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Abstract This paper addresses detection, tracking and
recognition of tra�c signs in video. Previous research
has shown that very good detection recalls can be ob-
tained by state-of-the-art detection algorithms. Unfor-
tunately, satisfactory precision and localization accu-
racy are more di�cultly achieved. We follow the intu-
itive notion that it should be easier to accurately detect
an object from an image sequence than from a single
image. We propose a novel two-stage technique which
achieves improved detection results by applying tem-
poral and spatial constraints to the occurrences of traf-
�c signs in video. The �rst stage produces well-aligned
temporally consistent detection tracks, by managing
many competing track hypotheses at once. The sec-
ond stage improves the precision by �ltering the detec-
tion tracks by a learned discriminative model. The two
stages have been evaluated in extensive experiments
performed on videos acquired from a moving vehicle.
The obtained experimental results clearly con�rm the
advantages of the proposed technique.
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1 Introduction

Automated detection and recognition of tra�c signs
is an exciting application �eld of computer vision, in
which the research community and the industry have
achieved signi�cant recent progress [2,31,41]. The re-
search in the �eld has been motivated by attractive ap-
plications such as driver assistance [18,19], intelligent
vehicles capable of autonomous operation [14,35], and
automated tra�c inventories [31,48]. Tra�c inventories
have been employed as a tool in road safety inspection
assessments [10,33] due to their capability to provide a
comprehensive insight into the required state of a road.
By periodically comparing the current conditions of the
road against the reference state in the inventory, one
can detect anomalies such as broken, covered, worn-out
or stolen tra�c signs, and erased or incorrectly painted
road surface markings. Unfortunately, both i) the ini-
tial creation of the inventory and ii) the assessments
themselves are very costly in terms of expert time, and
that has recently spurred the interest in achieving at
least partial automation of these two procedures [1,30,
6,31,48].

The uniform appearance of tra�c signs lends well
to the object detection paradigm based on binary clas-
si�cation within the sliding window [47,12,38,16]. The
well-known approach based on cascading boosted Haar
classi�ers [47] is especially interesting due to fair de-
tection accuracy and a very e�cient use of computing
resources [16]. In our experiments on Croatian warn-
ing and prohibition signs imaged from a moving service
vehicle [48], properly trained boosted Haar cascades
achieve about 95% recall for signs ranging between 26
and 80 pixels in scale. This signi�cantly outperforms
our implementations of more speci�c approaches based
on pixelwise colour segmentation [31] and shape-based
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detection such as radial symmetry [29], and Hough trans-
form [21]. The e�ciency of boosted Haar cascades en-
ables near real-time performance of complex systems
containing several additional components besides raw
object detection, especially when modern multicore power
is harnessed.

Nevertheless, we had to conclude that the raw per-
formance of boosted Haar cascades is still insu�cient
for real applications, which due to safety implications
require extremely high precisions, recalls and recogni-
tion accuracies. The two main shortcomings of tra�c
sign detection based on boosted Haar cascades are:

1. poor precision [8,9]: when a near 100% detection is
desired, one typically obtains more than one false
positive per processed image;

2. poor localization accuracy [48]: the detection re-
sponses often considerably deviate from the true lo-
cation (this often disturbs the subsequent classi�ca-
tion).

The problem of poor precision stems from the fact that
it is quite di�cult to capture the variation of the neg-
ative class in classi�cation-based object detection. One
way to deal with this problem would be to attempt to
learn the background variation online, however, as a
downside, that would require managing the inevitable
label noise [38]. The problem is aggravated by the typi-
cal sparsity of the considered objects: tra�c signs from
the most common class A (triangular warning signs)
appear in less than 5% of the frames in our videos.

Localization inaccuracies are intrinsic to general ob-
ject detection algorithms which produce responses at
many locations near the true positive detection. These
responses are subsequently grouped by a heuristic geo-
metric criterion without any relation towards the pixel-
based evidence in the source image. Consequently, the
�nal responses are often fairly inaccurate, especially for
triangular tra�c signs where fragments appear similar
to the complete objects of the class (cf. Fig. 1).

Fig. 1 The grouping algorithm may produce multiple responses
in the vicinity of a sign. These responses often deviate from the
true location (left). A dark background can be detected as the
rim of the sign, which results in an additional oversized group of
responses (right).

In this paper, we approach the problem of tra�c
sign detection by exploiting the fact that tra�c signs

are typically visible in many frames of the input se-
quence. We accomplish the detection goals of precision,
recall and localization accuracy by exploiting spatio-
temporal relations within the processed video. The main
idea of the proposed technique is to extract temporally
consistent detection sequences, which possess spatio-
temporal properties typical for tra�c signs imaged from
a moving vehicle.

Temporal consistency is enforced by requiring that
all detections have a consistent warped appearance through-
out the sequence. In practice, we achieve this by com-
bining the evidence from raw object detections [47] and
di�erential tracker [44]. Since the raw detections ran-
domly deviate from the true object location, we hy-
pothesize a new detection sequence from many seed
detections over the time. We �nally choose the best
hypothesis by employing the following two criteria: i)
correct alignment towards the seed detection, and ii)
count of con�rmations from the raw detections. This
approach rules out spurious raw detections which oc-
cur only in a small fraction of image frames, as well as
most inaccurately localized raw detections which tend
to be badly tracked due to changing background pixels.
The details of the procedure are described in Sect. 5.

Even though insisting on temporal consistency con-
siderably improves the precision, still many false pos-
itives remain. We notice that the image locations of
properly placed tra�c signs are strongly constrained,
and that some additional constraints can be exploited
by looking at (x,y,scale,t) trajectories obtained by track-
ing tra�c signs over time (cf. Fig. 2). Consequently, we
try to capture these spatio-temporal constraints by a
discriminative model obtained by supervised machine
learning. This procedure is detailed in Sect. 6.

Fig. 2 Image locations of tra�c signs are constrained with re-
spect to scale and image coordinates (x,y) (left). Additional con-
straints exist on (x,y,scale,t) trajectories (right). The crossed-out
signs and trajectories should not appear in images of roads which
comply to relevant regulations.

The diagram of the proposed system for detection,
tracking and recognition of tra�c signs is shown in Fig.
3. The input image is processed by a suitably trained
boosted Haar cascade to produce raw object detections.
Raw detections are used as seeds for a cluster of track
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hypotheses. When all hypotheses from a cluster die-o�,
we forward the most consistent hypothesis to the next
processing stage. The module for enforcing the spatio-
temporal constraints converts the tracks into �xed-length
feature vectors corresponding to (x,scale) and (y,scale)
trajectories. The tracks are subsequently classi�ed into
signs and non-signs by employing the trained discrim-
inative model. Representative appearances of the re-
maining tracks can in the end be used for recognition.

Fig. 3 The diagram of the proposed system for detection, track-
ing and recognition of tra�c signs.

2 Related work

Although common application areas of tra�c sign de-
tection (e.g. driver assistance and road inspection) typ-
ically involve sequences of many image frames, we �rst
review a large body of previous research which focuses
on processing single images. These techniques are rele-
vant since they can be integrated as lower level building
blocks of a higher level temporal framework.

Appearance of a tra�c sign is strictly constrained
- its colour, shape, size and interior are prescribed by
state legislation and intended to stand out from the
environment. A logical way to design a detector is then
to consider colour and shape cues.

