4. Source image acquired from the driver’s perspective (left) and
the corresponding inverse-perspective image (right).

The existence of IPM is easy to prove. Denote points
on the road as qgr, points in the perspective image as
gp, and points in the inverse-perspective image as qi. In
homogeneous coordinates, these points can be related by

a 1:1 linear mapping known as homography [18]:

dr; = Hrp - qgrs, Vi (D
qai; = Hr1 - qry, Vi ()

Thus we can see that, in the general case, IPM can be
expressed by composing H;ulg and Hp;:

ari = Hipm - qps, Vi 3)
Hipm = Hpgr - H[_{%) . 4)

Parameters of the IPM matrix Hjpy; directly corre-
spond to the geometry of the camera with respect to
the road plane (cf. Figure 1). They can be calibrated
beforehand by an adequate calibration procedure [19],
[20]. In order to obtain best results, the calibration can
be adapted to the dynamics of the vehicle motion by a
suitable optimization procedure [21], [20].

B. Recognition of traffic signs

State of the art sign recognition approaches usually
employ a two-step procedure, consisting of detection and
classification. The detection is concerned with locating a
sign in the input image regardless of its identity, while
the latter classification step identifies the exact type of
the located sign.

Traffic sign detection approaches rely on one or more
of the following cues: (i) geometric shape [22], [23],
[24], (ii) colour, and (iii) appearance [25]. Shape-based
detection can be based on Hough transform [23], or the
so-called radial symmetry transform [22]. Colour-based
detection relies on the specific colours (red, blue, etc) ap-
pearing within the the signs [25], [24]. Appearance-based
approaches for object detection avoid the dependence
on geometric models, usually by performing supervised
learning on a set of representative samples of a desired
object class. In particular, much success has been recently
achieved by boosting Haar-like classifiers [26], [25]. A
major advantage of such approaches is their applicability
to objects which do not have an easily parameterizable ge-
ometric structure (e.g. faces [26]). However, the approach
is not scale invariant, and therefore needs to be applied
at several scales, which may result in misdetections [25].

The classification step has been less thoroughly ad-
dressed than detection. Most of the authors choose a
classification approach without stating the reasons or com-
paring the results with some other classifier. Acceptable
recognition results have been reported by using simple
cross-correlation [22], cross-correlation with a trainable
similarity measure [27], neural networks [25], [23] or
support vector machines [24].

C. Open directions for further research

Despite the considerable advances, a near-human
recognition of traffic control devices has still not been
reported. The methods fail due to spurious matches in the
background, shadows or reflections, discretization issues
and other moving objects in the scene [22], [25], [12]. We
believe that significant improvement could be achieved
by introducing additional constraints. These constraints
are not easy to model, since we, humans, are so good in
enforcing them, that we do not even have to consciously



think about them. The constraints which in our opinion
have not been fully exploited by previous researchers
include smooth 2D motion [25], compliant 3D motion
[10] and context [11]. Enforcing these constraints will
eventually lead us to a unified approach in which the
detection of the lane boundaries will reinforce the recog-
nition of traffic signs.

IV. SOME RESULTS IN DETECTION OF ROAD SURFACE
MARKINGS

As stated in III-A, the detection of road surface
markings is considerably simpler in inverse-perspective
images. IPM is particularly easily recovered with a cali-
brated camera [28]. Then, under a reasonable assumption
that the roll angle of the camera is 0° (i.e. that the
camera is horizontally aligned) the IPM parameters can
be recovered by using only the vanishing point of the road
ahead [19], [21], [20]. Thus, we first calibrate intrinsic pa-
rameters of our camera as described in [28]. Consequently
we annotate by hand the two borders of the straight road
in the first image of the sequence, determine the position
of the vanishing point, and calibrate extrinsic parameters.
These extrinsic parameters directly correspond to the pan,
tilt and height of the camera with respect to the coordinate
system of the road. In order to alleviate distortions due to
vehicle motion, in the future we shall design a procedure
for dynamic refinement of the parameters in a way similar
to [20].

