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Abstract—Geoinformation inventories are often employed
as a tool in road safety inspection, since they can provide a
comprehensive view onto the required state of traffic control
infrastructure. Inspecting the road compliance in real time is
much less convenient and efficient than off-line and off-site
assessment of georeferenced video with respect to a suitably
presented reference state. Nevertheless, manual assessment is
tedious and time-consuming even when performed off-line,
and this seriously impairs the potential of the geoinformation
inventory concept. This paper therefore researches a hypothesis
that suitable georeferenced video processing techniques would
allow reliable automation of the following operations: i) creation
of the traffic inventory from the given video, and ii) assessing
the video against the state in the inventory. Prominent computer
vision approaches have been rigorously and systematically
evaluated and the obtained results are presented. The results
seem to support the hypothesis, although further work is
required for a more definite answer.

I. INTRODUCTION

Road infrastructure safety offers a large potential for sig-

nificant reduction of road accidents and their consequences

[1]. One of the most efficient instruments for detecting safety

issues of a road network in operation is road safety inspection

[2], [3]. Road safety inspection consists of periodical on-site

assessments carried out by trained safety expert teams, and

results in a formal report which is delivered to the relevant

road authority. The most important part of the inspection

concerns elements of the traffic control infrastructure: traffic

signs and road surface markings [2].

The inspection procedure implies assessing current road

conditions against the stored reference state. Geoinformation

traffic inventories [4], [5], [6], [7], [8] are a convenient tool

in achieving that, since they can provide a comprehensive

insight onto the required state of a road. Traffic inventories

are especially convenient when used in conjunction with

georeferenced video [6] which is obtained by synchronizing

image acquisition with the GPS readings as illustrated in

Fig. 1. Georeferenced video allows for repeatable off-line and

off-site assessments, which is more objective, more efficient
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and much more convenient than classic on-site inspection,

especially when multiple experts are involved.

Fig. 1. Acquisition of georeferenced video for off-line road safety
inspection based on a geoinformation traffic inventory. The setup enables
establishing spatial relation between the individual video frames and the
traffic control devices stored in the inventory.

Unfortunately, the road safety inspection is very costly

in terms of expert time. This is especially true for on-site

inspections, but also in the proposed off-site approach. The

responsibility for the road compliance is typically assigned

to local authorities, which, due to limited resources, usu-

ally delegate the implementation to external contractors [4].

The assessment frequency and the resulting safety standard

therefore directly depend on the efficiency of the assessment

procedure. Thus, several approaches for automating at least

part of the inspection procedure have been recently addressed

[6], [7], [8], [3].

In this paper, we present an existing geoinformation traffic

inventory devised for road safety inspection, and propose

novel computer vision techniques suitable for assessing the

visibility of traffic control infrastructure. The compound

software system aims at supporting automatic detection of

anomalies such as broken, covered, worn-out or stolen traffic

signs, and erased or incorrectly painted lanes. The presented

vision components have been addressed within the frame of

a research project aimed at automating i) initial creation of

the inventory, and ii) assessing the actual state of the traffic

control infrastructure.

The creation of a new inventory from the given georef-

erenced video implies: i) detecting traffic control devices

and estimating their GPS locations, and ii) introducing them

into the inventory (cf. Fig. 2). On the other hand, the

assessment task requires that the reference state of the road

is already stored into the traffic inventory, regardless of the

techniques for inventory creation and maintenance. Each

traffic control device from the inventory needs to be checked

for presence at the corresponding location in the assessed

georeferenced video (cf. Fig. 3). The creation task appears

considerably less important than the assessment, since, in

principle, the inventory is created only once, at the begining



Fig. 2. Creation of a geoinformation traffic inventory: an empty inventory
is populated with the detected elements of traffic infrastructure.

of the inspection service for a given road. However, in

practice, being able to make a low-cost short-delay offer

for a new service may prove critical for the success of the

concept in a new region. The creation also may appear more

demanding than the inspection, since no prior information

about the road is available. However, since the creation is

performed infrequently, even semi-automatic performance

would be useful since the results could be checked by a

human operator. On the other hand, it would make sense

to assess thousands kilometers of roads on a monthly basis,

which would require completely automatic behaviour, and

consequently imply a much tighter error tolerance.