Colour has been used as a dominant cue for tra�c
sign detection in the early studies [37,14]. Some state-
of-the-art approaches [41,40,45] use colour as a compo-
nent of their tra�c sign detectors. Image segmentation
is usually accomplished by comparing pixel values to a
set of heuristically determined thresholds. However, we
notice that the tra�c signs colours signi�cantly depend
on lighting conditions, especially when video is acquired

from a moving vehicle. Therefore, a single set of thresh-
olds would unlikely be able to adequately segment all
images. Some authors tried to alleviate this problem by
choosing a colour space supposed to be less sensitive to
illumination changes, usually HSI [37,34], or by observ-
ing the ratios between the colour components [14]. Gao
et al. [20] used the CIECAM97 colour model, but still
needed separate sets of thresholds for images captured
under di�erent weather conditions.

Shape-based approaches for tra�c sign detection in-
clude Hough transform, fast radial transform and cor-
ner detection. Hough transform was used to locate straight
lines or circles from which the outline of a sign can
be inferred [21,41]. Motivated by the problem of tra�c
sign detection, Loy and Barnes [29] proposed a gener-
alization of Hough transform to equiangular polygons,
entitled fast radial symmetry transform. Having a de-
tector for equiangular polygons means being able to
detect many kinds of signs (circular, triangular, square,
octagonal). Shape can also be inferred from corners. By
performing corner detection, one can reason about the
possible shapes in an image using the con�gurations of
detected corners [14].

There are also approaches based on machine learn-
ing. For instance, Fang et al. [18] used neural networks
to model the shape and colour of tra�c signs.

After the milestone in face detection set by the work
of Viola and Jones [47], there is an increased interest in
applying cascades of boosted Haar classi�ers to tra�c
sign detection. Baro and Vitria [4] detected signs us-
ing the extended feature set proposed by Lienhart and
Maydt [27]. They further �ltered false positives using
fast radial symmetry transform [29] and principal com-
ponent analysis. Bahlmann et al. [2] incorporated colour
information into a cascade of boosted Haar classi�ers
by generating Haar-like features from several colour
planes (R, G, B, normalized r, g, b, and grey-scale). In
that way, the most discriminative colour features were
extracted by machine learning. Similarly, Ruta et al.
[39] used a cascade of boosted classi�ers with colour-
parameterized Haar-like features, computed from im-
ages with enhanced red, blue and green colours. The
detector cascade is used to quickly establish regions of
interest in an image and thereafter they detect equian-
gular polygons using an improvement of fast radial sym-
metry transform. Recent research on boosted Haar clas-
si�cation focuses on the design of new features: dissoci-
ated dipoles [5], polygonal features [36], and quantum
features [24].

Boosted Haar cascade detectors usually produce mul-
tiple responses around the true target instances. The
number of neighbouring responses can be used for dis-
criminating true from false positives, but on the other
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hand they deteriorate the localization accuracy. The
responses are usually grouped by some heuristic algo-
rithm and each group is substituted by a single com-
pound detection region [27], which rarely �ts the de-
tected object well. Ruta et al. [41] presented a technique
for improving the localization accuracy of a multiple-
response detector based on mean shift clustering, which
was modi�ed to incorporate con�dence measures of the
detector's responses. A similar idea was presented by
Grabner et al. [22], who used thewobbletransform to
increase the number of detector responses and then ap-
plied the mean shift clustering.

In our particular application of tra�c sign detec-
tion, a single sign is visible through multiple frames,
so the chances that it will be detected and recognized
properly are much higher when taking spatio-temporal
relations into account. Piccioli et al. [37] used a Kalman
�lter for temporal integration of the information ex-
tracted from individual image frames. Several other stud-
ies utilized Kalman �lter tracking in order to reduce the
search time for tra�c sign detection [18,39,40]. Liu et
al. [28] employed a feature tracker in order to establish
correspondences between sign detections in consecutive
frames. An alternative tracking method has been pre-
sented by Ruta et al. [41]. Their system learns a mo-
tion model from random a�ne transformations applied
to the full-face view of a detected sign. The main role
of the tracking subsystem is to reveal the a�ne trans-
formation parameters and compensate the geometrical
distortions of the sign appearance in order to make the
detector pose-invariant.

In general, detection of objects in still images can
bene�t from learned spatial constraints between 3D scene
geometry and the camera pose, as noted by Hoiem et
al. [23]. This concept has been extended towards model-
ing space-timerelationships for particular applications,
for instance by exploring a mutual feedback scheme be-
tween spatial detection and temporal tracking of faces
in crowds [11]. Ess et al. [17] address multi-person track-
ing in stereo video acquired from a mobile platform.
The central contribution of their work is a graphical
model for tracking-by-detection which combines image-
based evidence obtained by 2D detection with spatio-
temporal constraints provided by visual odometry and
ground plane estimation. Similar to Ess et al., Timofte
et al. [45] also require the temporal tracking of camera
pose (they combine GPS and Structure from Motion),
but they focus on stereo acquisition and on 3D spatial
constraints to improve detection and recognition rates
for tra�c signs.

This paper explores multi-frame cues for suppress-
ing false positive responses and improving the local-
ization accuracy in tra�c sign detection from a mov-

ing vehicle. Our approach is based on temporally con-
sistent sequences of tra�c sign appearances which we
call detection tracks. We achieve improved localization
accuracy by hypothesizing many detection tracks for
each physical sign, and choosing the hypothesis sup-
ported by the strongest raw detection evidence. The
surviving detection tracks are subsequently �ltered by
a discriminative trajectory model which succeeds to re-
duce false positive detections by enforcing 2D spatio-
temporal constraints. Unlike previous approaches [45,
17] we avoid relying on SfM and 3D reconstruction,
since, in single camera systems, these are prone to oc-
casional instabilities. To the best of our knowledge, this
approach has not been tried out yet in the context of
tra�c scenes.

3 Assumptions and datasets

The experimental part of this paper has been performed
on production videos supplied by our industrial part-
ner. The videos have been acquired in the scope of a
commercial road maintenance assessment service which
has been contracted by several Croatian counties since
2005. The service is chiey concerned with signs which
occur on the right side of the road, approximately per-
pendicular to the viewing direction. The videos are ac-
quired by a higher-level consumer-grade camera mount-
ed on the top of the service vehicle. The optical axis of
the camera is roughly aligned with the longitudinal axis
of the vehicle. Several cameras have been employed, but
all of them feature the horizontal �eld of view of about
48� . Although positional readings are also recorded we
do not employ them in this work for simplicity and
generality. The provided materials contain more than
50 hours of compressed SDTV video (720� 576 pixels)
acquired on Croatian local roads, mainly in the coun-
tryside and in small cities. During the acquisition, the
car has to drive at an adequate speed for the corre-
sponding part of the road (40{60 km/h) in order not to
disturb the regular tra�c. The maximal resolution of
the imaged tra�c signs rarely exceeds 80 pixels, which
in combination with the motion blur makes the traf-
�c sign detection a challenging task. The road surface
markings and the road texture vary considerably, so
that an approach relying on road detection would not
be straightforward.

In order to collect groundtruth samples for training
and/or evaluating algorithms for object detection and
recognition, we developed the application Marker1. The

1 Marker can be freely downloaded and employed for non-
commercial activities. The stable version (Marker v1.0) can
be downloaded from: http://www.zemris.fer.hr/ ~ssegvic/
mastif/marker/marker.zip .
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purpose of this application is manual annotation of traf-
�c sign locations in video frames (cf. Fig. 4). Annotating
a sign consists of placing a tight bounding box around
the sign and selecting the respective class. The applica-
tion supports storing the annotated frames as individ-
ual images, along with the accompanying groundtruth
in the form of a text �le. Our annotation protocol estab-
lishes a guideline to annotate each physical sign at four
di�erent scales, from about 25� 25 to the scale attained
when the sign reaches the image border. Over the time,
we collected a corpus of about 7000 annotations, which
correspond to about 1750 distinct tra�c signs.

