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Abstract— Visual cues can be used alongside GPS positioning1

and digital maps to improve understanding of vehicle environ-2

ment in fleet management systems. Such systems are limited both3

in terms of bandwidth and storage space, so minimizing the size4

of transmitted and stored visual data is a priority. In this paper,5

we present efficient strategies for computing very short image6

representations suitable for classifying various types of traffic7

scenes in fleet management systems. We anticipate that the set of8

interesting classes will change over time, so we consider image9

representations that can be trained without knowing the labels10

of the target dataset. We empirically evaluate and compare the11

presented methods on a contributed dataset of 11447 labeled12

traffic scenes. Our results indicate that excellent classification13

results can be achieved with very short image representations,14

and that fine-tuning on the target dataset image data is not15

mandatory. Image descriptors can be as short as 128 components16

while still offering good performance, even in presence of adverse17

weather or illumination conditions.18

Index Terms— Computer vision, intelligent vehicles, image19

classification.20

I. INTRODUCTION21

IN most vision-based systems for scene recognition, size of22

image representation is of no concern [1]. Very compact23

image representations are primarily utilized in image retrieval24

systems [2], but they are not designed to be used for image25

classification. However, limiting image representation size is26

critical in systems where images are acquired by thin clients27

with low processing power and limited bandwidths, as is28

often the case in intelligent transportation. Many of these29

systems assume a centralized server which retrieves and stores30

visual information from a number of thin clients at regular31

time intervals, as illustrated in Figure 1. In these systems,32

the number of clients can be very large, while the record33

keeping time can be very long (several months, or even years).34

Thus, transferring raw image data from the clients to the server35
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Fig. 1. The proposed target application framework: a number of thin clients
send visual information about their surroundings to a server via limited
bandwidth. Figure reproduced from [3].

may be prohibitively expensive both in terms of storage and 36

in terms of data transfer. The latter is especially relevant when 37

thin clients communicate via a paid mobile network, as is often 38

the case in fleet management systems. 39

Our primary motivation are fleet management systems, 40

where a server tracks the locations of a fleet of vehicles in 41

real time. In most fleet management systems, vehicles are 42

equipped with a GPS sensor and a range of simple supplemen- 43

tary sensors (e.g. ignition sensor, fuel gauge, thermometer). 44

We additionally propose equipping each vehicle with a low 45

cost dashboard camera. The addition of a camera, while not 46

the industry standard in fleet management, would enable the 47

recognition of the type of traffic environment the vehicle is 48

currently in. The traffic environment classification could also 49

be achieved using other sensors, such as radar and lidar [4]. 50

However, in this paper we focus exclusively on visual data for 51

traffic scene classification. 52

There are several ways to make use of traffic scene clas- 53

sification in fleet management systems. One is to aid route 54

reconstruction algorithms, by differentiating between various 55

types of roads. Another is to detect scenarios in which a 56

degradation of GPS accuracy is expected, such as driving 57

through tunnels, under overpasses, toll booths, gas stations, 58

etc. Finally, many companies have their own set of char- 59

acteristic locations and traffic scenarios which they would 60

like to detect. These might be specific to their particular 61

business needs, and difficult to guess ahead of time, which is a 62

major obstacle to doing the image classification on the clients 63

themselves. If the classification were to be performed on the 64

client, then client software would have to be updated each 65

time the set of classes is changed. Additionally, it would be 66

impossible to re-classify the historical visual data stored on the 67

server. If the clients simply compute the image descriptors and 68

transmit them to the server, then changes in the business logic 69
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are localized, cheaper and easier to maintain. Re-examination70