Fig. 3. Actual road state is verified against the prescribed state from the
inventory. Each element from the inventory is checked for presence in recent
video.

The contribution of the paper is threefold. First, we

present our view onto a multidisciplinary research field of

automated road inspection based on computer vision assisted

geoinformation traffic inventories. Second, we provide an

up-to-date review of the related work in the field. Third,

we present the results of extensive, rigorous and systematic

experimental evaluation of relevant techniques for detection

and recognition of traffic signs. Previous accounts on this

research have been previously presented to the local research

communities in [9], [10].

The paper is organized as follows. Section II provides a

survey of recent work in the fields of geoinformation traffic

inventories and vision based detection and recognition of

traffic signs. The existing geoinformation inventory devel-

oped at the partner organization is presented in Section III.

Section IV describes the devised architectural solution for

connecting the vision components with the traffic inventory.

Section V presents experimental evaluation of the suitable

computer vision techniques for detecting and recognizing

traffic signs. The paper is concluded in Section VI by a short

discussion of the obtained results and some directions for the

future work.

II. RELATED WORK

Existing geoinformation traffic inventories differ mainly

in the hardware setup used for data acquisition and in the

algorithms employed for detection and recognition of traffic

signs. Data acquisition is usually performed with a specially

equipped vehicle (a mobile mapping system). Such a vehicle

will typically have at least a camera and a differential GPS

receiver. Other pieces of equipment, such as odometers,

infrared cameras, inertial sensors or additional color cameras

may also be employed [5], [6], [8].

Arnoul et al. [5] describe an early inventory system called

AUTOCAT, which enables automatic detection and localiza-

tion of traffic signs. The road is simultaneously observed

with two cameras: an ordinary wide angle camera and an

infrared camera. A sign is detected by combining infrared

readings and color information. When a sign is detected, it

is photographed using a high resolution digital camera. As

GPS technology was not publicly available at the time, the

3D location of the sign is reconstructed using camera motion

information provided by an inertial odometer and Kalman

filtering. The photo and the 3D location are then stored to

the inventory.

A system described by Madeira et al. [6] relies on videos

captured by two cameras, an inertial sensor and differential

GPS data to produce a georeferenced database of road

signs. The signs are detected and localized using color and

shape information. Absolute geographic coordinates of the

identified signs are then obtained using triangulation.

Maldonado-Bascon et al. [8] describe their advances to-

wards a fully automated inventory. Their system supports

detection and recognition of a large number of sign classes.

The system is able to deal with the problems of multiple

detections, adverse lighting conditions and accurate localiza-

tion of a sign. The detection and recognition rely exclusively

on video acquired from a moving car. Experiments on a

small test set of 51 traffic signs show promising detection

and recognition rates.

Benesova et al. [7] suggest an alternative approach for

data acquisition. Instead of using a vehicle, a pedestrian

walks down the streets of interest and employs a handheld

device equipped with a GPS receiver and a high resolution

camera. The approach is intented to help in the cases of

highly cluttered urban scenes, where it might be difficult to

obtain good detection rates if the video was acquired from

a vehicle.

Traffic sign detection and recognition, while essential for

traffic infrastructure inventory systems, are studied in the

context of many other commercial applications. One com-

mon use for them is in driver assistance systems, which are

nowadays becoming common in luxury vehicles. Hence, the

methods for traffic sign detection and recognition outlined

below are not necessarily connected to traffic infrastructure

inventory.

The majority of traffic sign detection techniques use as

much prior information as possible. As the appearance of a



traffic sign is strictly constrained, it is common to use color

and shape cues in detector design.

Color cues can be used by performing color-based seg-

mentation on an image. The idea is that the areas correspond-

ing to traffic signs of target color will survive the segmen-

tation process. The segmentation is sometimes performed in

RGB color space [11], [12], [13], [14], although it often

fails because RGB color space is sensitive to illumination

changes. The prevalent approach is to segment the image

in HSI color space [5], [6], [8], [15], [16], which should

eliminate problems with illumination to some extent.

