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Abstract

This paper presents a novel algorithm for online struc-

ture and motion estimation. The algorithm works for gen-

eral camera models and minimizes object space error, it

does not rely on gradient-based optimization, and it is prov-

ably globally convergent. In comparison to previous work,

which reports cubic complexity in the number of frames, our

major contribution is a significant reduction of complex-

ity. The new algorithm requires constant time per frame

and can thus be used in online applications. Experimen-

tal results show high reconstruction accuracy with respect

to simulated ground truth data. We also present two ap-

plications in artificial marker reconstruction and handheld

augmented reality.

1. Introduction

This paper presents a novel Online Structure and Motion

(SaM) algorithm. Due to the high non-linearity involved,

best SaM accuracy is obtained through an iterative refine-

ment post-processing step. In most of the previously pre-

sented SaM algorithms, the refinement is formulated as a

gradient-based optimization procedure which is also known

as bundle adjustment. The main shortcoming of bundle ad-

justment is that it can get stuck in a local minimum, which

tends to happen very often. We propose a novel refinement

approach based on the absolute orientation algorithm by

Horn [6]. The corresponding object space cost function is

suitable for use in general camera models, which is very

convenient for applications involving multiple cameras.

The paper is organized as follows. We briefly review

the main results of our previously published “Structure and

Motion” algorithm [9] in section 2. This algorithm is

globally convergent and up to 8 times faster than bundle-

adjustment, which gives it an edge in time-critical applica-
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tions. In section 3 we present a significant improvement of

this algorithm towards online/realtime applications by re-

ducing the cubic time complexity to a constant one. Sec-

tion 4.1 evaluates accuracy and speed of the novel algorithm

based on simulated ground truth data. We continue with a

more realistic application in hand-held Augmented Reality

in section 4.2, which describes the hardware of our mobile

demonstrator and the implementation of the proposed SaM

algorithm including natural landmark detection and track-

ing. We demonstrate how our approach can improve the

performance of a marker-based AR system. Finally, we

conclude with a brief discussion and give an outlook on fu-

ture work in section 5.

2. Review of globally convergent SaM

The SaM algorithm previously proposed in [9] does

not rely on gradient-based optimization, but is nevertheless

provably globally convergent. The main components of the

algorithm are: (i) object space cost function, (ii) general

camera model, (iii) closed form structure estimation, (iv)

closed form camera translation estimation, and (v) iterative

formulation. The main results of [9] are briefly summarized

below.

2.1. Object space cost function

The object space cost function [7] is the distance be-

tween the interpretation line of a pixel and the reconstructed

3D point. The interpretation line of a measured pixel ~vki
joins it with the optical center ck of camera k.

eki

Xi

~vki

ck

Figure 1. Object Space Error eki.

This is illustrated in Fig. 1 where Xi represents the estimate
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of a landmark 3D position, while eki stands for the corre-

sponding cost. This error was used in [7, 12] for pose esti-

mation and in [8] for bundle adjustment.

2.2. Object space error for the general camera
model

The general camera model (GCM) described in [5] re-

places the use of a pixel (which contains the position on

the sensor and its intensity) as the atomic element with the

raxel, which is the union of the pixel and its interpretation

line. We represent this raxel by a point~c (which could be

the physical position of the pixel inside the camera, or the

center of projection of a perspective camera), and a vec-

tor ~v which defines the ray. This model allows us to use

any type of camera geometry (e.g. perspective, catadiop-

tric, panoramic, clusters of cameras, . . . ).
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Figure 2. Stereo Setup: Two perspective cameras as one general

camera.

In Fig. 2 we see how the model can be used to describe a

stereo setup. The two cameras are further addressed as one

general camera (GC).

Using the tuple (~c,~v) as the measure of a GC, we define

the object space cost function for the general camera model

as

eki =
∥

∥

∥
(I−Vki)(Rk~Xi+~tk−~cki)

∥

∥

∥
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, with Vki =
~vki~v

T
ki

~vTki~vki
. (1)

The matrixVki is called line of sight projection matrix, since

it encodes the ray of our measurement in a simple way. Rk
and tk represent the orientation and the translation of a GC.