of historical visual data becomes possible, and the clients are71

significantly simplified.72

In this paper we study image classification on a tight repre-73

sentation budget in the context of a thin client - central server74

scenario. Our focus is on very short image descriptors which75

stand a fair chance to perform well on classes which have76

not been seen during training. We consolidate best approaches77

from our previous study [5] and compare them to recent78

approaches based on deep convolutional architectures. The79

performance of all presented approaches is comprehensively80

evaluated on an extended and improved version of our image81

classification dataset for fleet management applications.82

Section II overviews prior research related to this paper.83

Section III summarizes our approach and categorizes the84

methods we use for image classification. Section IV details the85

experimental setup, including the presentation of our dataset,86

and presents the results. The conclusions and outlook are given87

in Section V.88

II. RELATED WORK89

Our work is related to three interconnected research areas:90

(i) image classification in general, (ii) traffic scene classifica-91

tion, and (iii) short image descriptors.92

A. Image Classification in General93

Active research in image classification rarely considers94

descriptor length as a research topic. Rather, the majority of95

efforts are focused on building reliable methods for classifying96

a wide range of image categories [6]–[8].97

Before the advent of deep learning methods, most success-98

full approaches [9] were based on the seminal bag-of-visual99

words method [10]. Some extensions improve the performance100

by augmenting the representation with the spatial layout of101

visual words [11]. State of the art performance has been102

obtained with spatial Fisher vectors (SFV) [12] which aggre-103

gate locations of visual words by leveraging Fisher vectors104

with respect to a spatial generative model.105

After the success of the AlexNet [13], deep learning meth-106

ods started developing rapidly. Increasing the width and107

depth of the network further improved classification accuracy,108

as demonstrated by the architectures VGG-E [14] (19 lay-109

ers) and Inception [15] (22 layers). The 100-layer barrier110

was surpassed by highway [16] and residual [17] (ResNet)111

architectures.112

ResNet reduces the problem of vanishing gradient by113

introducing shortcut connections between every few stacked114

layers, thus forming residual building blocks. This architecture115

substantially improves the convergence of the optimization116

algorithm. Although this network can be over a hundred layers117

deep, further research showed that most gradient comes from118

shallow paths [18].119

DenseNet [19] architecture uses dense building blocks in120

which outputs of every layer are connected to inputs of every121

subsequent layer in the block. The features are combined122

via concatenation. The dense connectivity enables feature123

reuse, simplifies the information flow between layers, requires124

less parameters per layer than previous approaches, and thus 125

enables training of even greater number of layers. 126

Some recent approaches have used ImageNet classification 127

as a proxy task for learning high-quality convolutional fea- 128

ture extractors [20]. Cimpoi et al. [21] obtain the FV-CNN 129

descriptor by extracting features from deep convolutional 130

layers and aggregating them with a Fisher vector frame- 131

work. Their descriptor has achieved state-of-the-art per- 132

formance in texture recognition and image classification. 133

Garcia-Gasulla et al. [22] measure the differences of distrib- 134

utions of network features in different classes, showing that 135

features of deeper layers are more specialized than features in 136

lower levels. Nanni et al. [23] demonstrate that hand-crafted 137

features and features learned in deep networks extract different 138

information from input images, and that best results may be 139

achieved if both types of features are used, and dimensionality 140

reduced via PCA. 141

The work in this area of research was not limited 142

to supervised learning approaches. Radford et al. [24] 143

extend the ideas of Goodfellow et al. [25] and present 144

an unsupervised learning framework called DCGAN which 145

succeeds to learn image representations from unlabeled 146

data. Arjovsky et al. [26] introduce the WGAN framework, 147

an improvement of DCGAN which results in simplified learn- 148

ing process and avoiding the mode collapse problem. 149

B. Traffic Scene Classification 150

Use of machine vision in vehicles is on the rise [27], 151

so the problem of traffic scene classification is receiving 152

increased attention recently. Oeljeklaus et al. [28] present a 153

deep neural network capable of simultaneous traffic scene 154

recognition and segmentation. The network has less than six 155

million parameters (not counting the FC layer), two separate 156

output paths, and a shared encoder used by both tasks. 157

Di et al. [29], [30] research understanding of traffic scenes 158

from images taken from the same location, but under different 159

weather or illumination conditions. Their approach consists 160

of extracting fine-tuned CNN features and transferring the 161

annotations from the retrieved best matching image based 162

on cross-domain dense correspondences. Hussain et al. [31] 163

demonstrate that adequate vehicle type classification can be 164

done using CNN even if vehicle regions are as small as 165

90 × 90 pixels. 166

Traffic scene classification is not limited to visual data only. 167

Hsu et al. [32] determine whether a vehicle is driving on 168

roads or viaducts by applying a dynamic Bayesian network 169

on map data, satellite visibility data and position calculated by 170

GPS. Seeger et al. [4] demonstrate that four types of traffic 171

scenes can be successfully classified by relying on occupancy 172

grid data. Additionally, they find that using the hand-crafted 173

features with an SVM classifier shows results on par with 174

those achieved by deep learning networks such as VGG16. 175

C. Short Image Descriptors 176

Most methods for producing short image descriptors are 177

motivated by reducing memory consumption in large-scale 178

image retrieval. They also aim to speed up the retrieval 179
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process, which is often done via an approximate nearest180

