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Abstract

We propose a novel weakly supervised localization method based on Fisher-

embedding of low-level features (CNN, SIFT), and model sparsity at the compo-

nent level. Fisher-embedding provides an interesting alternative to raw low-level

features, since it allows fast and accurate scoring of image subwindows with a

model trained on entire images. Model sparsity reduces overfitting and enables

fast evaluation. We also propose two new techniques for improving performance

when our method is combined with nonlinear normalizations of the aggregated

Fisher representation of the image. These techniques are i) intra-component

metric normalization and ii) first-order approximation to the score of a nor-

malized image representation. We evaluate our weakly supervised localization

method on real traffic scenes acquired from driver’s perspective. The method

dramatically improves the localization AP over the dense non-normalized Fisher

vector baseline (16 percentage points for zebra crossings, 21 percentage points

for traffic signs) and leads to a huge gain in execution speed (91× for zebra

crossings, 74× for traffic signs).

Keywords: Object localization, Weak supervision, Fisher Vectors, Sparse

models, Convolutional features, Geographic information system (GIS),

OpenStreetMap

∗Corresponding author
Email address: josip.krapac@fer.hr (Josip Krapac)

Preprint submitted to Computer Vision and Image Understanding October 12, 2018



1. Introduction

Detecting the presence of objects in images and recovering their locations

are very important yet still open computer vision problems. These problems

are often jointly addressed by applying a localization model at many image lo-

cations, and reporting objects where a positive response was obtained. Most5

successful representatives of this approach employ strong supervision at the

training stage, which requires that each training image be annotated with ac-

curate object locations. However, annotating object locations is expensive due

to significant human labeling effort involved, even if a simple location model

is used (e.g. bounding box). This is especially the case in realistic scenarios10

where thousands of annotations are required to achieve top performance. An-

notation is particularly difficult when the objects of interest are small, since

near to pixel-level annotation accuracy may be required for best results.

In order to alleviate the effort of full annotation, many recent approaches

attempt to solve the localization problem in a weakly-supervised manner (cf. e.g.15

[1, 2, 3]). In this setting, training images are annotated only with class labels.

The training procedure is supposed to train the localization model without

knowing the object locations. At the test time, however, bounding boxes have

to be predicted for each learned object class as in the strongly supervised case.

This can be useful even if the recovered object classifier is not particularly20

fast, since the recovered object locations can be used to train a more efficient

localization model in a strongly supervised fashion.

Weakly supervised training of object classifiers is a daunting task in most

realistic scenarios. Even if we assume only one object in each positive image

(which is not the case in our experiments), an exhaustive search would have25

to consider WT hypotheses, where W is the number of image windows and

T is the number of training images. This complexity may be decreased by

sampling [4], clustering [5] or employing bottom-up location proposals based

on trained segmentation [6, 3] or objectness cues [7, 8, 9, 10, 11]. However all

these approaches risk to miss some objects at the selection stage, which may30
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invalidate all subsequent efforts.

A more conservative approach relies on classifiers able to detect the object

presence in a larger image context. Such classifiers can be trained on positive

images [12] or image regions [6] and then subsequently applied to recover or

gradually improve the object localization. Some of the previous work along these35

lines has been based on BoW histograms [6, 12] and Fisher vectors coupled with

bottom-up location proposals [3]. Recently, several researches have proposed

approaches based on convolutional classifiers and end-to-end training [13, 14, 2].

In this paper we present a novel weakly-supervised object localization method

based on Fisher vectors and model sparsity at the component level. Earlier ac-40

counts of this research appeared in [15, 16]. We extend that work in several

ways:

• we present an end-to-end case study of road-environment mapping by

training and evaluating our localization pipeline on images collected from

crowd-sourced GPS labels (Sections 4, 5.2),45

• we propose improved methods for generating location responses from top

rated patches (Section 3.6),

• we improve support for our claims by presenting experiments on convolu-

tional features (Section 5.2),

• we discuss comparative advantages of the sparse models against the dense50

ones for localization and classification tasks (Section 5.5).