Common techniques that provide shape cues are Hough

transform, fast radial transform and corner detection. Hough

transform is useful in locating straight lines or circles corre-

sponding to a sign [17]. An extension of Hough transform

which generalizes it to equiangular polygons was proposed

by Loy [18] for the purpose of traffic sign detection. Corner

detection is sometimes performed to infer the shapes in the

regions of interest [19].

Instead of using color and shape cues for traffic sign

detection, one could use a general purpose detector, such as

the one proposed by Viola and Jones [20]. For instance, Baro

and Vitria [21] detect signs using the method of Viola and

Jones augmented by a feature set proposed by Lienhart and

Maydt [22]. They further filter false positives by using fast

radial symmetry transform of Loy et al. [18] and principal

component analysis.

Ruta et al. [23], [24] use the detector of Viola and Jones to

quickly establish regions of interest in an image. They then

detect equiangular polygons using an improvement of fast

radial symmetry. A sign candidate is tracked using Kalman

filter, a pixel relevance model and a regular shape detector.

A more detailed report on current research in sign de-

tection is available in a recently published review paper by

Nguwi and Kouzani [25].

A few machine learning techniques seem to be favored

by researchers for recognition of traffic signs. These are:

support vector classification [8], [16], neural networks [26],

[12], cross-correlation template matching [23], [27].

Some traffic infrastructure inventory systems use tracking

to enhance the results of detection and recognition. Common

approaches include KLT tracker [16], Kalman filter [23], [5]

or SIFT feature-based tracking [28].

To increase performance and reduce the number of false

positive detections, it is useful to limit the search area of

the detector to just a few regions of interest in an image.

Detection of lane markings can be helpful in determining

such regions. By knowing where the road is, it is easy

to establish the expected positions of traffic signs. Meuter

et al. [29] describe an approach to lane marking detection

based on an extended and simplified fast radial symmetry

transform [18] for lines. The detection is tracked using

extended Kalman filters and the road is modeled by a

clothoid. Nienhūser et al. [30] also model the road as a

clothoid, generating its parameters by adapting a third order

polynomial approximation. Their system is able to determine

to which lane a specific road sign belongs to. Liu et al. [31]

use Canny edge detector to detect candidate markings and

then further filter them by orientation.

Compared to previous studies of traffic sign detection and

recognition such as [6], [7], [8], [24], this paper presents

a rigorous and systematic study on a very large and inde-

pendent evaluation set. Both training and evaluation samples

have been extracted from production videos, acquired with

an approximate camera speed of 60 km/h. Consequently, the

resolution of our image samples is low, considerable motion

blur is present, while the color is often quite unreliable.

Nevertheless, we succeed in obtaining combined detection

and recognition rates, in the range of over 90%, for classes

in which enough training samples are available. We therefore

think that this study provides a competitive insight onto the

feasibility of the automatic traffic inventory concept.

III. THE GEOINFORMATION INVENTORY

Here we briefly present a geoinformation inventory for

traffic infrastructure [32] which has been developed and

maintained as a software product branded OptaGIS. The

developed system has been a successful tool in providing

commercial road inspection service to local authorities all

over Croatia since 2005. Compared to competing solutions,

OptaGIS offers simpler assessment due to support of geo-

referenced video, better interoperability with other software

(AutoCAD, etc), as well as better presentation capabili-

ties due to support of different coordinate systems (Gauss-

Krūger, WGS84, etc).

OptaGIS stores all information about the traffic infrastruc-

ture including traffic signs, surface markings and curbs, and

presents them in the schematic view as shown in Fig. 4. The

stored data is organized in several layers: aerial ortphoto,

traffic signs (orange circles) with annotations (sign images),

surface markings (black lines), the centerlines (yellow lines),

the road identifier (orange), and the trajectory of the GPS

readings (filled brown circles), and the georeferenced video.

OptaGIS allows an associative look-up across different lay-

ers: the current position in the video can be set by selecting

a desired GPS reading, while seeking the video pans the

current view of the GIS.