neighbor search [2]. A common approach is to produce a181

very short similarity-preserving image hash, such as DSH182

introduced by Liu et al. [33]. They use supervised information183

of image pair similarity to train a CNN structure to produce a184

small number of discrete values on output, ranging in size from185

12 to 48 bits. Improved results are achieved by approaches186

that take different image modalities into consideration, such187

as CSDH [34] and DCH [35].188

An alternative to crafting very short descriptors is starting189

with long descriptors and applying dimensionality reduction190

methods such as principal component analysis (PCA) [36] or191

product quantization (PQ) [37], [38]. Both approaches have192

a potential to detect parts of image representation which are193

not activated for a particular target dataset [22]. However, this194

requires training on images from the target dataset, which can195

be regarded as both an advantage and a disadvantage, as we196

will discuss in the next section.197

In our own work [3], [5], we investigate how limiting198

the size of state-of-the-art image descriptors impacts the199

performance of traffic scene classification. We propose a200

short image descriptor that combines compacted spatial Fisher201

vectors and GIST descriptor in a lossy encoding scheme.202

Classification performance is retained for the descriptor size203

as low as 48 bytes per image. The main shortcoming of204

this method is inadequate performance on some classes of205

traffic scenes (e.g. dense traffic). This became more appar-206

ent as we expanded our dataset to improve variability of207

under-represented classes.208

To the best of our knowledge, no previous work proposes209

nor evaluates very short image descriptors suitable for classi-210

fication of traffic scenes, which is the main motivation for this211

paper.212

III. OUR APPROACH213

We consider short image descriptors (less than 2000 compo-214

nents) which are suitable for multi-label classification. We are215

motivated by the application scenario where many mobile216

agents acquire images and transmit image representation over217

a tight data-channel to a remote server which classifies the218

representation into an open set of attributes. We explore three219

different approaches to training of descriptors: (i) unsupervised220

training on target imagery (addressed in III-A), (ii) supervised221

transfer learning (addressed in III-B) and (iii) unsupervised222

transfer learning (addressed in III-C). Descriptors in cate-223

gory (i) are trained on images of traffic scenes, but are unaware224

of their class labels. Descriptors in category (ii) are trained225

on an unrelated dataset of labeled images, and then applied226

to traffic images without any additional training. Descriptors227

in category (iii) are trained on unrelated dataset of images228

without class labels, and as such are fully unsupervised. Note229

that none of the three descriptor categories uses the class230

labels of traffic scene images during training, which ensures231

that the set of traffic scene classes remains open. Addition-232

ally, the descriptor categories (ii) and (iii) are not trained233

on the traffic scene images, which means they are equally234

likely to perform well on different geographical locations.235

The descriptors from category (i) might potentially perform 236

better on the geographical location on which they were trained, 237

which would be undesirable. In this paper, all descriptors in 238

categories (ii) and (iii) are trained on the ILSVRC subset of 239

ImageNet [7]. 240

A. Descriptors Based on Unsupervised Training 241

on Target Imagery 242

Both descriptors in this category are based on the tra- 243

ditional bag-of-words framework [10]. The two descriptors 244

use different local features (hand-crafted vs convolutional) 245

and the common aggregation mechanism. The aggregation is 246

performed with spatial Fisher vector embeddings [12], which 247

encode both the appearance and the spatial layout through the 248

use of Fisher vectors. Both approaches require access to target 249

images, since they rely on a visual vocabulary of local features 250

found in the dataset. 251

The first descriptor is a concatenation of GIST scene 252

descriptor [39], [40] and spatial Fisher vectors (SFV) [12] 253

embeddings of SIFT [41] local feature descriptors. The GIST 254

scene descriptor is completely handcrafted and has no training 255

requirements whatsoever. By itself, it performs poorly on 256

our dataset. However, concatenating it to the SFV descriptor 257

improves the performance at very low descriptor lengths. Short 258

image representations can be obtained through the choice of 259

hyper-parameters (such as number of appearance or spatial 260

components), or by producing a large representation first, and 261

subsequently reducing it with PCA. We call this concatenation 262

a SIFT/SFV+GIST descriptor. Of all the descriptors consid- 263

ered in this paper, this is the only one that does not make use 264

of ImageNet dataset during training. 265

Next, we replace all hand-crafted features with features 266

obtained with end-to-end learning. More precisely, we drop the 267

GIST part and we replace the SIFT features in spatial Fisher 268

vector framework with responses of a deep convolutional 269

neural network. We use responses of conv5_4 layer of 270

VGG-19 [14] convolutional neural network, trained on the 271

ImageNet dataset. We do not fine-tune the network on our 272

dataset, but the spatial Fisher vector framework does build a 273

visual vocabulary on features found in target images. We refer 274

to the resulting descriptor as VGG/SFV. 275

B. Descriptors Based on Supervised Transfer Learning 276

Approaches presented in III-A are based on the VGG 277

architecture which aggregates convolutional features with two 278

fully connected layers (fc5, fc6). However, these two layers 279

require over 100 million parameters which makes them very 280

prone to overfitting. Hence, it did not come as a surprise 281

when later research showed that conv5 features aggre- 282

gated with Fisher vectors outperform fc6 features in various 283

visual tasks [21]. Recent convolutional architectures [17], [19] 284

replace fully connected layers with simple global average 285

pooling. As a consequence, they succeed to overperform VGG 286

despite using much less parameters. 287

In this category, we consider pooled features extracted by 288

two recent architectures: ResNet [17] and DenseNet [19]. As 289

in the case of VGG, we use public parameterization trained 290
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Fig. 2. Examples of visually degraded images from the FM3a set. (a) Falling rain. (b) Falling snow. (c) Fog. (d) Low sun.

