
Image Representations on a Budget: Traffic Scene Classification in a
Restricted Bandwidth Scenario
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Abstract— Modern fleet management systems typically monitor
the status of hundreds of vehicles by relying on GPS and other
simple sensors. Such systems experience significant problems in
cases of GPS glitches as well as in areas without GPS coverage.
Additionally, when the tracked vehicle is stationary, they cannot
discriminate between traffic jams, service stations, parking lots,
serious accidents and other interesting scenarios. We propose
to alleviate these problems by augmenting the GPS information
with a short descriptor of an image captured by an on-board
camera. The descriptor allows the server to recognize various
scene types by image classification and to subsequently imple-
ment suitable business policies. Due to restricted bandwidth we
focus on finding a compact image representation that would
still allow reliable classification. We therefore consider several
state-of-the-art descriptors under tight representation budgets
of 512, 256, 128 and 64 components, and evaluate classification
performance on a novel image dataset specifically crafted for
fleet management applications. Experimental results indicate
fair performance even with very short descriptor sizes and
encourage further research in the field.

I. INTRODUCTION

The goal of this paper is to develop a visual scene
classification system that can be used to improve current fleet
management systems. Fleet management systems consist of
one central server to which hundreds of clients (tracking
devices inside vehicles) report their status in regular intervals,
typically over GPRS. The status of a tracked vehicle usually
includes its position, speed and bearing, which are obtained
via GPS. It can also include other sensor readings, such as
fuel level or temperature of cargo hold, and state of any
additional vehicle equipment, such as taxi meter, ambulance
siren or snowplow. The server accumulates and processes this
data and presents it to a human operator in a meaningful way,
e.g. it generates monthly reports, reconstructs routes taken,
raises alarms in real time in case of unexpected behavior.
This helps to ensure the safety of the drivers, vehicles
and the cargo. It also enables monitoring proper usage of
the company resources and ultimately minimizes the total
expenses.

Our first contribution is the augmentation of the vehicle
status with visual cues extracted from images captured by an
on-board camera. The server could use these cues to infer
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1Ivan Sikirić is with Mireo d.d., Zagreb, Croatia
ivan.sikiric@mireo.hr

2Authors are with Faculty of Electrical Engineering and Computing,
University of Zagreb, Croatia name.surname@fer.hr

the properties of the vehicle’s surroundings, which would
help it in further decision making. For example, the server
could infer the location of the vehicle (e.g. open road, tunnel,
gas station), or cause of stopping (e.g. congestion, traffic
lights, road works). Knowing the type of location would
aid route reconstruction in cases of missing or imprecise
GPS data. Loss of GPS precision usually occurs under or
near tall objects, and is in some cases undetectable without
additional cues. Detecting such scenarios using visual data
would be very beneficial, especially in systems that offer
real-time tracking of transported valuables.

We consider detecting interesting traffic scenarios by
means of image classification. One particular approach to
achieve that would be to perform the whole classification on
the clients and report the result to the server. However, this
would require a software update on every client every time
a class is added or removed, or when a refined classifier is
obtained on a larger training dataset. We therefore propose a
more flexible approach in which clients send visual cues to
the server that then performs the classification. The size of
a client status in current systems is around 30 bytes. Adding
an entire image taken by a camera to every status report
would raise the data transfer by several orders of magnitude.
Even though GPRS bandwidth is more than adequate to
accommodate for this, there are still reasons to keep the
data transfer as low as possible. Firstly, mobile data transfer
costs money, especially in cases of international roaming.
Even if we ignore the possibility of international travel, the
data plan for clients is not necessarily flat-rate. It is usually
possible to get better deals with limited data plans, especially
if hundreds of devices are involved. Secondly, if we assume
that an average client sends one status per minute, then it
follows that a fleet management server requires about 1.5
GB of storage space per month for 1000 clients. Raising
this by several orders of magnitude would require drastic
changes to server hardware and software. Thirdly, the clients
are equipped with a limited amount of flash memory to
buffer all the accumulated data in cases when there is no
GPRS connectivity signal, or the server is unavailable for
other reasons. The capacity of this storage is typically not
large enough to keep many images. Our solution to these
problems is calculating the descriptor of the image on the
client itself, before transmitting it to the server for further
analysis. The image descriptor should be as short as possible
while still enabling good separation between classes. We call
this approach image representation on a budget.