A steerable filter based on a second derivative of a
Gaussian is very effective in locating elongated blobs
[12]. Compared to simpler extraction methods, the em-
ployed steerable filter generates not only the location
of the features, but also their orientation. However, the
employed filter is not scale invariant, which means that
it can not be successfully applied to perspective images
where the apparent width of lane boundaries changes
significantly. This effect is illustrated in Figure 5.

Fig. 5.

Original image (left), steerable filter G4, (middle), and the
corresponding response (right). The scale of the employed filter does not
suit the lane width in the bottom of the image, resulting in a “hollow’
response.

Much better results can be obtained by applying the
employed steerable filter to inverse-perspective images, as
shown in Figure 6(a,b). In good illumination conditions,
the lanes are perfectly emphasized, and, due to their
length, they should be easily estimated either as straight
lines by a Hough transform, or as parabolas by a ran-
dom sampling approach. Again, the estimation procedure
would employ not only the positions of pixels with high
response, but also the direction recovered by the steerable
filter. Figure 6(c,d) suggests that acceptable results can be
obtained even in the case of very uneven illumination. The
right lane boundary and the middle line are nicely located,
while the left lane boundary is almost invisible even to

the human observer. Obviously, the steerable filter would
be fooled whenever illumination effects form elongated
image structures, but this did not occur so often in our

experiments.
(a) (b) () (d)
Fig. 6. Two inverse-perspective images (a,c), and the corresponding

steerable filter responses (b,d).

V. SOME RESULTS IN DETECTION OF TRAFFIC SIGNS

In this section we present experimental results in tri-
angular traffic sign detection using a boosted cascade
of Haar-like features [26], [29]. We first introduce our
groundtruth acquisition method, and then present experi-
ments with the Lienhart’s implementation of the training
algorithm (cf. http://opencv.sf.net).

A. Groundtruth acquisition

In order to train the boosted detector, one needs many
images of the desired objects with annotated groundtruth
positions. The strength of our project is that a large
quantity of video material has already been acquired by
our industrial partner. In order to exploit these resources,
we developed an application which enables us to play a
video, pause on frames of interest and annotate by hand
the sign positions and types (cf. Figure 7). The application
stores the annotated groundtruth in a separate text file and
exports the corresponding frames as individual images.

020000%0 -

Fig. 7. A sign instance is annotated by (i) enclosing it in a bounding
box, and (ii) selecting the sign type.

So far we have collected around 1000 images, corre-
sponding to about 250 signs (our policy is to annotate
each sign in several representative frames). However, this
includes regulatory, warning, information, traffic guidance
and other sign types, while here we are exclusively
concerned with warning signs. Thus, the presented ex-
periments are performed with a detector trained on 352
images, while the evaluation is performed on 72 images.



Some of the images from the training set are shown in

Fig. 8.

Some of the sign images from the training set.

B. Training

We trained four detectors which differed in the em-
ployed set of features (basic [26] and extended [29]), and
in the assumption of the vertical symmetry of the detected
objects (symmetric and asymmetric). The four com-
binations were: basic-asymmetric, extended-asymmetric,
basic-symmetric, extended/symmetric. Best results were
obtained by a detector which employed the original set
of features [26], and assumed vertical symmetry of the
detected objects. Minimal desired hit rate for each stage
classifier was 0.995, while maximal false alarm rate was
0.5. We used 4000 negative examples taken from images
without signs. The base resolution of the detector was
24 x24 pixels.

The detectors were trained using Gentle AdaBoost [30].
Training typically took about two days on a computer with
two CPUs. Both CPUs were utilized since the training
program employs OpenMP (cf. http://openmp.org).

C. Experiments and results

Best detection results were obtained by using a rela-
tively low scale factor of the detector window (1.05). The
results are summarised in Table I. The symmetric detector
with the basic feature set achieved the highest detection
rate of 68%, while the corresponding precision was 46%.
The weak classifiers from the first five stages of the best
detector are shown in Figure 9. We can easily interpret
the most significant feature: it is sensitive to the bottom
edge of the sign.