on ImageNet. The resulting features are a good match for our291

task since their dimensionality is rather low while offering a292

high classification potential due to state-of-the-art ImageNet293

performance.294

The performance of these features might further increase295

by performing the aggregation with Fisher vectors since that296

would present opportunities to leverage spatial layout and/or297

the knowledge of what is unusual in the target dataset.298

Nevertheless, we refrain from doing that in order to avoid299

the descriptors having any knowledge of the target dataset.300

Consequently, approaches from this category stand a very good301

chance to generalize well to any geographical region in the302

world.303

C. Fully Unsupervised Descriptors304

In this category we consider a convolutional generative305

adversarial network [24]. More precisely, we work with convo-306

lutional features extracted by the discriminator, whose original307

task is to detect whether the input image is real or crafted by308

the generator. In order to perform the classification task, the309

discriminator network has to learn a sophisticated image rep-310

resentation which we leverage to classify the scene. However,311

the highest levels of this representation have a much lower312

semantical quality than in the case of strongly supervised313

approaches which output a distribution over 1000 classes.314

We therefore form the image descriptor by concatenating315

max-pooling evidence from all 6 convolutional layers and316

regulate its size by adjusting the max-pooling grid.317

As in section III-B, we use a public parameterization learned318

on ImageNet [24]. Unlike previously presented supervised319

models, here the training proceeds without knowing the labels320

of the training images. In theory, this removes any limita-321

tions due to limited availability of labeled images, and pro-322

vides opportunity to train on billions of web-scraped images.323

Unfortunately, as we shall see in the experiments, practical324

performance of fully unsupervised approaches still lags behind325

the approaches presented in sections III-A and III-B.326

IV. EXPERIMENTS AND RESULTS327

Our experiments evaluate classification performance of the328

presented image descriptors, with emphasis on very short329

image representations. The experiments are performed on the330

novel FM3 dataset1 which contains labeled traffic scenes of331

interest for fleet management systems (cf. subsection IV-A).332

We partition our dataset into fixed train, validation and333

1http://www.zemris.fer.hr/~ssegvic/datasets/unizg-fer-fm3am.tar.gz

test subsets, and employ the common classification setup 334

throughout all experiments (cf. subsection IV-B). We con- 335

sider approaches from the three descriptor categories pre- 336

sented in Section III and evaluate their performance on 337

our dataset (cf. subsection IV-C-IV-E). We explore the 338

dependency of classification performance on the descriptor 339

length (cf. subsection IV-F). We briefly discuss the results 340

(cf. subsection IV-G), and then proceed to detailed analysis of 341

one of the more successful approaches (cf. subsection IV-H). 342

A. The FM3 Dataset 343

In this work we contribute an improved version of the Fleet 344

Management dataset presented in [5]. The dataset contains 345

11448 images of various traffic scenes in Croatia, as seen 346

from the perspective of a driver. All images are of resolution 347

640 × 480, and all were taken during day (from late morning 348

to dusk). The dataset is split into two separate subsets: the 349

main part, dubbed FM3m, which contains 6413 images with 350

good visibility and illumination conditions, and the appendix, 351

dubbed FM3a, which contains 5035 images with various types 352

of visual degradation. Visual degradation in the FM3a set 353

was caused by bad weather conditions (falling rain, falling 354

snow, fog) and/or by very low sun angles (bad illumination 355

due to camera pointing towards sun, and/or low amount of 356

sunlight). Windshield wipers obstruct the scene in 785 of 357

images. Examples of visually degraded images from this set 358

are shown in Figure 2. 359

Most images were captured in the same fashion in which 360

they would be captured in a fleet management system: by an 361

in-car camera, at regular intervals while driving on Croatian 362

roads. Since some interesting types of traffic scenes occur very 363

rarely, we have increased the number of samples for such 364

scenes in the FM3m set by downloading images from Map- 365

illary.com. We have hand-picked a batch of images for each 366

rarely occurring class and subsequently manually centered and 367

cropped them to the appropriate point of view, as well as 368

resized them to the resolution of 640 × 480 pixels. 369

As was discussed in the Introduction, it is not possible to 370

anticipate every type of traffic scene that might be of interest 371

in a fleet management system. The eight classes of FM3 cover 372

a variety of plausible use cases. Class highway represents a 373

fast, wide and open road. It must have either two lanes and 374

a shoulder lane, or at least three lanes per direction. This 375

class can be used to help with GPS matching disambiguation, 376

and to verify that fast vehicle traffic is allowed and expected. 377

The class road is similar to class highway, and represents an 378

open non-highway road outside of settlement. It too can be 379
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Fig. 3. Examples of classes from the FM3 dataset. (a) Highway. (b) Road. (c) Tunnel. (d) Exit. (e) Settlement. (f) Overpass. (g) Booth. (h) Traffic.