Fig. 4. The schematic view of the traffic inventory as presented by OptaGIS.



The relation between the schematic view and the georef-

erenced video is illustrated in Fig. 5. The live video frame

shown on the right corresponds to the selected current loca-

tion in the schematic view on the left. The schematic view

shows the current vehicle position (red arrow), other GPS

readings (green circles), mapped traffic signs (orange), and

road contours (brown lines). As stated in the introduction,

georeferenced video enables a deferred (off-line and off-

site) and repeatable assessment, and thus offers an important

alternative to the on-site inspection. The georeferenced video

is acquired by a vehicle equipped with a perspective camera,

differential GPS receiver, as well as with inertial positioning

and distance measuring instruments. Readings of the three

positioning sensors are fused using a Kalman filter.

Fig. 5. The schematic view of the traffic inventory (left), and the
corresponding georeferenced video frame (right) as presented by OptaGIS.

IV. THE DEVISED SOFTWARE ARCHITECTURE

In this section we describe the devised architectural solu-

tion for connecting the vision components with the applica-

tion OptaGIS described in Section III. We first fully describe

the context and the design constraints (forces) in IV-A. Then

we briefly describe the auxiliary annotation tool and the

development and testing framework for vision components

in IV-B and IV-C respectively. Finally, we show the resulting

architecture in IV-D.

A. The design constraints

OptaGIS is developed in Visual Basic in order to achieve

rapid development. On the other hand, the vision components

(e.g. object detection and recognition) have been developed

in C++ in order to achieve maximum performance. OptaGIS

therefore needs to access vision components over a dynamic

library interface which we call libmastif in accordance

with the project acronym.

It would be tedious to develop the vision components di-

rectly as parts of a dynamic library, since that would hamper

testing and experimentation. We therefore opt to develop the

vision components as plug-in modules (or algorithms) of a

previously developed C++ development framework entitled

cvsh (cf. IV-C).

It has been noted that the functionality of object detection

and recognition would also be useful within the frame of the

auxiliary annotation software which we call Marker (cf. IV-

B). The idea is to promote an iterative approach whereby the

current state-of-the-art detection and recognition algorithms

are used to streamline the collection of additional training

samples. However, the annotation software is written in Java

and as such, unfortunately, can not simply reuse vision

components over the libmastif interface.

B. A tool for annotating groundtruth samples of traffic signs

In order to evaluate or train algorithms for object detection

and recognition, one needs many images of the desired

objects with annotated groundtruth positions. One of the

strengths of our project is that our industrial partner is able

to provide a large quantity of road video material. In order to

exploit these resources, we developed an application entitled

Marker. As shown in Fig. 6, Marker enables the user to play

a video, pause on frames of interest, and annotate by hand

the sign positions and types. The annotated groundtruth is

stored in a separate text file and exports the corresponding

frames as individual images.

Fig. 6. A sign sample is annotated by (i) enclosing it in a bounding box,
and (ii) selecting the sign type (left). Using this procedure we have manually
annotated about 3000 warning signs (triangular shape, class A) (right).

It appears that best detection and recognition results can

be obtained with machine learning based approaches which

unfortunately require extremely large collections of training

samples. In order to simplify and streamline the laborious

job of groundtruth collection, Marker has been recently

redesigned. The new version attempts to increase the produc-

tivity of human operators by taking advantage of previously

collected data (cf. Fig. 7). The main idea of the improvement

is to sustain an accelerating two-step collection procedure.

Firstly, the available training collection is used to train the

current generation of detection and recognition algorithms.

Fig. 7. After an automatic or manual detection, the new Marker performs
automatic classification and offers the four most prominent classes.



Secondly, the trained algorithms are employed to perform

semi-automated detection and classification. The processing

results are verified by a human operator who accepts, rejects

or corrects the proposed detection and classification. The

annotated objects are consequently employed in the next

iteration of the procedure, which is expected to result in a

continuous performance improvement [33].