Assume that a moving GC has measured projections of

structure points (X = {X1,X2, . . . ,Xni}) at nk different po-
sitions and orientations in space. Then our goal is to use

these measurements to recover the scene structure X and nk
GC poses (R = {R1,R2, . . . ,Rnk},t = {t1, t2, . . . ,tnk}). We
achieve that by minimizing the sum of all costs:

arg min
R ,t ,X
E(R , t ,X ) = arg min

R ,t ,X

nk

∑
k=1

ni

∑
i=1

eki(Rk, tk,Xi). (2)

2.3. Closed form Structure estimation

A closed form equation for structure which minimizes

(2) can be determined by finding the roots of a partial

derivative of (2) with respect to the structure. The result-

ing structure is given by [9]

~̃Xi(R , t) = x̃i(R )+
nk

∑
k=1

X̃ki(R )~tk, width (3)

X̃ki(R ) = −

(

nk

∑
α=1

RTαQαiRα

)−1

RTk Qki, (4)

x̃i(R ) =

(

nk

∑
α=1

RTαQαiRα

)−1 nk

∑
k=1

RTk Qki~cki, (5)

Qki = (I−Vki)
T (I−Vki) . (6)

2.4. Closed form estimation of the camera poses

We now substitute the optimal structure (3) into the cost

function (2), and derivate the result with respect to the cam-

era translations. By equating this partial derivative to zero,

we obtain the following linear equation system:

A~t =







A1,1 . . . A1,nk
...

. . .
...

Ank,1 . . . Ank,nk













t1
...

tnk






=







b1
...

bnk






, (7)

with

Aq,k =
ni

∑
i=1

X̃TqiR
T
k Qki, Aq,q =

ni

∑
i=1

X̃TqiR
T
k Qki+

ni

∑
i=1

Qqi, (8)

bq = −
ni

∑
i=1

Qqi(Rqx̃i−~cqi). (9)

This system can be used to solve for camera translations

which minimize (2), provided that we know camera rota-

tions.

2.5. The iterative formulation of the SaM algorithm

The last two paragraphs showed that for a given set of

camera orientations (Rk) both structure and camera transla-

tions can be estimated in closed form. It is proven in [9],

that starting from a set of rotations R
(λ )
k the following itera-

tion step will result in a globally convergent algorithm:

R
(λ+1)
k =argmin

R

ni

∑
i=1

∥

∥

∥
R~X

∗(λ )
i +~t

∗(λ )
k +

(

−~cki−Vki~q
(λ )
ki

)∥

∥

∥

2

,

subject to RTR= I, (10)

with

~q
(λ )
ki = Rk~X

∗(λ )
i +~t

∗(λ )
k −~cki. (11)

Note that~X
∗(λ )
i and~t

∗(λ )
k stand for optimal estimates for a

given iteration (λ ), as shown in section 2.3 and 2.4. The ab-
solute orientation problem (10) can be solved using quater-

nions [6] or singular value decomposition (SVD) [7].



3. Online SaM

Note that the summations in (3)-(5) range over all frames

nk in the sequence and that the summations in (8) and (9)

range over all points ni. This leads to a time complexity

of O(n3k + nknm), with nm the number of measurements (if
all points are visible in all images nm = nink, but typically
nm≪ nink). This shows that the algorithm proposed in [9] is
not usable in an online system, because it slows down when

more and more frames are added.

In this section we present an extension to the proposed

algorithm which gets rid of that limitation. In an online sys-

tem the frames are added one by one to the system. After

a frame is added the cost in (2) is minimized. As more and

more frames are added, we observe that the first frames are

not affected by the optimization procedure any more. They

stay constant. That may happen because (i) they are already

well estimated, or (ii) points from these frames are not visi-

ble anymore, or (iii) points from these frames are still visi-

ble but are not changed while optimizing. A frame will only

change its position or orientation if any of the points visible

inside that frame gets changed. If that does not happen, the

frame will not be changed during optimization.