used to augment GPS matching. The class tunnel represents380

the entrance to, or inside of a tunnel (but not the very exit).381

It signals that the loss of GPS signal is expected. The class382

exit represents the exit of a tunnel, which signals that the383

GPS signal is expected to return soon. A traffic scene image384

is labeled as settlement if there is visible evidence of vehicle385

being inside a settlement (e.g. buildings, playgrounds, etc.).386

This may be interesting for a variety of reasons. For example,387

GPS precision is often low in settlements. The speed limit is388

likely to be lower and frequent vehicle stops are expected as389

well. The class overpass signals that the vehicle is directly390

in front of, or under an overpass. This may help to explain391

observed loss of GPS precision and to predict that a complete392

loss of GPS signal is unlikely. Class booth represents a scene393

directly in front of, or at a toll booth. It also signals a possible394

loss of GPS precision, and explains the reason of vehicle395

stopping. This may also be useful for keeping track of travel396

expenses. Even though most toll booths are present in the397

map data, the system might easily miss them without the398

use of visual cues due to temporary loss of GPS precision.399

Finally the class traffic represents the scenes of very dense400

traffic, or a major occlusion of a scene by a large vehicle.401

In either case, it explains the low speed and stopping of402

a vehicle, and as such might be interesting to e.g. deliv-403

ery companies. Example instances of each class are shown404

in Figure 3.405

All images were labeled according to these class descrip-406

tions by a single annotator, without the use of visual407

pre-processing of any kind. Some images have multiple labels408

assigned. We define classes highway, road, tunnel, exit, settle-409

ment and booth to be mutually exclusive, as they represent a410

location, but classes overpass and traffic represent an attribute411

of a scene, and can co-occur with other classes. In some412

countries it might be logical to allow simultaneous assignment413

of labels settlement and highway, to detect highways going414

through large cities, but we had no use of such a scheme in415

our dataset. The distribution of classes across the FM3m and416

FM3a sets, and across types of visual degradation is shown417

in Table I. Note that classes tunnel, exit and booth have very418

few samples in the FM3a set. This is because rain and snow do419

TABLE I

THE DISTRIBUTION OF CLASS LABELS IN THE

FM3M AND FM3A DATASETS

not occur inside tunnels (only on entry and exit), and because 420

class booth is a rarely occurring event. 421

B. The Classification Setup 422

In all experiments classification was performed using an 423

SVM classifier, as it was shown to be a good choice 424

in [3], [21], and [42]. We used LibSVM implementation [43], 425

which was trained in a one-vs-rest fashion. For each of 8 426

binary classifiers, the average precision (AP) is calculated, and 427

mean average precision (mAP) of all 8 classes was used as the 428

measure of classification performance. For each class, 25% of 429

instances were used for training, and another 25% were used 430

for validating the optimal SVM parameters. To counter the 431

bias in the dataset, we weighted the SVM scores based on the 432

inverse proportion of class samples in the training set. Finally, 433

the classifier was trained using these parameters on union 434

of training and validation subsets, and the performance was 435

evaluated on the remaining 50% instances. We experimented 436

with linear and RBF kernel, and in all cases RBF performed 437

better. We do not consider that as a surprise since our image 438

representations are rather small. 439

The FM3a set only contains enough samples for five out of 440

eight classes of interest, and is poorly balanced across types 441

of visual degradation. For that reason, in most experiments we 442

only train and evaluate the methods on images from the FM3m 443
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TABLE II