Fig. 4 A sign sample is annotated by (i) enclosing it in a bound-
ing box, and (ii) selecting the sign type (left). Using this pro-
cedure we have manually annotated about 3000 warning signs
(triangular shape, class A) (right).

In this work we focus at the superclass of triangu-
lar warning signs due to their prevalence in our videos.
These signs correspond to the category A from the Vi-
enna Convention [25], which is in most of Europe dis-
tinguished by a triangular shape with a thick red rim.
We group about 3000 annotations of triangular signs
from our corpus into two datasets: T2009 and T2010.
The dataset T2009 contains about 2000 annotations
collected in 2009 on videos acquired with an interlaced
camera2. Some annotations from T2009 are shown in
Fig. 4(right) and Fig. 5. Depending on the lighting con-
ditions, the imaged colours of the red rim often get
considerably desaturated, sometimes even to the point
of being indistinguishable from the grey colour. The
dataset T2010 contains about 1000 annotations of tri-
angular signs collected in 2010 on videos acquired by a
newer progressive scan camera. The signs from T2010
have better quality, however, the colour still appears
unreliable. The resolution of the signs from both sets
typically ranges between 20� 20 and 80� 80 pixels.

2 Our datasets can be freely downloaded for the purposes of
academic research:
http://www.zemris.fer.hr/ ~ssegvic/mastif/datasets.shtml .
We note that two similar datasets have been recently pub-
lished. They can be accessed at http://benchmark.ini.
rub.de/ and at http://www.cvl.isy.liu.se/research/
traffic-signs-dataset [26].

(a) (b) (c) (d) (e) (f)

Fig. 5 Sample images from the T2009 dataset: a normal sign
(a), shadow (b), color inconsistency (c), interlacing (d), motion
blur and interlacing (e), occlusion (f).

4 The low level algorithms

In this section we briey present the two algorithms
which have been employed as building blocks of the pro-
posed technique. We �rst present the object detection
algorithm based on a cascade of boosted Haar classi-
�ers. Subsequently, we introduce the di�erential tracker
with warp correction and checking.

4.1 Object detection by boosted Haar cascades

A cascade of boosted Haar classi�ers [47] is a binary
classi�er suitable for object detection due to its favor-
able ratio of performance vs. computational complex-
ity [16]. The cascade is applied within a sliding win-
dow over all feasible image locations and scales, and
the detections are reported at all locations with a posi-
tive response. Each stage of the cascade is constructed
by boosting the Haar classi�ers obtained by exhaustive
search on the common set of positive samples and a
per-stage set of negative samples. Haar classi�ers are
chosen because they can be extremely e�ciently evalu-
ated with the help of integral image.

Viola and Jones [47] have noticed that the typical
number of true negative responses (background) in any
given image is immensely greater than the number of
true positives (objects). Thus, it is usually possible to
rule out more than 50% of the locations in the source
image with a very simple boosted classi�er. The key
idea of the approach is to place such a simple boosted
classi�er at the �rst stage of the cascade, and then to as-
sign gradually more and more complicated tests to the
higher stages. The simplest boosted classi�er is applied
at all image locations, while the more involved classi-
�ers are applied only where needed. Consequently, good
performance is obtained at a small computational price.

The training procedure requires the common set of
positive samples and a set of background images. At
the �rst stage of the cascade the per-stage negative set
is produced by sampling the speci�ed quantity of ran-
dom samples from the backgrounds. The subsequent
stages are trained in a way to be smarter and more
complex than the previous stages, by supplying ever
harder per-stage negative sets. This is achieved by con-
structing the negative set for a given stage from back-
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ground patches which pass all of the previous stages!
Thus, the collection of the required number of negative
samples gradually becomes more and more computa-
tionally demanding. In fact, the collection of negatives
very soon begins to dominate the total training time,
and the training with more aggressive parameters of-
ten needs to be aborted because the required number
of negative samples can not be found in feasible time.

In our experiments, we used the implementation
of the training procedure from OpenCV [27,7]. The
program haartraining has the following main param-
eters: i) minimum hit rate ( mhr), ii) maximum false
alarm (mfa), iii) number of negative samples (nneg), and
iv) number of stages (nstages ). At each stage of the
cascade, the training proceeds by adding a new Haar
classi�er until the constructed boosted Haar classi�er
reaches the speci�ed parametersmhr and mfa. The train-
ing stops when the equivalent performance of the speci-
�ed number of stages is reached. Best results have been
obtained by selectingmhr=0.99, mfa=0.40, nneg=10000,
nstages =14, and by choosing the basic set of features
and Gentle AdaBoost [27]. These settings yield a to-
tal false alarm rate of 0:414 = 2 :7 � 10� 6. Depending on
the parameters, the training typically took about one or
two days on a recent computer with four cores (implicit
multithreading is achieved by employing OpenMP). The
selected Haar features from the �rst stage of a trained
detector are shown in Fig. 6.

Fig. 6 The four features from the �rst stage of the cascade su-
perimposed on typical images of tra�c signs. The leftmost feature
is sensitive to the bottom edge of a sign, while the other three
detect the structure near the top of the sign.

4.2 Tracking with warp correction and checking

Point feature tracking is a technique for establishing
correspondence between rectangular patches in neigh-
bouring video frames. By chaining pairwise correspon-
dences between neighbouring frames, one can construct
point features trajectories. In applications which need
to avoid error accumulation, the pairwise correspon-
dences are corrected by aligning the current feature to-
wards the reference appearance stored in the �rst frame
of tracking [44].

Perhaps the most popular alignment approach3 is
based on Gauss-Newton gradient descent optimization
as proposed by Lucas and Kanade [44,3,43]. The al-
gorithm recovers the parametersp̂ of the warp which
minimizes the pixel-wise error norm between the refer-
ence imageI R and the warped current imageI W :

p̂ = arg min
p

X

x

kI W (x ; p) � I R (x)k : (1)

Di�erent warps have been used in various tracking
contexts. A widely used tracking technique known as
the KLT tracker [44] �rst employs a simple translation
warp for recovering the displacement towards the pre-
vious neighbouring frame. Subsequently, the full a�ne
warp is employed for correcting the alignment towards
the reference image and for diagnosing bad convergence
of the alignment procedure. In order to be able to tol-
erate large inter-frame camera motion, the translation
tracking is usually performed across a suitable resolu-
tion pyramid.

The employed implementation of the KLT tracker
derives from the public library maintained by Stan Birch-
�eld at Clemson university 4. The most important ad-
ditions concern isotropic warp with contrast compensa-
tion, better sampling of large warped images [43], dy-
namic update of reference images, and improved track-
ing of small objects across the resolution pyramid. We
have also introduced a number of smaller improvements
in order to be able to smoothly integrate the library
with the rest of our program.