In this paper we analyze the performance of several
image descriptors: GIST, bag-of-words (BoW), Locality-



constrained Linear Coding (LLC) and Spatial Fisher vectors
(SFV), paired with classifiers Random Forest (RF) and
Support Vector Machine (SVM). When considering image
descriptors, we are not only focusing on finding the one
with the best classification performance (regardless of fea-
ture vector size), but are also comparing their performance
with imposed restrictions on feature vector length. The
GIST image descriptor is especially interesting, as it is not
vocabulary-based. It is rarely necessary to change the visual
vocabulary used by a descriptor, but if the need ever arises,
it would have to be updated on every client. This could
be expensive, so it would be best to avoid this problem if
possible.

Our second contribution is introduction of a new dataset,
called the FM2 dataset, containing 6237 traffic scenes suit-
able for fleet management purposes and associated labels.
This is an extended version of the FM1 dataset, introduced
in [1]. Using the FM2 dataset we perform experimental
evaluation of the proposed method and report detailed results.

The remainder of the paper is organized as follows: In
the next section we give an overview of previous related
work. We then describe the FM2 dataset in detail, and
define the classification problem. This is followed by a
brief description of the used descriptors and classifiers. After
that we describe our experimental framework in detail and
present the results. We conclude the paper by giving an
overview of contributions and discussing some interesting
future directions.

II. RELATED WORK

Active computer vision research related to image/scene
classification mainly focuses on recognizing images of a
large number of diverse classes [2]. It is driven by benchmark
datasets such as Pascal VOC dataset (20 classes), Caltech
101 (101 classes), LabelMe etc. Image classes in these
datasets range from people and animals to potted plants and
other common household objects, appearing in more or less
cluttered environments.

Current approaches to generic image classification can be
divided into two categories [3]: low-level approaches and
semantic approaches. Low-level approaches aim to merely
reduce the dimensionality of the image prior to classification
by representing it with low-level features, either globally
or in local sub-blocks. In contrast, semantic approaches
additionally add a level of understanding of what is in the
image. According to Bosch et al. [3], there are three subtypes
of semantic approaches: (i) methods based on semantic
objects, where object detectors are employed to classify the
image [4], (ii) methods based on local semantic concepts,
such as the bag-of-words (BoW) approach [5], [6], [7], where
meaningful features are discovered in local structures of
the training images, and (iii) methods based on semantic
properties, such as the GIST descriptor [8], [9], that measure
a set of semantic properties of an image, e.g. naturalness or
openness.

In this paper, we focus on methods from subtypes (ii)
and (iii), i.e. methods based on local semantic concepts and

methods based on semantic properties. Namely, we apply
the bag-of-words approach [5], [6], [7], its derivative that
uses locality-constrained linear coding (LLC) [10], spatial
Fisher vectors (SFV) [11] and GIST descriptors [8], [9] to
the problem of traffic scene classification. Individual methods
that we use are described in detail in Section IV. Given the
lack of easily distinguishable objects in some traffic scene
categories of interest (e.g. open road, tunnel exit), we do not
study methods based on semantic objects.

The volume of work focused on classifying traffic scenes
is considerably smaller than generic image classification
research. Existing approaches are mainly specifically tailored
to traffic scenes, with few works that assess the performance
of a general-purpose method on the problem [1]. For in-
stance, Ess et al. [12] propose a segmentation-based approach
for urban scene understanding, where pre-trained classifiers
are used to label segmented regions. Each segmented region
is assigned one of thirteen labels (e.g. car, street etc.) using
a set of thirteen AdaBoost classifiers in a one-vs-all setup.
Based on the segmentation information, three sets of features
that capture discriminative properties of a road scene are
extracted. These features are then fed to a classifier that
distinguishes between different traffic scene classes.