A well suited assumption to such an online SaM system

therefore is that frames, which were added a long time ago

are kept constant within the current optimization procedure.

To achieve this behaviour we split the set of all frames into

two sets: (i) frames which stay constant Fc := {1,2, . . . ,nk−
fo}, and (ii) frames which are optimized Fo := {nk− fo+
1, . . . ,nk} ( fo = |Fo|).
Using these two sets in the structure estimate (3) gives

~̃Xi(R , t) = M −1
i (RQc i+ RQt i) , (12)

with

Mi = ∑
k∈Fc

RTk QkiRk+ ∑
k∈Fo

RTk QkiRk, (13)

RQt i = ∑
k∈Fc

RTk Qki
~tk+ ∑

k∈Fo

RTk Qki
~tk, (14)

RQc i = ∑
k∈Fc

RTk Qki~cki+ ∑
k∈Fo

RTk Qki~cki. (15)

In these equations the summations over the set Fc can be

pre-calculated, they need not be evaluated inside the opti-

mization loop.

Rewriting the estimation of the camera translation in (7)

is a bit more complicated. To do that we split the trans-

lation vector into two parts. These are the translations

tc :=
[

tT1 , . . . ,tTnk− fo

]T

which are kept constant and the trans-

lations to :=
[

tTnk− fo+1
, . . . ,tTnk

]

which we want to optimize.

The linear equation system (7) becomes

[A1|A2]

[

tc
to

]

=

[

b1
b2

]

. (16)

Since tc stay constant, a solution of the unknown transla-

tions to is given by a solution to the lower part of the equa-

tion system (16)

A2to = A1tc+ b2 =
[

bbnk− fo+1, . . . , bbnk
]T

. (17)

Using the variables defined in (13)-(15) the entries of A2 are

given by

Aq,k = −
ni

∑
i=1

QqiRqM
−1
i R

T
k Qki, (18)

Aq,q = −
ni

∑
i=1

QqiRqM
−1
i R

T
qQqi−

ni

∑
i=1

Qqi, (19)

and the entries of bbq are given by

bbq =
ni

∑
i=1

Qqici−QqiRqM
−1

(

RQc i− ∑
α∈Fc

RTαQαitα

)

.

(20)

Using the results above we are able to propose the

“Online Structure and Motion for GCM” algorithm:

1. Split the set of all frames into two subsets Fo and Fc.

2. Precalculate the summations over the set Fc in (13)-

(15) and (20).

3. Start with an initial set of rotations R
(λ )
k∈Fo
, λ = 1. Rnk is

initialized with Rnk−1 (the last known frame), or with

the result of a pose estimation algorithm using the es-

timated structure (we used the algorithm proposed in

[10], which estimates the pose of a camera using the

same cost function as we do, the object space cost).

The other rotations are used from results of previous

optimizations.

4. Estimate the parameterization of the structure (Mi,

RQc i and RQt i) for all points visible in frames Fo us-

ing (13)-(15)

5. Estimate the optimal translation vectors ~t
∗(λ )
k∈Fo

(R λ )
solving the linear equation system in (17).

6. Estimate an optimal structure ~X
∗(λ )
i (R λ ,~t∗(λ )) using

(12) for all points visible in frames Fo.

7. Solve the absolute orientation problem in (10) for each

camera position k ∈ Fo to get better estimates of the

rotations R
(λ+1)
k∈Fo

.

8. Set λ = λ + 1 and goto step 4 until convergence or a
fixed number of iterations are performed.
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Figure 3. Setup of the simulation. (a) 3D view, (b) visibility map.

Implementation details: The first frame of a sequence is

directly added to the set Fc. It is used as a reference frame

for the rest of the algorithm. Each new frame nk, which

is the last up to that point in the sequence, is added to the

set Fo. If the set Fo grows above fo ( |Fo| > fo) then the

oldest frame in Fo is moved to the set Fc. If that happens,

then the summations over set Fc ((13)-(15) and (20)) are

updated. This update is of constant cost, because only a

new summand needs to be added. After that the steps 4 to 8

are performed.