AVERAGE PRECISION (%) OF SIFT/SFV+GIST DESCRIPTOR ON
FM3M DATASET (SVM WITH RBF KERNEL)

set. We use the FM3a set to test resilience of our approach to444

visual degradation of images in subsection IV-H.445

C. Descriptors With Knowledge of FM3 Image Data446

In this category we evaluate descriptors presented in III-A.447

The SIFT/SFV+GIST descriptor is a concatenation of448

SIFT/SFV and GIST descriptors. The dimensionality of dense449

SIFT features d was projected down from d = 128 to450

d = 80 via PCA. In the SFV framework we used K = 16451

appearance components and C = 1 spatial component, which452

produces a vector of length K (1 + 2d + 5) = 2656. For453

GIST we used the implementation provided by Oliva and454

Torralba [40] without any modifications, which produces a455

vector of length 512. The final size of the descriptor is thus456

2656 + 512 = 3168. We have used PCA to further compress457

the descriptor to lengths 1024, 512 and every other power of458

two, down to 16. The compressed descriptors were classified459

with an SVM classifier with the RBF kernel, and the results460

are shown in Table II.461

The VGG/SFV descriptor uses convolutional features462

instead of handcrafted SIFT features. More precisely, it uses463

the responses of conv5_4 layer of the VGG-19 [14] convo-464

lutional neural network which was trained on the ImageNet465

dataset. The resolution of our dataset is 640 × 480, so the466

shape of local features is 30 × 40 × 512, i.e. 1200 features of467

size d = 512. We did not use PCA to reduce dimensionality468

of these features. As in SIFT/SFV+GIST, we used K = 16469

appearance components and C = 1 spatial component, thus470

obtaining a vector of length 16480, which was then reduced via471

PCA to lengths from 1024 to 16. The compressed descriptors472

were classified with an SVM classifier with the RBF kernel,473

and the results are shown in Table III.474

Even though the hand-crafted SIFT/SFV+GIST approach475

achieves decent results, the deep learning based approach476

VGG/SFV is clearly better. With only 64 components it477

outperforms the hand-crafted descriptor of length 1024478

(95.9% vs 94.94%).479

D. Descriptors Trained on ImageNet With Class Labels480

In this category we evaluate descriptors presented in III-B.481

We extract activations from the second-to-last layers obtained482

with publicly available parameterizations of ResNet-502 [17]483

2https://github.com/KaimingHe/deep-residual-networks

TABLE III

AVERAGE PRECISION (%) OF VGG/SFV DESCRIPTOR ON FM3M DATASET
(SVM WITH RBF KERNEL)

TABLE IV

AVERAGE PRECISION (%) OF RESNET-50 AND DENSENET-121 DESCRIP-
TORS ON FM3M DATASET (SVM WITH RBF KERNEL)

and DenseNet-1213 [19] architectures. Therefore, both mod- 484

els were trained on labeled ImageNet data, and were not 485

fine-tuned on FM3 dataset. No cropping or resizing of the 486

input images was done. Both feature extractors are fully 487

convolutional and applicable to input images of any resolution. 488

Spatial dimensions of all activation tensors are automatically 489

adjusted to the resolution of the input image. As the second- 490

to-last layer in both networks performs global pooling, the two 491

resulting descriptors have length equal to the number of feature 492

maps in that layer, which is 2048 for ResNet-50, and 1024 for 493

DenseNet-121. 494

The obtained classification results are shown in Table IV. 495

We include results obtained on entire FM3m, and a balanced 496

subset containing around 30 training and 30 test images per 497

class. The results indicate that DenseNet-121 descriptor is 498

slightly better, while also being shorter. We try to explain these 499

results as follows. ResNet-50 has three times more parameters 500

than DenseNet-121 (25 vs. 8 million) and performs slightly 501

better on ImageNet. Due to less parameters DenseNet-121 502

is less prone to overfitting than ResNet-50, and therefore 503

achieves better knowledge transfer from ImageNet towards 504

FM3m. To verify this, we have fine-tuned both networks on 505

FM3. Indeed the fine-tuned ResNet-50 achieved better perfor- 506

mance than fine-tuned DenseNet-121 (98.0% vs 97.1% AP). 507

E. Descriptors Trained on ImageNet Without Class Labels 508

In this category we evaluate the descriptor presented in III-C 509

by applying the public DCGAN parameterization to input 510

images downsampled to 32 × 32 pixels [24]. We first extract 511

3https://github.com/liuzhuang13/DenseNet
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Fig. 4. Average precision (%) of selected descriptors on FM3m dataset with respect to representation budget. Particular representations are obtained via
PCA as necessary. Mean AP values using linear SVM classifier are shown on the left. Mean AP values using SVM with RBF kernel are shown in the middle.
AP values for the class traffic using SVM with RBF kernel are shown on the right. Best viewed in color. (a) Linear SVM, all classes. (b) SVM with RBF
kernel, all classes. (c) SVM with RBF kernel, class traffic.