In the implementation, the tracker resolution was
set to 23� 23 pixels, and the warp model was set to
isotropic scaling with contrast compensation (5 DOF).
The reference is updated with the mean of the last
few appearances whenever the relative scale of the cur-
rent feature with respect to the reference reaches 1.25.
The introduced errors due to reference switching were
not noticeable in informal experiments. The tracking
is abandoned whenever the RMS residual between the
current appearance and the reference becomes greater
than 15. Such relatively high threshold was chosen due
to �ne texture in some signs (e.g. pedestrian crossing)
which can not be accurately tracked with constant en-
largement of the current feature. The tracking would
be considerably easier if we tracked backwards in the
video, because then the reference would hold more in-
formation than the current image. However we do not
do that in order to preserve the generality of the ap-
proach.

3 There is a recent alignment approach which promises better
performance [46].

4 URL http://www.ces.clemson.edu/ ~stb/klt/
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5 Enforcement of temporal consistency

In this section we describe our procedure for extract-
ing well-localized temporally consistent detection tracks
originating from a distinct physical object. The pro-
posed approach is based on averaging out the uncer-
tainty of individual detection responses (cf. Fig. 1) by
accumulating evidence from many consecutive frames.
In order to be able to relate the evidence recovered
in di�erent frames, inter-frame correspondence must
be established. Di�erential tracking appears as a suit-
able candidate for this task since most ideogram-based
signs give rise to good features to track [44]. How-
ever, in videos acquired at conventional driving speeds,
the inter-frame point-feature displacements are often
greater than the dimensions of the tra�c signs. This
unfortunately precludes straightforward applications of
existing tracking algorithms (especially if we wish to
approach 100% recall) and calls for more involved solu-
tions.

One approach to deal with large inter-frame dis-
placements would be to predict current feature posi-
tions by employing a geometric model. This model would
comprise parameters such as camera placement, car mo-
tion, road geometry and the sign displacement. How-
ever, the evolution of such model would be very com-
plicated [13] while the errors in its estimation might
eventually hurt the gains.

Instead, we propose a simpler, pure 2D approach,
in which the feature positions are predicted at raw de-
tection responses5 whenever the tracker fails to con-
verge. Note that this is especially e�ective in the sec-
ond frame of the detection track, when previous fea-
ture dynamics is unavailable. In most other frames of
the detection track the tracker succeeds to establish
the correspondence by relying on extrapolation-based
prediction, which alleviates the impact of false nega-
tive detections. The proposed approach achieves a syn-
ergy between the tracker and the detector, since it si-
multaneously achieves: i) temporal consistency due to
tracking, and ii) inter-frame displacement tolerance due
to detection. If the tracked reference patch does not
cross the boundary of a planar object, the failures oc-
cur extremely rarely: only on simultaneous divergence
of a tracker and a complete miss-detection. In order
to make this approach work with non-rectangular sign
classes, we internally track a suitably displaced rectan-
gular patch in the interior of the sign, as annotated by
the interior red rectangle in Fig. 15(b). We do not see
this as a particular shortcoming, since this displacement
can be easily learned from the training set.

5 This is exactly oposite from [11], where the detector uses
predictions provided by the tracker

Each detection track is bootstrapped by seeding the
tracker within a suitable raw detection. We have no way
of assessing the localization accuracy of particular raw
detections, and so a question arises: Which raw detec-
tion to track? In order to avoid the trap of committing
to a certain raw detection too early, we hypothesize
many detection tracks and manage them concurrently.
Thus, a new track hypothesis is initialized whenever
there is a raw detection which is more than a few pixels
away from any of the existing tracks. For each track, we
keep count of \con�rmations" as the number of subse-
quent detections in the immediate vicinity of the cur-
rent feature location. In order to save computing re-
sources, we terminate the tracks which are seldom con-
�rmed or poorly aligned with respect to the reference.

In order to be able to identify distinct physical ob-
jects we associate nearby detection tracks into clusters.
At each given moment we can tell which track hypoth-
esis from the cluster is likely to be more accurate than
the others by looking at the number of con�rmations
and the age of the feature measured in frames. The
de�nitive decision is postponed until all tracks from the
cluster die o�, after having processed all available ev-
idence. Thus, the proposed approach chooses the best
among many autonomously evolving hypotheses for each
physical object, somewhat in the spirit of a particle �l-
ter.

We note that the detection tracks which are initi-
ated at inaccurately localized raw detections are un-
likely to receive a high score due to the following two
reasons. First, such tracks are likely discarded due to
bad alignment, since their reference image contains back-
ground which most often changes due to motion paral-
lax. Second, such tracks receive less support from the
raw detections, at least if the detector is not heavily bi-
ased. Thus, besides enforcing the temporal consistency,
the proposed approach additionally improves the local-
ization accuracy of the detections.

In the implementation, the decisions are based on
distances between the tracked features and the raw de-
tections. An attempt of resuming a lost feature at a
raw detection position is performed if the distance be-
tween the previous feature position and a raw detec-
tion is less than thResume. A new track is seeded at each
raw detection which is farther than thNewFeature from
all existing tracks. A new cluster is started whenever
a new detection track is farther than thNewCluster from
all other detection tracks. A con�rmation is recorded
at each detection track whose current position is closer
than thConfirm to some raw detection. In most cases we
employed the distance metric which measures a normal-
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ized overlap between the two windowsdi and dj :

distance1(di ; dj ) = 1 �
area(di \ dj )

max(area(di ); area(dj ))
: (2)

A shortcoming of this function is that it returns 1 for
all disjoint windows, which is problematic for locating
a detection for resuming the tracking of a lost feature.
Consequently, when the windows are disjoint, we in-
stead employ a scale-normalized Euclidean distance [38]
with a penalization factor on scale di�erence. In all ex-
periments, the four thresholds were set to:thResume=3,
thNewFeature=0.2, thNewGroup=0.6, and thConfirm =0.3. Note
that thConfirm is greater than thNewFeature in order to
avoid starvation of competing hypotheses. In the end,
the cluster is accepted for further processing only if its
best hypothesis has more than 5 con�rmations, and the
total increase in feature scale is larger than 1.25.

To conclude, the proposed approach generates well-
localized temporally consistent detection tracks such as
the ones shown in the bottom row in each sub�gure of
Fig. 13 and Fig. 14. In most cases we obtain only one de-
tection track for each physical object. By requiring tem-
poral consistency, the approach suppresses many false
positive responses. Due to evaluation across many im-
ages, the resulting detection tracks are better localized
than the original raw detections. Experiments which
con�rm the above considerations are presented in 7.2.

6 Enforcement of spatio-temporal constraints

In this section, we explore the possibilities of learning
spatio-temporal constraints which govern the behavior
of tra�c signs in our videos. A tra�c sign typically ap-
pears somewhere to the right in the video frame, at a
learnable scale and location, and increases in size and
�nally exits the scene in a learnable manner. Learning
these constraints requires temporally consistent detec-
tion tracks and can enhance the quality of the detection
process.

6.1 Representing temporally consistent detection
tracks

Enforcing temporal consistency signi�cantly reduces the
number of false positive detections. Nevertheless, a num-
ber of false positives are still tracked through multiple
frames, as any false positive with a stable background is
a candidate for successful tracking. In order to further
reduce the number of false positives, we take into ac-
count not only the temporal consistency of a sign candi-
date, but also the spatio-temporal constraints valid for
tra�c signs. As illustrated in Fig. 2, tra�c signs appear

at speci�c combinations of scales and image locations.
The expected behavior of a tra�c sign through time
is to appear at a predictable position, increase in size
and �nally exit the scene in a prede�ned manner. If one
could check whether these spatio-temporal constraints
are valid on the obtained detection tracks, one could
infer whether an object is a sign or a false positive.
However, the actual constraints are subject to parame-
ters such as: i) geometry of the road ahead, ii) dynamic
position of the car with respect to the road (lateral
displacement, orientation), iii) the actual placement of
the sign with respect to the road (lateral displacement,
height of the pole, orientation), iv) the physical size of
the sign. All of the parameters above may vary, and it
is hard to tell in advance within which intervals. Hence
a machine learning approach appears appropriate.