Tang and Breckon [13] suggest analyzing three predefined
regions of interest in a traffic scene image: (i) a rectangular
region near the center of the image, (ii) a tall rectangular
region on the left side of the image and (iii) a wide
rectangular region at the bottom of the image. Each of the
three regions of interest is represented by a predefined set of
color, edge and texture-based features, including e.g. various
components of RGB, HSV and YCrCb color spaces, gray-
level co-occurrence matrix statistics and Gabor filters. The
rationale is that specific features will respond to specific
structures that are expected to occur within the predefined
regions of the traffic scene image (e.g. road, or road edge).
These features form the basis of feature vectors that are
fed to a classifier (artificial neural networks and k-nearest
neighbors are considered). A new dataset with four classes
is introduced: motorway, offroad, trunkroad and urban road.

Mioulet et al. [14] build on the ideas of Tang and Breckon
[13], retaining the three predefined regions of interest, but
representing them with Gabor features only, using dedicated
hardware. An image descriptor is obtained by constructing a
histogram of Gabor filter responses and concatenating them
over all three regions of interest. A Random Forest classifier
is used.

In the application scenario considered in this paper, there
is a constraint both on the descriptor size and on the
processing time required to build the image descriptor. We
therefore do not consider processing-intensive approaches,
such as the segmentation-based approach of Ess et al. [12].
Rather, we focus on evaluating the performance of state-
of-the-art general purpose methods for image classification
that are fast to compute, with a special emphasis on the
influence of feature vector length on the final performance.
There is some research on short representations for image
classification (e.g. a recently proposed, processing-intensive
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Fig. 1: A typical traffic scene. Note the camera mount (1),
the dashboard (2), reflections of car interior (3) and a speck
of dirt (4)

descriptor PiCoDes [15]), but to our knowledge there is no
existing evaluation of the performance of general purpose
image classification methods for traffic scene classification,
with an emphasis on descriptor length. A reader interested
in a detailed comparison of different variants of the standard
bag-of-words approach is referred to the work of Chatfield
et al. [16].

III. THE FM2 DATASET

Since we want to run the experiments on traffic scenes and
scenarios relevant to fleet management systems, we introduce
a novel dataset of labeled traffic scenes, called the FM2
dataset1. It is an extension of our previously introduced
dataset FM1 [1], and contains 6237 labeled images of traffic
scenes as seen from the drivers perspective. The images were
extracted from videos of several drives on European roads,
obtained using a camera mounted inside a personal vehicle.
The videos were recorded in mp4 format, with resolution
640× 480, at 30 frames per second, using a built-in camera
of Samsung Galaxy SII smartphone. All drives were made
during daytime, and the largest percentage of the footage was
recorded on highways. We avoided driving during moderate
and heavy rain, to eliminate the possible windshield wipers
occlusions. The position and orientation of the camera were
changed only slightly between videos.

A typical frame of a video is shown in Figure 1. Some
parts of the image are not parts of the traffic scene, but rather
the interior of a vehicle, such as camera mount visible in
the upper right corner, the dashboard in the bottom part,
and occasional reflections of car interior visible on the
windshield. The windshield itself can be dirty, and various
artifacts can appear on it depending on the position of the
sun.

A total of 8 classes were chosen for our experiments:
highway, road, tunnel, tunnel exit, settlement, overpass, toll

1http://www.zemris.fer.hr/~ssegvic/datasets/
unizg-fer-fm2.zip

Fig. 2: The bag-of-words pipeline.

booth and dense traffic. The distribution of the classes in
the dataset and their descriptions are listed in Table I. The
highway, road, settlement and tunnel classes describe the
general location of the vehicle, while other classes describe
events considered to be interesting for fleet management
purposes. The separation of highways and slower roads is
useful for fleet management purposes because it will aid
route reconstruction when GPS alone cannot be used to
resolve ambiguity between a highway and a slower road that
runs parallel to it. As was discussed in the introduction, we
are very interested in detecting the environments in which
the loss of GPS signal precision is likely to occur, or the
vehicle is likely to stop or drive slowly. The tunnel is an
environment in which a loss of GPS signal is almost certain,
while toll booth and overpass are only indicating possible
loss of GPS precision. The loss of precision is also more
likely to occur in settlements (proximity to tall buildings),
than on an open road. Additionally, recognizing a toll booth
will improve the quality of cost-analysis reports provided by
some fleet management systems. Recognizing a dense traffic
scenario is useful for explaining the current driving pattern.
Also, heavy occlusions of scene by other vehicles in dense
traffic can completely eliminate any other useful visual cues.
Finally, the tunnel exit class was separated because it is a
signal to the fleet management server that the restoration of
GPS signal can be expected soon, and because the camera
reaction to the sudden increase in sunlight is very slow, which
results in extremely bright images, so other visual cues are
difficult to detect (similar problem is not encountered during
tunnel entry). As we collect more footage, we plan to add
other interesting classes, such as ferries, dirt roads, towing,
etc.