TABLE V

AVERAGE PRECISION (%) OF DESCRIPTORS BASED ON DCGAN
DISCRIMINATOR ON FM3M DATASET (SVM CLASSIFIER)

discriminator features by 4×4 max-pooling on each layer, and512

concatenating the results into a descriptor of length 28672.513

In the subsequent experiments, we shorten the descriptor by514

reducing the size of the max-pooling grid to 1×1. This results515

in descriptors of length 1792. We also include the result of516

untrained discriminator initialized with random weights. This517

was done to test how much knowledge transfer happens from518

ImageNet to FM3, and how much descriptiveness is due to519

network structure itself. We repeat this with 1000 different520

random initializations, and report the mean and the standard521

deviation. All these results are shown in Table V.522

Much of the descriptiveness seems to come from the convo-523

lutional structure itself, since random-initialized discriminator524

achieves mAP of 85%. Some performance is lost when 4 × 4525

max-pooling is replaced with 1 × 1 max-pooling, but 16-fold526

reduction of descriptor size makes this drop in performance527

an acceptable trade-off.528

F. Impact of Descriptor Length529

To measure the impact of descriptor length reduction on530

classification performance, we use PCA to compress the size531

of select descriptors to a series of different lengths. Starting532

from 1024, we consider all lengths that are a power of two,533

down to 16. The SIFT/SFV+GIST and VGG/SFV descriptors534

already use PCA as a part of their framework, and their full535

results are shown in Tables II and III. We now apply the PCA536

to ResNet-50, DenseNet-121 and DCGAN 4×4 descriptors as537

well. Since PCA is used on vectors calculated on FM3 dataset,538

all compressed descriptors fall into the category of methods539

Fig. 5. ROC curves for the SVM classifier with RBF kernel trained on the
DenseNet-121 descriptor of length 128. Measured on the FM3m dataset. Best
viewed in color.

with knowledge of FM3 image data. Note that full length of 540

DenseNet-121 descriptor is 1024, so PCA was only used to 541

produce its representations of length 512 and lower. 542

We classify the descriptors both with the linear SVM classi- 543

fier and the SVM with RBF kernel. The summary of the results 544

is best seen in graph form, in Figure 4 (a, b), which shows the 545

mean average precision of all classes for each of the methods, 546

with respect to the length of the representation, separated for 547

linear and RBF kernels. The RBF kernel is strictly better here, 548

but it is not as noticeable for large representations as it is for 549

very small ones. We conclude that RBF is very advantageous 550

when the representations are very small, although the linear 551

SVM may prove the only applicable solution for large training 552

datasets. 553

One thing to note is that reducing the size of the 554

representation does not change the relative order of methods. 555

The DenseNet-121 is a clear winner, followed by ResNet- 556

50 and VGG/SFV, followed by SIFT/SFV+GIST (which relies 557

on hand-crafted features) and finally the DCGAN 4×4 (which 558

is trained in an unsupervised manner). Another thing to note 559

is that reducing the size from 1024 down to 128 barely shows 560

any changes in the mAP for most methods if RBF kernel is 561

used. The drop is noticeable for lengths 64 and 32, and very 562

noticeable for length 16. 563

We are not only interested in mean average precision. 564

Ideally, every class in the dataset should be classified at 565

acceptable levels of error. All descriptors show the worst 566

performance on the traffic class, so the results for that class are 567

shown in Figure 4 (c). Note that AP axis starts from 50% and 568

that a considerable drop with respect to the mean performance 569

can be observed for all representation budgets. 570
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Fig. 6. Examples of mispredictions for the SVM classifier with RBF kernel on DenseNet-121 descriptors of length 128. Examples (a) to (f) are from the
FM3m testing set, while examples (g) and (h) are from the FM3a set. In all examples the SVM was trained on the FM3m training set. (a) Road as highway.
(b) Road as highway. (c) Settlement as highway. (d) Road as settlement. (e) Traffic false positive. (f) Traffic false negative. (g) Settlement as road (rain).
(h) Highway as road (fog).