In order to learn typical spatio-temporal behavior of
a tra�c sign, we use a training set consisting of labeled
detection tracks. Each track belonging to a sign is hand-
labeled as a positive, and each track belonging to some
other object as a negative. To formalize, a detection
track with identi�er id is a set of detections:

� id = f dt gnframes
t =1 ; dt = ( x t ; yt ; wt ; ht ) ; (3)

where dt denotes a detection in framet. A detection is
a tuple (x t ; yt ; wt ; ht ), with x t and yt being the coordi-
nates of the upper left corner of the detection rectangle,
and wt and ht being the width and the height of the
rectangle. In this paper, the detector is con�gured so
that the width and the height of the detection rectan-
gles are always equal. For simplicity, in the rest of the
paper we refer to them as scale. It is important to notice
that di�erent tracks might consist of a di�erent num-
ber of detections, i.e. be de�ned for a di�erent number
of frames. For instance, if a car is driving fast, we ex-
pect to see a sign in fewer frames and therefore obtain
a shorter track than if it were driving slowly. In the rest
of the paper, we refer to this number of detections as
the length of the track.

Fig. 7 shows the tracks of three di�erent signs. The
z axis shows the passage of time and corresponds to
the ordinal number of a frame. The �gure illustrates
that detection tracks contain a lot of important spatio-
temporal information which we could learn. Just by
looking at Fig. 7, it is easy for a human to conclude
where a tra�c sign typically appears in a video, for how
long, at which scales and how its size changes through
time.

It is our ambition to build a classi�er which would
be able to distinguish valid tracks from invalid ones,
hence implicitly inferring all these important cues. In
building a classi�er, the key problem is always �nding
a way to represent the input data as feature vectors.
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Fig. 7 Tracks of three di�erent signs. The z axis ("time") cor-
responds to the ordinal number of the detection in the detection
track.

Data which are semantically similar should be close in
the feature vector space. In our case, the data are la-
beled detection tracks. If all tracks had the same length,
i.e. consisted of the same number of detections, it might
be feasible to directly use them as feature vectors. How-
ever, this is not the case. Hence, we need to �nd a way
to convert them into vectors of �xed length. These fea-
ture vectors have to be meaningfully comparable. To
illustrate, consider Fig. 7 again. A problem arises when
plotting the detection rectangles against time: if one
track starts with a relatively small detection rectangle,
and another with a large one, both rectangles will be
plotted at t = 0. If comparing these rectangles, one
might conclude that they belong to two di�erent ob-
jects, one smaller and one larger, while in fact they
belong to the same sign which was detected at di�er-
ent distances from the camera! To avoid this problem,
our feature vectors should be normalized both for scale
and for speed. For scale, the corresponding elements of
two feature vectors should represent same scales. For
speed, the length of the original tracks, which depends
on the speed of the car, should not inuence our feature
vectors.

To solve this normalization issue, we propose to rep-
resent x and y coordinates of a track as dependent on
scale [9], rather than on time. This is illustrated in Fig.
8 where two trajectories are drawn. In the top �gure,
the x and y coordinates of the detections in a track
are plotted against time, i.e. the �rst point of the �rst
track corresponds to the detection in the �rst frame,
the second point to the detection in the second frame
and so on. As the car is driving faster for track 2, the
tracks start to diverge approximately after t = 10. Fig.
8 (bottom) shows how this problem can be addressed
by plotting the values of x and y against scale. When
using scale in this manner, the ow of time is implicitly

0 5 10 15 20 25 30
440

460

480

500

520

540

560

580

600

620

640  

detection ordinal number

 

im
ag

e 
co

or
di

na
te

 x

track 1
track 2

30 40 50 60 70 80 90
440

460

480

500

520

540

560

580

600

620

640  

scale

 

im
ag

e 
co

or
di

na
te

 x

track1
track2

Fig. 8 Plots of x coordinates of two tracks dependent on time
(above) and scale (below). Plotting against scale results in a much
more consistent representation.

shown, assuming that the scales of the detection rect-
angles increase monotonically. If the car were driving
faster, our curves would be de�ned with fewer points,
but corresponding scales would still have correspond-
ing coordinates. This representation is more suitable
for extracting �xed-length feature vectors.

A straightforward way of extracting the vectors is
to sample all trajectories at a prede�ned set of scales.
For instance, when viewing Fig. 8 (bottom) one might
consider sampling the values ofx and y for scales 50, 60
and 70 and building a feature vector out of those values.
But it is unsafe to assume that all tracks belonging to
tra�c signs will contain detections of these scales. A
sign might be occluded and then reappear - perhaps
because a tree is blocking the view, or a parked car is
in the way.

As a solution to this problem, we �rst scan the entire
training set of tracks and �nd the minimal and maximal
scale of the union of all positive tracks appearing in the
set. We then construct a set of sampling scalesf si gn

i =1
by dividing the range between the minimum and the
maximum scale into n � 1 equally spaced intervals. In
order to convert a track to a feature vector, x and y
coordinates of a track are sampled for scale valuesf si g.
As the valuesf si g are computed to be equidistant, they
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will be arbitrary numbers which satisfy the condition
that they are within the acceptable scale range. How-
ever, there is no guarantee that there are detection rect-
angles in the training set with the scale exactly equal
to one of the valuesf si g. For instance, the set of sam-
pling scales might bef 50; 60; 70g and we might have a
track with detection rectangles of scales 48, 52, 58 and
64. This can be viewed as a problem of missing values
[32]. We propose to solve it using the following three
methods:

1. linear inter/extrapolation
2. cubic inter/extrapolation
3. linear interpolation with zero imputation

Fig. 9 Linear inter/extrapolation over a set of points. Out-of-
interval estimates are obtained by drawing a line through two
nearest data points.

An illustration of the �rst method is shown in Fig.
9. The horizontal axis shows the scale range. Sampling
scales aref 20; 22; :::; 32g. The vertical axis shows the
image coordinatex for di�erent scales. Small black dots
denote measurements taken from the detection tracks,
while red dots denote interpolated points. For sampling
at values which fall within the range of known scales
(22� 30), linear interpolation is used. For values which
lie outside this range (20 and 32), we use linear extrap-
olation. Linear extrapolation is a method for construct-
ing new data points which lie outside a discrete set of
known data points. When constructing a point x � lying
outside the known interval, a line is drawn through the
two nearest known points, (xk � 1; yk � 1) and (xk ; yk ),
and the missing value is obtained as

y(x � ) = yk � 1 +
x � � xk � 1

xk � xk � 1
(yk � yk � 1) (4)

Our second method is analogous to the �rst one,
except we use cubic inter/extrapolation. Cubic extrap-
olation is similar to linear extrapolation, but a third
order polynomial is used instead of a line.