IV. DESCRIPTORS AND CLASSIFIERS

In this section we give a brief overview of image represen-
tations that we consider in our experiments. First we focus
on representations based on bag-of-words (BoW) framework,
as they are state-of-art for scene classification. Then we
give an overview of methods for coding the global spatial
layout of an image, since spatial layout is an important cue
for scene classification. Finally, we give an overview of the
GIST image representation [8], because it yields competitive
classification performance on a small representation budget
[1].

Figure 2 describes the BoW pipeline. An image is first
represented by a set of patches and each patch is mapped
to a patch descriptor. The mapping is constructed to achieve
invariance of the descriptor with respect to local geometric
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Fig. 3: Examples of classes from the FM2 dataset

TABLE I: Classes from the FM2 dataset

class label scene description number of occurrences
highway an open highway 4337
road an open non-highway road 516
tunnel in a tunnel, or directly in front of it, but not at the tunnel exit 601
exit directly at the tunnel exit (extremely bright image) 64
settlement in a settlement (e.g. visible buildings) 464
overpass in front of, or under an overpass (the overpass is dominant in the scene) 86
booth directly in front of, or at the toll booth 75
traffic many vehicles are visible in the scene, or completely obstruct the view 94

and photometric transformations of the input patch, so the
distance between patch descriptors reflects visual similarity
between patches. At this point the image is represented by
a set of D-dimensional patch descriptors, e.g. SIFT descrip-
tors [17]. Image classification depends on the definition of
similarity function between images. Therefore, it is crucial to
define a good image similarity measure that can be evaluated
efficiently. To that end, BoW methods first map the set of
patch descriptors into an image vector, e.g. BoW histogram
[18], and then determine similarity between images via simi-
larity between image vectors. The image vector is obtained in
two steps. First, the patch descriptors are coded into discrete
“visual words”. Then, the vector is constructed by spatial
pooling of the descriptor codes.

BoW histogram [18] was the first BoW representation
used for image classification. BoW histogram codes patch
descriptors via visual vocabulary. The visual vocabulary is
obtained by clustering a set of randomly sampled patch
descriptors from the training set into K clusters. The visual
words correspond to cluster centers. Each descriptor is then
coded by an index of the closest visual word. This encoding
can be represented by a K-dimensional vector that has
zeros everywhere except at the position corresponding to the
assigned visual word. Finally, an image vector is obtained
by summing the patch code vectors. If the image vector is
normalized to L1 norm the image vector can be interpreted
as a histogram, i.e. a distribution over visual word indices. In
this case similarity between probability distributions is used

to evaluate similarity between images, e.g. χ2 distance.
The visual vocabulary can be viewed as a generative

model of patches in the image, and k-means clustering
as a way of learning the parameters that maximize the
likelihood of training patches. However, it is a very poor
generative model since it does not model the distribution of
patch descriptors assigned to the same visual word. A more
expressive generative model would be a Gaussian mixture
model (GMM). The parameters of the GMM (visual word
weights, mixture means and covariance matrices) are learned
using the expectation-maximization algorithm. The Fisher
vector approach [19] codes each descriptor with the gradients
of the descriptor with respect to GMM parameters. As in
BoW histogram case, the image vector is also obtained as a
sum of the patch codes.