In this implementation the refinement (10) concerns the

poses of the last fo frames, while the poses of the preceding

frames are not changed. However, the “fixed” frames Fc are

still used to evaluate the structure uncertainty. The object

space error (3) reflects the evidence obtained during the en-

tire feature lifetime, which includes the fixed frames. Due

to the employed object-space error formulation, the struc-

ture update can be expressed by simple equations, which, by

careful caching (as described above), can be implemented in

constant time.

4. Experiments

Two types of experiments are performed. First, we de-

scribe the performance of the proposed algorithm using

simulated data. With simulated data we have a setup to

compare the results with the ground truth. Second, we ex-

plain the behavior of the proposed algorithm in two appli-

cations.

4.1. Simulation

The used setup was motivated by the experiments done

in [4]. There a camera was moving around an object. To

simulate that behavior we generated 70 random points on

the surface of a cylinder with a diameter and a height of one

meter. The general camera (we used a stereo rig) is placed

at a distance of three meters from the center of the cylinder,

and rotated around it to generate 36 frames, one each 10o.
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Figure 4. Recovered accuracy of the simulation. (a) camera rota-

tion (b) camera position.
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Figure 5. Timings of the proposed algorithm. (a) consumed CPU

time per frame, (b) number of measurements used inside the opti-

mization.

In Fig. 3(a) a 3D view of the simulation is shown. The blue

points show the camera center (one of the two inside our

GC) plus the viewing direction. The calibration of the GC

is the same as in section 4.2.

For each camera position the 3D points are projected into

the cameras. Here only points are used, which are visible by

a given camera (points on the other side of the cylinder are

not visible). This simulates the observation of an object. In

Fig. 3(b) we see the visibility map. A black point indicates

that the corresponding 3D point is visible in the correspond-

ing frame. On average, 32 points are seen in each frame. It

was not stated in section 3 that the proposed algorithm is

usable in such a scenario, in which not all points are visible

in all frames. But it is easy to verify that setting Qqi = 03x3
if a 3D point i is not visible in the frame q will turn on that

possibility. After projecting the points to the images, Gaus-

sian noise with σ = 0.5 pixel is added to the measurements.
The estimated measurements are fed into the proposed algo-

rithm frame by frame. The number of frames we optimized

was set to fo = 5. The algorithm was stopped after perform-
ing 20 iterations.

In Fig. 4 we see the reconstruction results of our algo-

rithm. In Fig. 4(a) the difference of the estimated rota-

tion w.r.t. ground truth for all frames is plotted. Fig. 4(b)

shows the difference of the estimated position w.r.t. ground

truth of all frames. We see that the accuracy is starting with

0.35o for the first frame and decreasing. After a few frames

( f > 3) enough information is available and the accuracy

stabilizes at a level of 0.1 degrees for the rotation and about

5 mm for the camera position. The comparison of the recon-

struction with the ground truth gives a mean error of 0.319

mm.

In Fig. 5(a) we show the consumed amount of CPU time

for each frame. After the first few frames are added the re-

quired CPU time stays nearly constant at about 25 ms. To



compare this to the number of measurements (which are not

constant over all frames) we show in Fig. 5(b) the number

of measurements in the set Fo. We see that there is a direct

relation between both graphs. This leads to 7.9µs of CPU
time per measurement and iteration inside the optimization

procedure.

4.2. Applications

The proposed SaM algorithm has been implemented on

a mobile demonstrator platform (shown in Fig. 7(a)) which

consists of a tablet PC and a calibrated stereo rig. The mo-

bile demonstrator is equipped with a Pentium M Processor

running at 1.2GHz, and an 8.4′′ SVGA TFT LCD Touch-

screen Display. Its dimensions are 227× 170× 22mm.
The stereo setup has two UI-1220-C cameras providing

752×480 images at a frame rate up to 60Hz, featuring ex-
ternal trigger, global shutter and USB 2.0. The cameras are

calibrated to conform to the general camera model [13]. To

be able to use the proposed SaM algorithm we need fea-

ture correspondences. For that, in each image the features

projected from natural landmarks are detected using the in-

terest operator of Tomasi and Kanade [11]. To improve the

execution speed, the detected features are first associated

with their positions in the last frame by simple correlation.