Linear and cubic extrapolation tend to be sensitive
to measurement noise. Furthermore, the assumption of
the linearity of consecutive measurements does not hold
if the track is obtained while the car is driving down
a curve. As linear extrapolation is performed by con-
structing a line through two nearest data points, mea-
surement noise at these two points can signi�cantly al-
ter the slope of the line, leading to errors in point esti-
mation. An example of linear and cubic extrapolation
on a real detection track is shown in Fig. 10. Cubic ex-
trapolation might work better on this particular exam-
ple if more data points were used for constructing the
third-order polynomial. However, it is di�cult to decide
exactly how many points one should use. If one used
all the available points and found a third-order poly-
nomial which models them nearly perfectly, one would
risk chaotic out-of-interval behavior due to over�tting
the known data. If too few points were used, one would
risk poor estimation, such as in Fig. 10 (bottom).
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Fig. 10 Linear inter/extrapolation (above) and cubic inter/ex-
trapolation (below) of a real track taken from the training set.
Red crosses indicate real measurements obtained from detection
tracks, and blue circles represent estimated values. Notice the
noise sensitivity in the case of cubic extrapolation.

To avoid extrapolation problems, we propose our
third method - a combination of linear interpolation
and zero imputation. We use linear interpolation for
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sampling values lying inside the known interval, and
zero imputation for out-of-interval values. Zero impu-
tation is a common statistical technique for dealing with
missing values [32]. In general, imputation is the substi-
tution of a missing data point by some prede�ned con-
stant. Zero imputation simply assumes that the value of
the missing point is zero. An illustration for this method
is shown in Fig. 11.

Fig. 11 Linear interpolation with zero imputation over a set of
points. Out-of-interval values are set to zero, while the remaining
values are interpolated.

6.2 Learning valid detection tracks

The three methods outlined above are directly used
to construct feature vectors from tracks. First we �nd
the minimal and the maximal scale appearing in the
training set. We then construct a set of sampling scales
f si gn

i =1 , as described in the previous section. Next, each
track is represented in x-scale andy-scale coordinate
systems. In case some tracks have multiple detections
at the same scale, the detections are averaged to form a
single detection6. For each track � id , values ofx and y
are sampled at scale valuesf si gn

i =1 . Thus we obtain two
sets of interpolated coordinates,f x i gn

i =1 and f yi gn
i =1 .

The feature vector ' id describing a track � id is then
constructed as:

' id = ( x1; x2; :::; xn ; y1; y2; :::; yn )T (5)

To train a classi�er, a training set consisting of k
labeled tracks is converted into a set ofk feature vec-
tors f ' i gk

i =1 with corresponding labels f ci gk
i =1 , ci 2

f +1 ; � 1g. The number n of sampling scalesf si gn
i =1 will

determine the dimensionality of the feature vectors. As

6 This occasionally occurs in sharp turns for some false positive
detection tracks.

for each scale we obtain two coordinates,x and y, the
length of the feature vector will be 2n.

To test the classi�er on a new track, the track needs
to be converted to a feature vector. The conversion
needs to be carried out using the same sampling val-
uesf si gn

i =1 as in the training phase.

7 Experimental results

In this section, we thoroughly evaluate the components
of our detection system. We build upon a simple boosted
Haar cascade detector, studying the inuence of en-
forcing temporal consistency and spatio-temporal con-
straints on the total number of false positives it pro-
duces. We also show how introducing temporal consis-
tency inuences track quality in terms of reduced ob-
ject localization error, and we explore the inner work-
ings of our temporal consistency subsystem on six hard
cases from our training set. Finally, we demonstrate
that good tra�c sign tracks obtained by our system can
be useful in motion-based background segmentation.

7.1 Results of raw detection

In this subsection we briey review our results on raw
detection of triangular tra�c signs [8,48]. Best detec-
tion results have been obtained by boosted Haar cas-
cades [47] with classic native resolution of 24� 24 pixels.
The evaluation was performed on a subset of T2010
containing 918 annotations larger than 25� 25 pixels,
(the detection is considerably less accurate for small
signs). The achieved detection performances are sum-
marized in Table 1, depending on the count of training
samples Npos. Nbg and Ntest denote the number of em-
ployed background images and the number of evalua-
tion samples. The table shows that boosted Haar cas-
cades achieve quite encouraging recalls when enough
training samples are available. The best results are lo-
cated in the bottom row of the table where we train the
detector on the entire interlaced dataset T2009.

Table 1 Impact of the training set to the detection performance
of the boosted Haar cascade

Npos Nbg N test recall precision

352 110 72 68% 46%

898 230 918 80% 64%

2154 711 918 96% 54%

Besides the precision, the localization accuracy also
leaves to desire. The distribution of the localization er-
ror obtained in detection responses for the set T2010
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is shown in Fig. 12. Such deviation has been found re-
sponsible for a 12 percent points decrease in recognition
accuracy [48]. The deviation is expressed as normalized
non-overlapping area de�ned in (2). The total number
of samples is 994. The mean of the distribution is at
0.18, which means that an average raw detection has
an 82% overlap with the groundtruth.

0 0.1 0.2 0.3 0.4 0.5
0

100

200

normalized non-overlapping area

co
un

t

Fig. 12 Distribution of the localization error in T2010 responses.

7.2 Extracting temporally consistent detection tracks

This subsection presents experiments targeting the pro-
posed approach for extracting temporally consistent de-
tection tracks. We �rst present experiments providing
a qualitative insight into the inner workings of the ap-
proach in 7.2.1. Next, in 7.2.2 and 7.2.3, we provide
quantitative experiments which evaluate the detection
performance and the localization accuracy. Finally, we
discuss some additional bene�ts of the approach in 7.2.4.

7.2.1 Qualitative experiments

The proposed approach for extracting temporally con-
sistent detection tracks chooses the most prominent
track hypothesis after having collected all available ev-
idence. Typically, this occurs when the object is about
to leave the �eld of view. The choice involves determin-
ing a relative majority of votes, which makes it possible
to identify candidates which may be supported in less
than 50% of the individual frames. This is illustrated
in Fig. 13, for two di�erent tra�c signs. The top row in
each sub�gure presents a hand-picked detection chain
consisting of the most accurately localized raw detec-
tion responses in the corresponding frame7. The bottom
row in each sub�gure shows the chosen detection track
hypotheses. We observe that the temporal consistency
of the raw detection chains is rather poor: they oscillate
around the true object position, while the size at times

7 One could attempt to identify such detection chains by care-
fully associating raw detection responses across the neighbouring
frames. However, that may be di�cult to achieve, especially when
raw detections are missing in some frames, and in the presence of
multiple responses. The proposed approach makes such blind as-
sociation unnecessary, while at the same time achieving a better
localization accuracy.

decreases along the sequence. On the other hand, the
detection tracks are quite consistent, while their sizes
increase monotonically.

(a)

(b)

Fig. 13 Each of the two sub�gures (a-b) shows the best hand-
picked raw detection chain (top row) and the corresponding ele-
ments of the chosen detection track (bottom row). The approach
tollerates ill-localized raw detections when the relative majority
supports the correct hypothesis.

We illustrate the competition between the hypothe-
ses by two experiments shown in Fig. 14. As in Fig.
13, columns of the two sub�gures correspond to dis-
tinct video frames, while the top row shows the best
hand-picked detection chain. The bottom rows of each
sub�gure show two hypotheses from the same cluster,
which received the highest support from the raw de-
tections (typically, tens of hypotheses are managed for
each tra�c sign). In both cases a better localized hy-
pothesis happened to be initializedafter a close com-
petitor. This is unfavourable for the better hypothesis
since an earlier initialization implies more opportuni-
ties to obtain support. However, in both experiments
the more accurate hypothesis eventually gathered more
support, which means that at a certain point a hypoth-
esis switch had occured.