Locality-constrained linear coding [20] uses the same kind
of visual vocabulary as BoW histogram. However, it codes
the patch descriptor by coefficients of a linear combination
that minimizes mean square error of descriptor reconstruction
from its nearest visual words. In this case the image vector
is obtained from patch codes by max-pooling: the value
corresponding to a visual word is the maximum over all patch
codes for the image.

These image representations are invariant to the layout of
the patches in the image: the same set of patches in different
spatial layouts results in the same image representation. This
is a drawback for scene classification, since spatial layout is
a powerful cue for discrimination of scenes.

To code a spatial layout, Lazebnik et al. [21] used a



quad-tree to define a spatial grid. Each node in a quad-
tree corresponds to an image region. Descriptor codes are
first pooled for each region, and then the region represen-
tations are concatenated to obtain the image representation.
However, to encode fine differences between spatial layouts,
a large number of regions is necessary. As representation
grows linearly with number of regions, this presents an
important drawback in cases where the image representation
is limited by a budget. Spatial Fisher vector (SFV) [11]
addresses this problem by using the Fisher vector principle
to encode the spatial layout. All visual words share the same
generative model of patch positions (single Gaussian per
visual word). The gradients of patch positions with respect
to this generative model are called spatial Fisher vectors,
and are used to code spatial layout. Note that although the
generative model is the same for all visual words, the spatial
Fisher vectors are gradients of image data with respect to
this model, and therefore different for each image and each
visual word. This encoding of spatial layout is much more
compact than when region descriptors are concatenated: in
SFV for each visual word additional 4 numbers are added
(two for position mean and two for position variance), while
a quad-tree adds C image regions per visual word. As a
result, representation that uses 8 regions is two times greater
than the representation that uses the same model to encode
appearance, but uses SFV for spatial coding.

The GIST descriptor [8] has been developed specifically
for scene recognition. It is a very low dimensional representa-
tion of the scene that captures perceptual features meaningful
to a human observer, such as naturalness, openness, rough-
ness, etc. It is calculated by first subdividing the image into
16 regions (a 4×4 grid), and then concatenating the average
energies of 32 orientation filter responses (8 orientations on
4 scales) for each cell. Therefore the length of the feature
vector is 16 · 32 = 512.

Once the image is embedded into a vector space, a
classifier is learned for each class in a one-vs-all fashion.
We evaluate two commonly used classifiers, SVM [22]
and Random Forest [23]. The SVM classifier minimizes
regularized hinge loss on training data, while Random Forest
maximizes mutual information between the data in the leaves
of the forest and class labels.

V. EXPERIMENTS

In order to evaluate the performance of the considered
descriptors in the image representation on a budget scenario,
we tuned the parameters of each descriptor to obtain image
feature vectors of varying lengths. Descriptor performance
was evaluated on the FM2 dataset using SVM and Random
Forest classifiers. Mean average precision (mAP, mean of
per-class average precision) was used as a performance
measure. The exact process of obtaining the image feature
vectors of desired lengths depends on the descriptor used,
and will now be described in more detail.

For BoW and LLC methods we have extracted patches
from a dense grid with a step of two pixels, while for SVF
we used a step of five pixels. BoW histograms and LLC use

patches of size 16, 24, 32 and 40, while SFV uses patches
of size 40, 60, 80 and 100. The patches were described
using the SIFT descriptor implementation from the VLFeat
library [24]. For BoW histograms and LLC we constructed
a vocabulary of K visual words using k-means clustering.
We divided the image into C = 8 regions: whole image, 4
quadrants corresponding to the first level of quad-tree and 3
horizontal strips. Therefore, BoW histograms and LLC image
vectors have a size of KC. Our baseline results for these
representations are obtained using K = 512. To evaluate
these representations we used the implementation provided
by Chatfield et al. [16].

For SFV we learned GMM using the EM algorithm. The
size of SFV image vector is K(1+2d+5C) where d is the
size of SIFT descriptor projected to PCA subspace. We have
used diagonal approximation of covariance matrix, both for
local descriptors and position features. Our baseline results
for SFV are obtained with d = 80, K = 16 and C = 1.
The evaluation was performed using the code of Krapac et
al. [11].