TABLE I
DETECTION RESULTS FOR DIFFERENT TRAINING OPTIONS.

Hits, misses, Number of Total
Detector type false alarms stages, classifiers time
basic nonsym 44 28 40 16 120 25
extended nonsym 45 27 10 16 105 29
basic sym 49 23 58 17 148 16
extended sym 35 37 5 17 163 24

The detection results for individual physical signs from
the test set are summarized in Table II. It turns out that
most signs have been detected in at least one of images,
regardless of the detector variant. This seems encouraging
because in our context it might be sufficient to detect
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Fig. 9. The first five stages of the cascade obtained with basic set of
features and symmetry on. Columns correspond to individual stages of
the cascade. Numbers under each feature indicate influence of the feature
to the compound result of the stage classifier, in cases of the positive
(true) and negative (false) outcome. A candidate region is detected as
triangular traffic sign if it passes all stage classifiers.

the sign only in one frame and use the tracking in other
frames. Images of the two signs which were not detected
by any detector are shown in Figure 10.

D. A short discussion

We have presented preliminary experiments on apply-
ing the Viola-Jones object detector for the detection of
traffic signs. The results are not conclusive, as we believe
the results would be much better if the training set was
larger. The detectors probably failed on images in Figure
10 due to the fact that the training set does not contain

TABLE I
DETECTION RESULTS FOR INDIVIDUAL PHYSICAL SIGNS.

traffic number number of detections
sign of images basic set of features extended set of features
instance in test non-symmetric | symmetric non-symmetric | symmetric
id set 1.05 1.20 1.05 1.20 1.05 1.20 1.05 1.20

AO1#1 4 2 0 3 1 1 0 1 0
A04#1 4 2 1 1 0 2 0 0 0
A05#1 3 3 3 3 2 3 1 2 3
Al0#1 4 1 1 4 2 2 1 1 0
A10#2 3 3 3 3 2 3 3 3 3
All#1 4 3 2 4 3 4 2 4 3
All1#2 4 4 4 4 4 4 4 4 3
Al1#3 3 3 0 3 3 2 0 2 1
All#4 4 4 3 4 4 4 2 4 2
Al2#1 4 4 1 4 1 3 0 2 0
Al3#1 3 0 0 0 0 0 0 0 0
A20#1 4 4 2 4 3 4 2 4 1
A20#2 2 0 0 0 0 0 0 0 0
A22#1 4 0 0 0 0 0 0 0 0
A22#2 2 0 0 0 0 0 0 0 0
A25#1 5 2 2 2 2 2 1 2 1
A34#1 4 4 3 4 3 4 4 4 3
A34#2 4 2 1 4 1 4 1 2 2
Ada#l 3 3 1 2 2 3 1 0 1




enough images of such signs. Additionally, many of the
training images are of poor quality due to effects of
interlacing and motion blur. Nevertheless, the results seem
to suggest that useful results can be obtained even with a
modest training set?.

Fig. 10. Two images in which the sign was not detected by any of the
trained detectors.

VI. CONCLUSIONS AND FUTURE WORK

The purpose of this paper is threefold. Firstly, we
present a joint research project concerned with designing
computer vision modules for an existing geoinformation
traffic inventory system. The two high-level vision tasks
which are of greatest interest in the context of our project
are the detection of surface markings and recognition
of traffic signs. Secondly, we review the state of the
art computer vision techniques which are relevant for
solving the two tasks above. Finally, we show preliminary
experimental results obtained on real images acquired
from a moving vehicle.

The presented project is an example of synergy between
the free enterprise and academia. We strive to create
innovation by combining motivation emerging from a
real context, with the specific expertise originating from
previous academic achievements. It is expected that the
cooperation will lead to contributions in all related fields,
i.e. both academic and business, and that these contribu-
tions will result in benefits to society at large.

Preliminary results suggest that our goals are feasible,
however extensive testing will be required in order to
achieve robust operation on previously unseen image se-
quences. Further work shall be directed towards a proper
enforcement of additional constraints (cf. III-C), which is
expected to result in competitive recognition results.
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