C. Development framework for vision components

The computer vision shell cvsh is an in-house developed

C++ framework for experimenting with computer vision

and image processing algorithms. The framework can be

compiled both on Windows and Unix operating systems such

as Linux or MacOS. It provides command-line and point-

and-click user interfaces, and handles image acquisition and

presentation of results. cvsh also offers powerful registry

services which allow the application logic to be completely

independent from the incorporated computer vision algo-

rithms. Thus, users can add custom algorithms without

having to change any other component in the program.

D. The proposed architectural solution

From the discussion in IV-A, it appears clear that the key

architectural problem is to allow both Marker and Optagis

to transparently employ cvsh algorithms. This can be el-

egantly achieved by designing the top level component of

libmastif as a PROXY [34] towards the cvsh algorithms,

which are simply linked with the library in their original

form. In order to achieve this in a transparent fashion,

libmastif reuses the cvsh registry component and thus

enables hosting of an arbitrary number of cvsh algorithms.

Thus, OptaGIS opens a libmastif session by supplying

the identification string of the desired algorithm. The registry

component creates an algorithm instance, and afterwards the

OptaGIS transparently accesses the vision components which

have been independently developed and tested within cvsh.

In order to make the cvsh algorithms available to Marker,

we have designed an additional dynamic library which

conforms to the JNI specification [35]. In order to avoid

repetition, the JNI library is designed as a simple libmastif

proxy and is therefore named libmastif_jni.

The structural dependency diagram of the proposed archi-

tecture is illustrated in Fig. 8.

V. EXPERIMENTS ON TRAFFIC SIGNS

In this section we present experiments involving tech-

niques which support the concepts of automatic GIS creation

and automatic assessment of georeferenced video. We have

experimented with many approaches to traffic sign detection

and recognition and here we present our currently best

results.

A. Methodology

The developed techniques were tested on triangular warn-

ing signs from the superclass A. The superclass A is chosen

as a model subset due to its prevalence in our videos. All

algorithms have been trained on the training set T2009

Fig. 8. The devised compound architecture for integrating independently
developed vision components with i) the traffic inventory OptaGIS and ii)
the annotation application Marker.

containing about 2000 triangular signs collected in 2009

using an interlaced camera. A small subset of T2009 is

shown in Fig. 6 (right). The quality of the signs is rather low,

while the red colour of the frame can not be distinguished as

such in many samples. The algorithms have been evaluated

on the evaluation set T2010, containing about 1000 triangular

signs collected in 2010 using a newer progressive scan

camera. The signs from T2010 have better quality, however,

the colour still appears unreliable.

Both cameras feature the SDTV resolution of 720×576

and the field of view of about 48◦. The viewing direction

of the camera is roughly parallel to the longitudinal vehicle

axis. The resolution of the signs from both sets typically

range between 20×20 and 90×90 pixels.

B. Appearance-based traffic sign detection

Best detection results have been obtained with a cascade

of boosted Haar classifiers [20]. Currently we employ the

training tool from OpenCV [22], [36], which requires i) a

large set of positive samples (cropped images of desired

objects), and ii) a collection of backgrounds (images in which

no objects are present). The specified number of negative

samples is automatically extracted from the background

images at the beginning of learning each cascade stage.

Since the resulting detectors are less reliable near the basic

resolution of 24×24, we perform the evaluation on subset

of T2010 containing signs greater than 25×25 pixels. As

shown in Table I, the obtained results heavily depend on the

number of training samples Npos (Nbg and Ntest denote the

number of background images and the number of evaluation

samples). The table shows that the boosted Haar cascade

detection approach achieves quite encouraging recalls when

enough training samples are available.

TABLE I

IMPACT OF THE TRAINING SET TO THE DETECTION PERFORMANCE

Npos Nbg Ntest recall precision

352 110 72 68% 46%
898 230 918 80% 64%
2154 711 918 96% 54%



However, there are two problems which need to be ad-

dressed prior to incorporating the technique into an unsu-

pervised technical system. The first problem is the quite

high number of false positives (about one per frame). Our

most recent experiments show that false positives can be

reduced to a much more acceptable level of about one per

200 frames (about 9 seconds), by constraining the temporal

consistency of the detector. Basically, we require that i) the

object needs to be detected in many video frames, and ii)

that all detections need to be similar to the first detection

as judged by the Lucas-Kanade alignment algorithm [37].