These experiments show that the proposed approach
succeeds to favour more accurately located hypotheses.
The approach works since, statistically, the detector re-
sponses are likely to be more dense near the true object
location. Speci�c background structure may temporar-
ily disturb the detector, however, on a larger tempo-
ral scale, these disturbances often cancel out [22], espe-
cially when the raw detector is well trained. Thus, the
approach succeeds by providing more opportunities to
average-out the systematic error of the raw detector.

7.2.2 Case study: the six tra�c signs

We have performed automated experiments on the eval-
uation video of about 130000 frames, by employing the
annotated groundtruth corresponding to the previously
introduced dataset T2010. The results show that tem-
poral consistency reduces the count of false positives
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(a)

(b)

Fig. 14 The two sub�gures (a-b) illustrate competition between
the track hypotheses. The top row in each sub�gure contains the
best hand-picked chain of raw detections, while the bottom two
rows show two distinct hypothesized tracks belonging to the dom-
inant cluster. In both experiments the better localized bottom
hypothesis receives more con�rmations, despite being initialized
later than the competing middle row hypothesis.

when compared to ad-hoc raw detection chaining, while
preserving near-100% recall. The six most di�cult cases
out of about 250 tra�c signs in the test video are shown
in Fig. 15. In all of the six images, red lines indicate
dominant track hypotheses for each cluster, if available.
The current position is denoted by the thick outermost
rectangle, while the thin innermost rectangle shows the
position of the patch which is actually tracked. Blue
rectangles designate raw detections. By default, they
are rendered with dashed lines, while solid lines empha-
size support of the dominant hypothesis. The warped
appearance of a local neighbourhood around each track
hypothesis is shown in the bottom-left angle of the im-
age. The green frame shows the position of the tracked
sign in the neighbourhood. The �rst line of text below
warped appearance shows the count of frames in which
the object was tracked (T), and the number of raw de-
tection con�rmations (D). The second line indicates the
tracking status, the current alignment residual towards
the reference (Ra), and the scale of the feature (M)
where M=1 means 45� 45 pixels. Where applicable, the
result of 1-NN classi�cation in the LDA subspace [15,
48] is shown besides the track hypothesis. These conven-
tions have also been used in the accompanying video.

The sign in Fig. 15(a) produced raw detections in
only three frames, probably due to the fact that it was
inclined for about 30%. The pyramidal translational
tracker did not succeed to recover the �rst displace-
ment due to considerable image motion and the track-
ing had not even started. The sign in Fig. 15(b) was
successfully tracked and recognized despite being in-
clined. Our training set did not contain inclined signs,
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Fig. 15 Case studies of the six di�cult instances identi�ed by
automated testing. Please see the text for details.

so we think these results are acceptable. The sign in
Fig. 15(c) was detected, however the localization is in-
accurate. This is caused by the e�ect also shown in Fig.
1(right), whereby smooth dark background appears to
the detector as the rim of the sign. Correct position
of the sign is also detected, but since the oversized de-
tection was more frequent we were out of luck. The
recognition is of course incorrect. We believe that this is
the only large localization error obtained on this video.
The bottom sign in Fig. 15(d) could not be detected
due to an occlusion by a stopped car in the emergency
lane. The top sign was correctly detected, tracked and
recognized. The sign in Fig. 15(e) was extraordinarily
far from the camera, since the vehicle left the right-
most lane. Due to a temporary disturbance, the track-
ing started a little later than it may have in the ideal
case, so that only 7 con�rmations were recorded. The
requirement that there should be at least 1.25 total in-
crease in scale was not met, and thus the detection was
not reported. Please note that the image in Fig. 15(e)
has been rendered in a special debug mode of the pro-
gram whereby track hypotheses are shown in green. The
debug mode also causes the warped current appearance
to be shown despite the fact that the sign is not o�-
cially detected as implied by the absence of the thick
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red border. The sign in Fig. 15(f) has been correctly
detected and recognized despite the distance.

7.2.3 Evaluation of the localization accuracy

We continue the qualitative discussion on localization
accuracy from 7.2.1, by automated quantitative eval-
uation on the dataset T2010. In this experiment each
annotated sign is simultaneously compared both with
the closest raw detection, and with the closest element
of a detection track8. In order to make a fair compar-
ison, we disregard the annotations for which either of
the two rectangles is missing or deviates too much. This
resulted in 300 discarded annotations which mostly cor-
respond to small image plane rectangles. The obtained
results are shown in Fig. 16. The �gure shows empiri-
cally obtained distributions of the localization error in
the raw detection responses (the top graph) and in the
detection tracks (the bottom graph). As in 7.1, the devi-
ation is de�ned by eq. (2). The total number of analyzed
samples is 694. The mean of the raw detection devia-
tion is at 0.17 while the track deviation mean is at 0.12.
This implies that the detection tracks are considerably
better localized than the raw detection responses.
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Fig. 16 Quantitative comparison between the localization ac-
curacies of the raw detection responses (top) and the detection
tracks obtained by the proposed approach (bottom).

7.2.4 Discussion of other bene�ts

Besides being useful for pruning false positive detec-
tions, the proposed detection approach could also im-
prove the recognition accuracy. As mentioned in 7.1, our
previous research indicates that better localization im-
plies considerably better recognition. Additionally, tem-
porally consistent detection sequences are more easily
checked for spatio-temporal constraints than the raw
detection chains, due to reliable scale. These experi-
ments are discussed in section 7.3. Finally, temporally

8 In other words, the comparison assumes that we would always
be able to select the better detection when multiple responses are
present.

consistent detection sequences o�er interesting poten-
tial for reliably solving the foreground/background seg-
mentation which can serve as an additional recognition
cue. Preliminary results along that line of research are
presented in section 7.4.

7.3 Classifying detection tracks

Enforcing temporal consistency in detection tracks re-
duces the number of false positive detections, but some
false positives still remain. In this section we investi-
gate how the false positive count can be further reduced
by adding more spatio-temporal constraints which hold
for tra�c signs, but not for false positives. The idea
is to exploit the fact that a tra�c sign typically ap-
pears at predictable positions in the image and at pre-
dictable scales. This is achieved by training a classi�er
which would discriminate between detection tracks of
true tra�c signs and detection tracks of false positives,
based on the positions and the scales of the elements in
the detection track.

In order to evaluate di�erent classi�ers, we have
collected a set of 268 positive and 601 negative hand-
labeled detection tracks derived from a video in which
dataset T2010 was annotated. The tracks are converted
into feature vectors (cf. subsection 6.2) using 10 sam-
pling scalesf si g10

i =1 . The feature vectors are then input
into the following classi�ers9:

{ AdaBoost with decision stumps as base classi�ers
{ Random forest with varying numbers of trees and

random features
{ Bayesian network using a simple estimator which

estimates probabilities directly from data and hill
climbing algorithm K2

{ Multilayer perceptron with varying numbers of hid-
den layers and corresponding neurons

Our main goal in track classi�cation is retaining al-
most all true positive tracks, while discarding a maxi-
mal number of false positives. In spirit of that require-
ment, table 2 compares the false positive rates obtained
by employing i) linear inter/extrapolation 10 and ii) lin-
ear interpolation with zero imputation, when the true
positive rate is set to 0.98. The obtained rates corre-
spond to percentages of false positives if we allow 2%
of positive samples to be classi�ed incorrectly. The ta-
ble shows that imputation achieves better false positive
rates for all considered classi�ers.