G. Discussion571

Some classes in the FM3 dataset are clearly much easier572

to classify than others. In fact, the relative order of classes573

with respect to their achieved average precision is very similar574

across all presented methods. The best results are obtained on575

the highway class which is the most represented class in the576

dataset. The tunnel class is easy to classify, likely because577

tunnel scenes are almost always dominated by black or orange578

colors. The road class is most often confused with highway579

class. It is also less represented, and has greater variability of580

visual appearance. By far the hardest class, across all methods,581

seems to be the traffic class, which includes both the scenes of582

very dense traffic (which can happen in any kind of location),583

and also images with major occlusions of scene by other584

vehicles. One other thing to note is that the class booth is585

only hard to SIFT/SFV+GIST and DCGAN descriptors, while586

other methods have excellent performance on this class.587

We can conclude that the best results are achieved by588

supervised deep convolutional models, even the ones that589

have no knowledge of the FM3 dataset. In fact, the best590

performing method is DenseNet-121, with descriptor length591

of 1024 and no knowledge of the target dataset. Fine-tuning592

these approaches to the FM3 dataset would further improve593

those results, but we avoid that in order to prevent overfitting.594

DCGAN is at a severe disadvantage compared to supervised595

approaches. However, it could be improved by training on596

images acquired world-wide. Such training would not depend597

on the class labels, which is very desirable in our proposed598

framework.599

H. Analysis of the DenseNet-121 Descriptor600

We now analyze one of our best performing short descrip-601

tors: the DenseNet-121 descriptor of length 128. It achieves602

classification performance almost equal to that of full-length603

descriptor while being much shorter. We consider it as a604

strong candidate for our proposed fleet management setup. Its605

confusion matrix is shown in Table VI. Note that we only606

include the six classes that are defined as mutually exclusive.607

TABLE VI

CONFUSION MATRIX FOR DENSENET-121 DESCRIPTOR OF
LENGTH 128, SVM CLASSIFIER WITH RBF KERNEL

The ROC curves for all classes are shown in Figure 5. Some 608

examples of mispredicted classes are shown in Figure 6. 609

I. Resilience of DenseNet-121 to Visual Degradation 610

We now use the FM3a set of images to verify the resilience 611

of DenseNet-121 descriptor of length 128 to various types of 612

visual degradation. First we evaluate how the SVM classifier 613

trained on the FM3m training set performs on the FM3a set 614

of degraded images. Next, we add some of images from the 615

FM3a to the training set, and test the performance on the rest 616

of images from FM3a. We do this in two steps, first adding 617

only 10% of images from FM3a, then adding 25% of images 618

to the training set. The average precision results are shown 619

in Table VII. Note that we only list the results for the five 620

classes that are adequately represented in FM3a, excluding 621

classes tunnel, exit and booth. Even without any training on the 622

degraded images, the system was able to classify the degraded 623

images surprisingly well, with the exception of class road, 624

which was most commonly confused with classes settlement 625

(93 times) and highway (82 times). By adding some degraded 626

images to the training set, the quality of classification rises 627

quickly up to 94.46%, which is very close to mAP value for 628

the same classes on non-degraded images: 95.22%. The ROC 629

curves for the five evaluated classes are shown in Figure 7. 630

V. CONCLUSION AND OUTLOOK 631

In this work we have considered image classification of 632

traffic scenes under requirements specific to fleet management 633

applications, namely i) the bandwidth should be used sparingly 634
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Fig. 7. ROC curves for the SVM classifier with RBF kernel trained on the DenseNet-121 descriptor of length 128. Training data contains 50% of FM3m
samples, and incrementally increasing amounts of FM3a samples. Tested on the rest of FM3a images. Best viewed in color. (a) Training set contains no FM3a
samples. (b) Training set contains 10% of FM3a samples. (c) Training set contains 25% of FM3a samples.

TABLE VII

AVERAGE PRECISION (%) OF DENSENET-121 DESCRIPTORS OF

LENGTH 128 ON FM3A DATASET (SVM WITH RBF KERNEL)

to avoid excessive costs, and ii) the number of image classes635

has to be open. To satisfy these requirements, we studied636

image descriptors with a restricted representation budget and637

with no knowledge of the target dataset labels. We achieved638

resistance to overfitting by considering the following descrip-639

tor training requirements: i) no knowledge of the target dataset640

labels, ii) no knowledge of the target dataset image data, and641

iii) no use of supervised training whatsoever.642

Our experiments have empirically compared a range of clas-643

sification approaches. We have considered handcrafted image644

descriptors (GIST, SIFT), non-linear embeddings with respect645

to placement and appearance distribution of image patches646

(spatial Fisher vectors), and state-of-the-art convolutional rep-647

resentations (VGG, DenseNet, ResNet and DCGAN) trained648

on ImageNet. Additionally, we have used PCA to reduce649

image representations down to as low as 16 components, and650

investigated the drop of classification performance with respect651

to representation length.652

Best performance is achieved by deep convolutional models653

trained in a supervised manner, followed by handcrafted654

models, and finally by a completely unsupervised descriptor655

based on DCGAN. We have shown that excellent performance656

can be achieved even with methods that have no knowledge657

of our target dataset. With an adequate classifier, image repre-658

sentations can be extremely reduced via PCA (down to as few659

as 128 components), while sacrificing negligible classification660

performance. In some cases, even representations with as few661

as 32 components provide useful results. Finally, we have662

shown that the best performing method, the DenseNet descrip-663

tor, performs well even on images with visual degradation664

caused by bad weather and low sun angles, provided some of665

the degraded images are added to the training data.666

Future work will include further compression of convo-667

lutional descriptors by fine-tuning on ImageNet, advanced668

generative adversarial models, and exploring the generalization 669

across datasets taken in different countries. 670
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