It appears that a more significant removal of false positives

would not be possible without a more global treatment which

would distinguish the true objects by the use of context [38].

Our preliminary results along that track are presented in [39].

The second problem with the evaluated detection approach

is the low localization accuracy of the detections. The prob-

lem is illustrated in Fig. 9. The presented histogram shows

that the expected relative deviation of a 24× 24 detection is

about 1.6 pixels. We investigate the effects of this deviation

to the recogintion accuracy in V-D.
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Fig. 9. The response of the grouping algorithm often deviates from the
true location of the sign (left). The distribution of the relative deviations on
the set T2010 normalized for the sign dimensions of 24× 24 is shown on
the right.

C. Colour-based traffic sign detection

Traffic signs are designed to be visible in a wide range of

illumination conditions, primarily by using highly discrimi-

native colors. Therefore, the color could be a dominant cue

for traffic sign detection and many authors use it to direct

the detector attention [40], [41], [42], [24].

However, the images of traffic signs captured with a video

camera in a real setup show that the imaged colors vary

significantly depending on lighting conditions. Some exam-

ples can be seen in Fig. 6 (right). In order to explore color

properties of traffic sign images under various conditions,

we conducted a statistical analysis on a representative set of

images from real video. This experiment has been inspired

by Jones and Rehg [43], who successfully modelled skin

color by RGB histograms.

By using the annotated video sequences (Fig. 6), we col-

lected pixel values corresponding to traffic signs of particular

categories and built 3D color histograms. By using images

not containing traffic signs, taken from the sequences, a back-

ground histogram was also constructed. Having histograms

representing the probability distributions of the sign class and

background class, a Bayes classifier [44] can be defined for

segmenting individual pixels based on their color. In such

a probabilistic framework, the optimal decision should be

made based on the posterior probability of the object class.

If we denote the measured value of the pixel to be classified

as x = [ R G B ], the object class as ωO and the

background class as ωB , then the pixel under consideration

should be classified as object if [44]:

P (ωO|x) > P (ωB |x) (1)

By using Bayes theorem the classification rule (1) can be

expressed with class-conditional probability densities of the

two classes and their priors. The pixel is to be classified as

object if:
P (x|ωO)

P (x|ωB)
>

P (ωB)

P (ωO)
= Θ (2)

This form of classification rule is very practical as by

changing the threshold Θ the performance can be tuned. The

performance of a classifier is usually expressed by its receiver

operating characteristic (ROC), showing the relation between

the rates of true positives and false positives as the threshold

is varied.

We conducted an experiment with histogram-based seg-

mentation of yellow panel traffic signs (route direction signs,

town names), that contain mainly yellow color and black

markings (arrows, text). The experiment included 3 types of

histograms: (i) 3D histogram in RGB space, with bin size 1

(256× 256× 256 bins); (ii) RGB histogram with bin size 8

(323 bins); (iii) 2D histogram in normalized rg color space.

The normalized rgb color space [45] is convenient because

it is relatively insensitive to illumination changes. It can be

used as a 2D space, because the third coordinate (usually

b) can be computed from the other two. Yellow histograms

were learned on a set of 650 annotated images, containing

2 million pixels, while the background histograms used 700

images with 287 million pixels.

The classifiers were tested on an independent set of images

(200 yellow panels and 20 background images), with varying

threshold Θ. The obtained ROC curves are shown in Fig. 10.
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Fig. 10. ROC curves for histogram-based pixel classifier for yellow panels.

The experiment has shown that yellow color can be

reliably detected with the described approach. By adding



appropriate post-processing steps such as mathematical mor-

phology and size filtering to reject small blobs of false pos-

itives and shape analysis to check the remaining candidates,

a successful detector for yellow panels could be constructed.