In section 2 we argue that our method has important advantages with respect to

other weakly-supervised localization approaches. These advantages arise since:

i) Fisher vectors pool better than raw features due to ability to preserve and

enhance unusual detail, ii) component-level sparsity enables fast evaluation and55

reduces overfitting, iii) we enable non-linear normalizations by intra-component

normalization and approximated patch scoring and iv) the method does not re-

quire bottom-up location proposals. Section 3 presents details of the proposed

method: patch-level Fisher vector embedding (Section 3.1), sparse localization
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models (Section 3.3) and first-order approximation of the patch contribution60

(Section 3.4), efficient determination of the patch-level response (Section 3.5)

and the recovery of bounding boxes (Section 3.6). Section 4 presents an ef-

fective semi-automatic procedure for collecting training images by exploiting

crowd-sourced GPS labels. Section 5 presents an experimental validation of

the proposed method on two datasets pertinent to the problem of automated65

road environment mapping. The datasets contain very small objects with much

intra-class variation, in front of information-abundant background. We achieve

good localization performance, comparable to strongly supervised approaches,

while using a sparse model that accesses only a small fraction of the visual

representation.70

2. Related work

Most of existing weakly supervised localization approaches mitigate the com-

putational complexity of weak supervision by relying on bottom-up location

proposals. These approaches typically adopt the following iterative structure:

i) train a discriminative model on the current guess of object locations in pos-75

itive images, ii) use that model to select a better guess for the next iteration.

This scheme optimizes a criterion that at least one (or exactly one [1, 7, 8, 12])

object is found in each positive image and that no objects are found in negative

images. The optimization has been formulated as multiple-instance learning

[6, 7, 4, 3, 1, 9] or end-to-end learning [10, 11]. All of these approaches may80

completely overlook small objects in training images, especially in traffic scenes

with rich backgrounds. In our preliminary experiments, a popular objectness

algorithm [1] consistently failed to produce accurate traffic sign locations in top

2000 proposals. Additionally, this kind of optimization is computationally very

intensive, which complicates training on large datasets.85

Another possible approach is to start optimization by discriminating entire

(or almost entire) images and then gradually zoom onto object locations through

iteration. One way to formulate this iteration is to present object locations as
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latent variables in a deformable part model framework [1]. Another approach

would be to construct an integral image of the patch scores and then find regions90

which maximize the classification score [12]. Both of these approaches do not

require bottom-up location proposals, however they are prone to convergence

issues, while not being able to handle training images with multiple objects.

Classification of entire images has also been used to kick-off subsequent MIL

optimization [3]. In each iteration, false positives of the current model are95

chosen as future negative samples, while future positive samples are set to top-

scored bottom-up location proposals. However, as above, reliance on bottom-up

location proposals may represent a liability in datasets with small objects.

Several recent approaches [13, 14, 2, 17] train weakly supervised localization

models by exploiting deep convolutional architectures without bottom-up pro-100

posals and MIL-like iterations. These architectures are pre-trained on ImageNet

and adapt the convolutional architecture for localization by converting fully con-

nected layers to convolutional ones. The approach [14] completes the pipeline

with global average pooling and fine-tunes all parameters with classification loss.

The approach [13] avoids fine tuning by appending two convolutional adaptation105

layers and training them for classification of max-pooled scores on the target

dataset. These approaches are attractive since they determine patch scores in a

single forward pass while retaining the capability for end-to-end learning. How-

ever, they require joint training for all classes while our approach requires only

the training of a distinct linear classifier for each class. Additionally, pooled110

convolutional features offer sub-optimal performance in popular architectures

with a fully-connected back-end [18]. Hence [2] propose to perform localization

by iteratively applying a fully-connected layer to down-sampled convolutional

representations extracted within the active location hypotheses. The iteration

is formulated as a beam-search under premise that better centered objects give115

rise to higher classification scores. Unfortunately, this is computationally much

more expensive than the approaches based on pooling [13, 14], since it requires

many forward passes through the network (additionally, beam search is not

guaranteed to converge). Recently, Zhu et al [17] propose to generate object-
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ness maps by iteratively accumulating confidence at the nodes that have high120

dissimilarity with their surroundings. The obtained objectness maps are then

projected back, and further jointly optimized with network parameters.