9 The data mining tool Weka [49] was used for the experiments.
10 The results obtained for cubic inter/extrapolation are worse

than the results for linear inter/extrapolation, so we are omittin g
them.



15

Table 2 Classi�cation results of feature vectors constructed by
linear inter/extrapolation and zero imputation with linear inter-
polation. False positive rates are shown, assuming a true positive
rate of 0.98.

False positive rate
Classi�er

extrapolation imputation

AdaBoost 0.53 0.24

Bayesian network 0.58 0.18

Multilayer perceptron 0.97 0.29

Random forest 0.37 0.22

All rates in the table have been obtained on a ran-
domly chosen evaluation set with 53 positive and 120
negative detection tracks. Control parameters for each
classi�cation method have been obtained by grid opti-
mization with respect to ten-fold cross-validation per-
formance on the training set. The training set consists
of 696 tracks, with the negative to positive track ratio
of 2.24.

We are allowing a misclassi�cation of 2% because
our training set has several true positives whose spatio-
temporal con�guration is not typical and is therefore
very hard to learn. For example, there is only one in-
stance of a tra�c sign placed on the left side of the road,
one sign is placed on an extremely high pole, while some
signs are placed behind the bicycle track which makes
them appear unusually small.

Most classi�ers have trouble classifying feature vec-
tors derived by linear extrapolation, and the false pos-
itive rates are much better with zero imputation. We
believe this is due to the sensitivity of the x/scale and
y/scale relationships to the local variations of road cur-
vature, which can lead to unreliable point estimates (cf.
subsection 6.2). By simply setting the unknown points
in a feature vector to zero, the classi�ers get the chance
to learn that zero indicates a missing value [32]. All
classi�ers perform better with zero imputation, which
is visible by comparing false positive rates in table 2.
The same applies to areas under the ROC curves.

Other experiments have shown that setting the num-
ber of sampling scales to 5 leads to degraded recogni-
tion performance, although not all methods are equally
a�ected. On the other hand, increasing the number of
sampling scales does not signi�cantly alter the results.

The best classi�er manages to discard 82% of false
positive detections while retaining 98% of true posi-
tives. The resulting area under the ROC curve is 0.96.
We believe that even better reduction rates can be achieved
by expanding the training set.

Fig. 17 shows ROC curves of selected classi�ers:
Bayesian network with linear extrapolation and impu-
tation, Multilayer Perceptron with imputation, and Ran-

dom Forest with extrapolation. ROC curves of classi-
�ers working with zero imputed feature vectors cluster
above the classi�ers employing linear extrapolation.
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Fig. 17 ROC curves of selected classi�ers: classi�ers which em-
ploy zero imputation perform better then their counterparts re-
lying on linear extrapolation.

7.4 Motion-based background segmentation

Consider the two similar tra�c signs in motion depicted
in Fig. 18. Due to their similar greyscale appearance, it
would be hard to discriminate them by only consider-
ing individual image frames. This task would be much
easier if one could consider a motion sequence, since the
two signs have di�erent occlusion boundaries.

Fig. 18 Two tra�c signs which are quite similar in grayscale
appearance are easily distinguished in a motion sequence due to
di�erent occlusion boundaries. The shape di�erence is noticeable
only when the two objects are observed in motion.

Multiple views onto a rigid moving object can pro-
vide rich cues about the 3D shape of the object. In
order to exploit these cues, individual views somehow
need to be put into correspondence. However, corre-
spondence between the detection tracks considered in
this paper is temporally consistent by design (this is



16

relatively easily achieved since the signs are rigid and
at). Thus we have all preconditions for detecting the
occlusion boundaries of the tracked signs and determin-
ing shape masks such as those shown in Fig. 19 (right).

Fig. 19 Two similar signs with di�erent shapes (left). The cor-
responding shape masks recovered from the motion sequences
shown in Fig. 18 (right).

The shape masks can be recovered by looking at the
variance of each particular pixel in the warped neigh-
bourhood around the tracked sign [42]. Since we actu-
ally track only the interior of the sign we can be con-
�dent that the variance does not disturb the conver-
gence of the tracker. Surprisingly encouraging results
have been obtained in many cases, especially in urban
areas where the backgrounds of the tra�c signs usually
contain signi�cant structure. The results tend to be less
interesting outside the cities where the backgrounds of-
ten contain featureless areas such as woods or the sky.
The obtained shape masks for the �rst 9 tra�c signs in
the test video are presented in Fig. 20.

Fig. 20 The recovered shape masks for the �rst 9 tra�c signs
of the test video. For each tra�c sign we show the warped neigh-
bourhood in the last frame of the detection sequence (left part
of each image pair) and the equalized image of estimated pixel
variance (right image of each image pair).

8 Conclusions

We have presented a technique for exploiting tempo-
ral and spatial constraints in tra�c sign detection and
recognition across a sequence of image frames. The �rst
stage of the technique organizes raw responses of a
boosted Haar cascade detector into representative de-
tection tracks with consistent appearance. The second

stage subsequently classi�es the extracted detection tracks
into signs and not-signs by a discriminative model ob-
tained by supervised learning. Our experiments pre-
sented in Section 7 show that the technique signi�cantly
improves the localization accuracy of the detections,
and simultaneously achieves a substantial decrease of
false positive detections.

The main idea of the proposed approach for extract-
ing temporally consistent detection tracks is to require a
proper alignment of all member detections. We experi-
enced considerable di�culties in making this idea work
in practice, due to large inter-frame camera motions im-
plied by typical speeds of the acquisition vehicle. Addi-
tionally, the alignment of non-rectangular signs turned
out to be rather sensitive to background changes, since
the employed tracking algorithm assumes rectangular
image patches. The proposed solution overcomes these
problems by managing a cluster of redundant track hy-
potheses for each physical tra�c sign, and by perform-
ing the alignment only on suitable rectangular patches
in the interior of the sign. The most representative hy-
pothesis is chosen after having collected all available
evidence, at the moment when the tracking of all hy-
potheses from the cluster is over.

Spatio-temporal constraints are enforced by feed-
ing the extracted detection tracks to a discriminative
binary classi�er. In order to achieve invariance with re-
spect to the speed of the acquisition vehicle, the tracks
are represented as �xed-length feature vectors of x and
y image coordinates at discrete detection scales. As in-
dividual tracks rarely span the whole feasible range of
scales, we faced the problem of choosing the values for
missing coordinates. Experiments have shown that im-
puting hardwired values provides consistent and satis-
factory results over a range of machine learning algo-
rithms.

Despite the high baseline results presented in 7.1,
the proposed approaches signi�cantly improve the de-
tection performance in comprehensive experiments on
a very large real-life dataset. We therefore conclude that
the presented spatial and temporal constraints contribute
an essential improvement to our compound system for
automatic tra�c sign recognition in video [48]. We be-
lieve that the proposed technique o�ers signi�cant po-
tential towards achieving well-localized and false-positive-
free tra�c sign detection.

The main direction for the future work in improving
temporal consistency concerns increasing the lengths of
the representative trajectories by fusing the informa-
tion contained in all salient hypotheses. Additionally,
we would also like to employ the pixel variance images
to improve the recognition accuracy. The future work
on spatial consistency shall address approaches to ex-
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ploit the recovered camera motion by SfM techniques,
and to learn contextual constraints arising from other
typical constituents of the road scenes.
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