Consequently, the position is more accurately estimated by

aligning the feature with its reference appearance acquired

in the image where the feature was first detected. We used

the algorithm by Zinßer et al. [14], which combines the

inverse compositional gradient descent affine alignment [2]

and illumination compensation.

The natural features are detected and tracked in both im-

ages. After that, features which correspond to the same 3D

point are linked together. This is done using epipolar ge-

ometry, which is known from the calibration [13], and cor-

relation. The image coordinates (x and y) of the tracked

features are normalized to obtain (~c,~v), again by using cali-

bration data.

For the two applications below, the pose of the general cam-

era at the initialization stage is recovered [10] from an arti-

ficial landmark (ARToolKit Plus [1]) which is detected by

a dedicated procedure. After the initialization, the natural

landmarks are fed into the SaM algorithm. The recovered

pose corresponding to the last frame is finally used in the

AR front end.

Bridging Marker-less Environments in AR

This scenario happens very often in marker-based AR sys-

tems. As long as a marker is seen by a camera, the pose can

be recovered and so the artificial objects can be visualized.

If no marker is visible, no pose can be computed.

Our system uses natural landmarks to overcome this

problem. In Fig. 6 we see images of a sequence. In the

beginning Fig. 6(a)-(b) the marker is visible, and its infor-

mation is used to compute a pose, which is used together

with the tracked natural landmarks to estimate the 3D recon-

struction and to generate the augmentation (a virtual plant).

When the target disappears Fig. 6(c)-(d) only natural land-

marks are used to estimate a pose. In Fig. 6(e)-(g) we see

that the plant is correctly visualized. Finally, the marker

reappears in Fig. 6(h).

Automatic Generation of Scene Description for AR

The second scenario, which we address in this paper is the

automatic generation of a scene description. We start by at-

taching artificial markers to the walls of our lab. The goal of

the system is the automatic generation of the orientation and

the position of the markers, so that such a map can be used

with an AR system like ARToolKit Plus [1]. To achieve

this, we walked with our hand-held mobile demonstrator

through our lab. The first marker which is seen by our sys-

tem is selected to be the reference marker. Its position is by

default set to the origin of the scene coordinate system. Af-

ter that the artificial markers (their four corners) and tracked

natural landmarks are employed in the same way. They are

fed into the SaM system. Further, if a new marker is seen,

its position and orientation is calculated from the four cor-

ners estimates. After all markers have been observed by the

system, a full scene description can be generated. As an

optional post-processing step, an offline optimization can

be run to improve the final precision. Fig. 7(b) shows a

wide-angle view of the scene (taken by a consumer point-

and-shoot camera) and Fig. 7(c) presents the obtained re-

construction of the markers.

5. Conclusion

We presented a novel Online Structure and Motion algo-

rithm which is based on the Object Space Error for General

Camera Models. The proposed algorithm was implemented

and tested with simulated data to obtain information about

the accuracy and the timing behavior. A mobile demon-

strator was developed to show two relevant applications of

online SaM for Augmented Reality. First, augmentation is

not only possible in marker-based AR but can be extended

to cases where no marker is in the field of view of the cam-

eras. Second, we showed that such a system can be used to

automatically generate a 3D reconstruction of the artificial

landmarks in the scene.

Future work includes experimental validation of our

novel algorithm in navigation (arbitrary motions of the Gen-

eral Camera in a natural scene without artificial markers)

and quantitative comparison with [3, 4] in terms of recon-

struction accuracy as well as computation time.
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Figure 6. AR without a Target. The artificial plant is augmented even if no marker is visible (c)-(g).

(a) (b) (c)

Figure 7. (a) The mobile demonstrator. (a) Wide-angle view of our lab. (b) 3D reconstruction of the artificial markers.
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