Similarly to [13, 14], we also avoid bottom-up proposals by pooling local

features. Our approach is perfectly suitable for end-to-end learning, although,

in this work, we show experimental results exclusively on raw convolutional fea-125

tures provided by the public parameterization of the architecture VGG-19 [18].

However, different from [13, 14, 17], we avoid losing classification power with re-

spect to the fully-connected case, by embedding low-level features (CNN, SIFT)

into the Fisher space [19, 3, 20]. Aggregation of Fisher-embedded convolutional

features has a very similar (if not larger) representative power as classical con-130

volutional networks terminated with fully-connected layers [21]. Thus we ob-

tain fair performance comparable to [2] and fast execution speed comparable to

[13, 14, 17] in spite of the high dimensionality of Fisher representation. We suc-

ceed to keep computational complexity tractable by reinforcing a group-sparse

classification model [22, 16, 23] and exploiting the first-order approximation of135

the patch contribution to the normalized Fisher vector of the image [16].

Recent work on zebra crossing localization [24, 25] is based on ad-hoc hand-

crafted features of appearance and shape. Line segments have been used in

[24] to detect zebra crossings in corresponding Google satellite and street-view

images acquired over a 1.6 km2 area in San Francisco1. A dataset of aerial140

images spanning across several countries has been proposed in [25], along with

a detection approach based on HOG and LBPH features. Both approaches

specialize for zebra crossings and require aerial imagery. On the other hand, our

method is applicable to perspective views of various object classes (as shown in

experiments on traffic signs and zebra crossings), while requiring only image-145

wide labels and no feature engineering whatsoever.

1In the process of acquiring the weakly supervised dataset for our experiments, we have

contacted Google regarding the San Francisco dataset [26]. The response was negative so we

acquired our dataset from other sources [27].
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3. The proposed weakly supervised localization method

We present a method suitable for learning a localization model from crowd-

sourced image-wide labels and geo-referenced video. The method is based on

Fisher-embedding of low-level features [28] and group-sparse [29] classification150

models. We train a sparse model on Fisher vectors of entire images and use

non-linear normalizations [30] to improve the classification performance. The

obtained classifier is applied at all image locations to identify patches which

contribute to the classification decision. A novel first-order approximation of

the patch-contribution to the classification score ensures inter-operability with155

normalizations implied by improved Fisher vector [30]. We succeed to achieve

near real-time performance due to fast evaluation of a group-sparse localiza-

tion model. Localization responses (bounding boxes or convex hulls) are finally

inferred by clustering positive patches.

3.1. Fisher vectors for weakly supervised localization160

We regard images as orderless bags of patch descriptors (e.g. SIFT, convo-

lutional features) to which we fit a generative Gaussian mixture model (GMM)

θ = {αi,µi,σi}Ki=1. Such model can be viewed as a visual vocabulary while its

components can be referred to as visual words. The probability density function

of a patch descriptor x can be stated as p(x|θ). At this point, we may represent

x as the gradient of the log-likelihood with respect to model parameters θ:

U(x|θ) = ∇θ log p(x|θ) . (1)

The score U(x|θ) succinctly describes the relation of the data point with respect

to the parameters of the generative model [31]. We obtain the Fisher vector

Φ(x|θ) by decorrelating the score [32]:

Φ(x|θ) = F(θ)−0.5 ·U(x|θ), where F(θ) = Ex[U(x|θ)U⊤(x|θ)] . (2)

The resulting representation captures first and second order statistics with re-

spect to GMM components, and as such corresponds to a quadratic function
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operating on low-level descriptors. Therefore, a linear classifier in the embed-

ded space corresponds to a smooth piecewise quadratic decision boundary in

the original space. However, besides being a quadratic kernel, the FV repre-165

sentation exhibits the following additional properties which make it especially

suitable for weakly supervised localization:

1. additivity for xi i.i.d.: Φ({xi}|θ) =
∑

i Φ(xi|θ)

2. vanishing expectation: Ex[Φ(x|θ)] = 0 ,

3. unit covariance: Ex[Φ(x|θ)Φ⊤(x|θ)] = I .170

We see that the representation of the whole image corresponds to the sum of

patch representations. This allows to reverse the stages of pooling and scoring

and to apply an image-wide linear classification model to locate patches respon-

sible for the image label. Additionally, the FV representation attenuates the

background information due to vanishing expectation. Equation (1) suggests175

that unusual datapoints ”surprise” the generative model and therefore exert a

strong influence to the aggregated representation. Thus, small distinctive ob-

jects stand a better chance to be noticeable in the image representation than in

other aggregation approaches.