For the GIST descriptor we used 32 orientation filters
(8 orientations at 4 scales) over a 4 × 4 grid to get the
baseline image vector of length 512. We used the MATLAB
implementation provided by the authors.

We have varied parameters to obtain image vectors of
lengths 512, 256, 128 and 64. For BoW histograms and LLC
we kept C = 8 and changed the number of visual words K
accordingly. For SFV we always used C = 1, and therefore
the gradient with respect to weight for spatial component
is subsumed in the gradient for the weight of visual word.
We have discarded these to obtain desired lengths of image
vectors, resulting in image vectors of size K(2d + 4). We
have fixed d = 6 and varied K accordingly. This choice
was motivated by observation that first eigenvalues capture
majority of variability of SIFT descriptor, therefore the
majority of energy is conserved in low-dimensional linear
subspace obtained by PCA. For GIST we reduced the number
of orientations per scale from 8 to 4 to obtain vectors of
length 256. We reduced the size of grid to 2× 2 to obtain a
128-dimensional image vector. Finally, we combined both of
these modifications to get our most compact, 64-dimensional
image vector.

The proposed setup results in a total of 19 different
image vectors, five for every descriptor except GIST, whose
baseline is already of length 512. The classification was
performed using SVM and Random Forest (RF) classifiers.
For SVM classification we used the LibSVM library [25],
and for RF classification we used a MATLAB interface to
Liaw et al.’s C code [26]. For LLC and SFV descriptors we
used linear SVM, for BoW histograms we used Hellinger
kernel, and for GIST we used RBF χ2 kernel.

The dataset was divided into three subsets: train, validation
and test, using a 25/25/50 split of instances for each class.
The validation subset was used to determine the best parame-
ters for classifiers trained on train subset, using mean average
precision (mAP) as a performance measure. The optimized
parameters were then used to train the classifier on train and
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Fig. 4: Performance of descriptors using the SVM classifier
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Fig. 5: Performance of descriptors using the RF classifier
(mAP)

validation subsets, and final performance was evaluated on
the test subset.

The results for the SVM classifier are shown in Table
II, while the results for the Random Forest classifier are
shown in Table III. SVM outperforms RF for every baseline
descriptor, and also for every feature vector length of GIST
descriptor. As feature vectors for the BoW, LLC and SFV
descriptors become shorter, the performance of the SVM
drops rapidly. RF, on the other hand, seems to be more
resistant to the reduction of feature vector length, and out-
performs SVM for shorter variants of the BoW, LLC and
SFV descriptors. The only non-baseline variant of the BoW,
LLC and SFV descriptors for which SVM shows better
performance is SFV of length 512. The best classification
performance, without considering representation budget, is
achieved with the combination of the SFV descriptor and
the SVM classifier. SFV would be considered to be the best

descriptor for our use case if the length of the feature vector
were not a factor.

For the remainder of this discussion we will consider
only short descriptors, i.e. the descriptors with feature vector
lengths of 512 or lower. Comparison of the descriptors with
respect to feature vector length is shown in the Figure 4 for
the SVM and in the Figure 5 for the RF classifier. We can see
that for the SVM case the GIST descriptor is a clear winner.
It shows the best performance for every feature vector length
below or equal to 512. The GIST descriptor of length 64 is
outperformed only by SFV and BoW descriptors of length
512, as all other descriptors combined with SVM achieve
mAP below 88%. If we take a look at the RF performance,
we can see that every variant of SFV descriptor and every
variant of BoW except of length 64 also outperforms GIST
of length 64 with SVM. The LLC descriptor shows poor
performance regardless of the classifier, especially if we
consider the overpass class, where the average precision
drops very rapidly as we shorten the vector length. It is
interesting to note that SFV descriptor of length 512 performs
better than the baseline if RF classifier is used (92.06%
to 91.60%). The SFV of length 512 is obtained using 32
appearance components, while baseline SFV is using only
16, so it seems that this parameter is very important to the
RF classifier.