We also tried this approach with triangular and circular

signs with red rim, but with much less success. One of the

reasons is probably the fact that red color occupies relatively

small area of the signs. Moreover, it seems that the red pixel

values in images of traffic signs very often lose their color.

They become very dark, with values corresponding to brown

or gray (or even violet) which are very frequently found in

the background. Also, the sign images we collected from

video sequences are often very small (as small as 20 × 20
pixels), compared to images collected by a high-resolution

camera. For example, Gao et al. [41] used sign images of

400 × 400 pixels. However, our results suggest that for tri-

angular and circular signs with red rim an appearance-based

detector such as Viola and Jones’ [20] is more appropriate

than color-based approach.

D. Traffic sign recognition

The training was performed on the set T2009 with C=28

classes. The employed classificator first normalizes each

training sign by i) converting it to the greyscale, ii) resizing to

the common resolution of 64×64 pixels, iii) suppressing the

background by a fixed triangular mask, and iv) suppressing

the illumination effects by linearly stretching the histogram.

The set of normalized samples is consequently projected to

the (C-1)-dimensional space obtained by multiple discrim-

inant analysis [44]. The classification is performed on the

projected samples using the nearest neighbour rule [44], i.e.

each unknown sample is classified as the class of the nearest

projected sample from the training set [46], [47].

The evaluation is performed on a subset of the set T2010.

In order to take into account localization uncertainty de-

scribed in V-B, we recover the closest detection rectangle

corresponding to each manually annotated sign. The annota-

tions which were not detected have been excluded from the

recognition test. We also excluded the signs from classes for

which there were less than 30 training samples. At the end,

the recognition evaluation set contained 906 samples in 13

classes.

The overal recognition accuracy was 91% for manual

annotations and 79% for the detections. The recognition

accuracy for individual classes is shown in Table II. Due

to space constraints, we show only the 11 classes with most

evaluation samples. The table shows that classes with more

training samples (A08, A09, A10, A11, A34, A44) tend to

be considerably better recognized. The effects of inaccurate

detections mostly affects the classes with fewer training

samples (A04, A05 and A32), leading to considerable per-

formance hits of up to 19 percentage points.

The experiments show that large quantities of training

data is required for reliable recognition. It appears that

improving localization accuracy of the detections would

improve recognition only for classes with less than about

TABLE II

RECOGNITION OF MANUALLY ANNOTATED VS. DETECTED SIGNS.

the class
appearance
and id A03 A04 A05 A08 A09 A10 A11 A17 A33 A34 A44

n(training) 41 27 31 200 223 209 242 28 35 251 212
n(testing) 128 165 156 38 48 24 47 11 206 44 32

hit(manual) 111 136 145 37 48 23 44 8 198 44 30
pct(manual) 87% 82% 93% 97% 100% 96% 94% 73% 96% 100% 94%

hit(detection) 109 104 127 37 48 23 45 10 138 43 32
pct(detection) 85% 63% 81% 97% 100% 96% 96% 91% 67% 98% 100%

50 training samples, but further research would be required

to test this properly.

VI. CONCLUSIONS AND FUTURE WORKS

This paper addressed the feasibility of applying vision-

assisted geoinformation inventories for traffic infrastructure

in the field of automated road inspection. Results of extensive

experimental evaluation imply that, as far as triangular warn-

ing signs are concerned, at least semi-automatic detection

and recognition should be possible. We believe that similar

results would be achieved on any other ideogram-based class

of the signs, provided that enough training samples are

collected.

Although our research on indication panels is less mature

than on ideogram based signs, the available results suggest

that they could be detected in many instances by Bayesian

color-based approaches.

Due to spatial constraits, we have refrained from present-

ing our experiments on detection of road surface markings.

These experiments are less mature than the experiments on

traffic signs, however they also suggest that automation is

feasible.

None of the related approaches from the literature attempt

to learn and enforce the contextual constraints which may

provide important cues for improving detection and recogni-

tion. Furthermore, the presence of traffic signs is correlated

with the type and the geometry of surface markings so that

we believe that in the end the two detection techniques

might reinforce each other. Much of our future work shall be

concentrated towards exploring these research opportunities.
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