Figure 6 shows some examples of images that were hard to
classify. We only took the baseline descriptors into account,
paired with both the SVM and the RF classifier, which
makes a total of 8 combinations. The highway example was
misclassified in 6 different cases, while all other examples
were misclassified in all 8 cases. The highway example is in
most cases confused with road, and vice versa. This is not
surprising, as both of these classes are similar in appearance.
The tunnel example is in most cases confused with a highway
because the highway is clearly visible, and the tunnel in
question is very different in appearance to most other tunnels
in the dataset. The next example is a scene labeled as a
tunnel exit, while being further from the actual exit than the
tunnel scene in the previous example. It is of no surprise
that it has been classified as a tunnel in most cases. The
traffic scene example, which is in most cases misclassified
as a settlement scene, contains only one vehicle. While that
vehicle is obstructing a large part of scene, many elements
of a settlement scene are still clearly visible. This example
suggests that we should allow assigning multiple labels to
a single image. Other examples demonstrate that there are
some scenes that are obvious and easy for a human observer
to classify, while our method still fails to do the same.
While other examples of misclassifications could perhaps be
resolved by more sophisticated labeling of dataset images,
these errors can only be reduced by expanding the dataset,
improving the methods or optimizing their parameters.

VI. CONCLUSION AND FUTURE WORK

Our experiments demonstrate that it is certainly possible
to achieve good classification performance of traffic scene
images, even if we impose great restrictions on the length



TABLE II: Per-class average precision (percentage), SVM classifier

descriptor highway road tunnel exit settlement overpass booth traffic mean
BoW 4096 99.86 92.67 99.35 95.93 97.02 84.99 96.80 81.77 93.55
BoW 512 99.55 80.98 99.47 93.99 92.17 75.88 93.75 79.21 89.37
BoW 256 99.39 68.04 99.08 88.27 89.36 69.72 93.52 76.10 85.43
BoW 128 98.81 63.77 98.61 87.25 86.02 68.36 89.77 65.78 82.30
BoW 64 97.57 59.66 97.44 78.57 77.88 66.22 87.26 61.04 78.21
LLC 4096 99.86 94.69 99.52 94.19 96.67 80.29 96.32 79.87 92.68
LLC 512 99.54 82.17 99.22 92.13 90.73 67.71 89.67 70.31 86.43
LLC 256 99.34 70.08 98.74 87.17 87.89 61.45 86.16 68.85 82.46
LLC 128 98.61 59.24 97.40 82.80 83.79 52.50 83.73 61.04 77.39
LLC 64 95.54 46.88 93.95 57.63 66.55 30.88 62.73 49.31 62.94
SFV 2656 99.94 96.30 99.87 95.79 97.03 92.51 90.74 88.57 95.09
SFV 512 99.82 91.26 99.40 95.47 93.43 89.91 87.50 81.90 92.34
SFV 256 99.64 88.68 99.46 87.19 93.02 81.86 82.45 69.57 87.73
SFV 128 99.19 77.74 98.83 82.68 86.29 80.96 78.74 69.79 84.28
SFV 64 98.96 65.10 98.53 88.64 83.05 76.45 68.39 67.99 80.89
GIST 512 99.84 93.72 99.76 98.11 97.05 83.31 94.40 80.21 93.30
GIST 256 99.77 91.79 99.79 98.14 96.25 83.41 94.18 75.87 92.40
GIST 128 99.66 90.28 99.51 96.61 94.86 82.15 89.87 68.60 90.19
GIST 64 99.45 84.20 99.31 92.02 92.88 83.55 88.86 63.88 88.02

TABLE III: Per-class average precision (percentage), Random Forest classifier

descriptor highway road tunnel exit settlement overpass booth traffic mean
BoW 4096 99.85 94.58 99.62 89.38 95.53 77.60 95.32 82.74 91.83
BoW 512 99.80 93.48 99.67 89.95 96.10 70.32 94.52 82.29 90.77
BoW 256 99.78 92.79 99.60 89.78 95.84 72.17 95.05 77.12 90.27
BoW 128 99.69 90.64 99.49 87.49 94.69 78.47 95.49 77.54 90.44
BoW 64 99.39 84.92 99.18 81.13 92.41 73.13 93.69 67.07 86.36
LLC 4096 99.72 91.91 99.63 89.82 93.26 71.12 94.43 73.73 89.20
LLC 512 99.62 89.24 99.48 89.35 91.08 63.74 90.58 74.02 87.14
LLC 256 99.34 84.53 99.11 86.72 90.45 55.23 91.35 64.59 83.92
LLC 128 99.36 83.17 98.54 85.41 90.29 54.11 89.99 63.32 83.02
LLC 64 98.21 73.04 96.05 69.35 80.84 35.91 73.39 59.86 73.33
SFV 2656 99.83 91.27 99.56 85.37 95.64 89.66 91.98 79.48 91.60
SFV 512 99.81 92.76 99.39 90.37 95.44 85.13 94.25 79.36 92.06
SFV 256 99.77 91.59 99.20 89.68 94.87 85.40 90.55 76.20 90.91
SFV 128 99.76 90.78 99.10 87.17 95.46 82.86 90.22 73.22 89.82
SFV 64 99.69 89.07 99.22 86.93 93.70 87.48 91.39 70.29 89.72
GIST 512 99.57 88.33 99.53 94.76 94.17 79.56 91.61 80.23 90.97
GIST 256 99.54 88.01 99.57 93.59 94.14 81.00 91.73 77.67 90.66
GIST 128 99.16 81.63 99.26 94.73 89.59 78.78 90.16 69.00 87.79
GIST 64 98.96 78.89 99.21 94.39 88.31 82.88 85.88 66.53 86.88

of the image descriptor. There are many good combinations
of existing descriptors and classifiers that are suitable for
this task. Our experiments indicate that the spatial Fisher
vector and SVM classifier provide the best performance
in case of unrestricted bandwidth, while other descriptors
follow closely. If, however, we need to represent images
on a budget, then the GIST descriptor used with SVM
classifier shows better performance. As a bonus, the GIST
descriptor is not based on a visual vocabulary, so we do
not have to worry about updating the visual vocabularies of
fleet management clients. SVM classifier would perform well
for feature vectors of length 512, but for shorter vectors of
feature based descriptors the Random Forest classifier would
perform better.

It is possible to obtain feature vectors of the same length
by tuning the descriptor parameters in many different ways.
We have only tested one such setup, chosen by some ed-
ucated guessing and quick experiments. It is possible that
some other combinations of parameters would deliver better
performance, depending on the classifier used. Of course,
some of the obtained image feature vectors could be ad-

ditionally shortened by applying some generic compression
technique. Further experiments are needed to determine how
much reduction can be achieved in this manner, and which
of the descriptors are the most compressible.

Our results indicate that the performance drops more
rapidly for some classes than others when the feature vector
length is reduced. Those are mainly the classes with low
number of instances, so we should aim to expand the dataset
to include more examples of such classes. Only then will we
be able to tell if there are any classes that are intrinsically
hard to classify. We are also considering to redefine the
classification problem to allow the assignment of multiple
labels to a single image. The reason for this is that many
misclassifications are occurring on the boundaries of scenes
(tunnel entrances, exits) and because it is possible for a scene
to have properties of multiple classes (overpass and traffic
scenes can occur on highways or settlements). Another future
goal is to reduce or eliminate the need for labeling the dataset
manually. This might be achieved by automatic labeling in
cases where we can infer the details of vehicle’s environment
with high degree of probability using other, non-visual cues.



(a) highway as: road (4 cases),
traffic and overpass

(b) road as: highway (6 cases)
and tunnel (2 cases)

(c) tunnel as: highway (5
cases), overpass, exit and traffic

(d) exit as: tunnel (6 cases),
settlement, traffic

(e) settlement as: highway (6
cases), overpass, tunnel

(f) overpass as: settlement (5
cases), exit (2 cases), highway

(g) booth as: settlement (5
cases), road (2 cases) and high-
way

(h) traffic as: settlement (5
cases), exit (2 cases) and high-
way

Fig. 6: Examples of images that were hardest to classify. Only baseline descriptors paired with both tested classifiers were
taken into account, for a total of 8 combinations. The highway was misclassified in 6 different cases, while all other examples
were misclassified in all 8 cases. The incorrect classification predictions are listed under each example, along with the total
number of cases in which they occurred.
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