3.2. Non-linear normalizations of Fisher vectors180

In this paper we use improved Fisher vectors [30] which involve power

and metric normalizations of the image representation. The power normal-

ization (signed square-rooting) is applied to each dimension Xd of the Fisher

vector as s(Xd) = sign(Xd)|Xd|ρ, with 0 < ρ < 1. The power normaliza-

tion can be understood in terms of a positive semi-definite kernel function185

K(X,X′) = ⟨s(X), s(X′)⟩, where computing the power norm “un-sparsifies”

the vector X and makes it more suitable for comparison with the dot product.

The power normalization also accounts for the assumption that the low-level de-

scriptors are i.i.d. [28]. The metric normalization projects the Fisher vector onto

the unit hyper-sphere by dividing it with
√
n(X) where n(X) =

∑
d s(Xd)

2.190

This accounts for the fact that different images contain different amounts of

background information [28].
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In our work, we also experiment with the intra-component normalization

[33, 23], where the ℓ2 normalization is separately applied to the parts of the

Fisher vector corresponding to different GMM components. In order to formally

define the intra-normalized Fisher vector of the image, we use Xk to denote the

part corresponding to the k-th visual word and write the corresponding ℓ2 norm

as n(Xk). Hence, given the GMM vocabulary with K components, the intra-

component normalized FV corresponds to:

1√
K

·
[
s(X1)

n(X1)

s(X2)

n(X2)
. . .

s(Xk)

n(Xk)

]
. (3)

The normalization with
√
K guaranties that ∥X∥ = 1, when at least one patch

is assigned to each GMM component.

3.3. Sparse models for classification and localization195

Given the set of Fisher vectors Xi and the corresponding image-wide la-

bels yi ∈ {−1, 1}, we train a linear classifier w by minimizing the following

regularized logistic loss function:

ℓ(w,X,y) =

N∑
i=1

log
(
1 + exp(−yi ·w⊤Xi)

)
+ λ · R(w) . (4)

In the above equation, N denotes the number of images in the training sub-

set, R(w) denotes the regularization function, while λ represents the trade-off

between the loss and the regularization. The most widely adopted choices for

R(w) include ℓ2(w) =
∑

j w
2
j , and ℓ1(w) =

∑
j |wj |. The ℓ1 regularization is of

particular interest since it favours sparse models [34, 35] in which the majority200

of coefficients is zero. Such bias expresses a prior that the majority of image rep-

resentation does not directly correspond to an instance of the considered object

class. This kind of prior is very desirable in weakly supervised localization of

small objects, since it discourages overfitting to soft contextual cues and allows

efficient patch scoring.205

However, ℓ1 regularization ignores two important pieces of prior information

specific to the classification of Fisher vectors. First, the contributions of par-

ticular object classes is typically concentrated in parts of the FV representation
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corresponding to only a few words from the visual dictionary. This happens

because feature extraction algorithms are designed or trained in a way that

low-level features found at particular object classes group in the feature space.

Second, the quickest way to process an image patch in our framework is to reject

it immediately after the soft-assign stage, by noticing that the model coefficents

are zeros at all components to which the patch contributes. Thus we see that

instead of opting for unstructured flat sparsity induced by ℓ1 regularization,

it makes much more sense to prefer structured component-level sparsity where

only coefficients corresponding to a few selected components are different than

zero [22, 16, 23]. This kind of sparsity may conveniently be encouraged by

supplying a regularization function defined as a sum of ℓ2 regularization within

components and ℓ1 regularization across components:

ℓ2,1(w) =
∑
k

ℓ2(w
k) . (5)

3.4. From image classification to patch-level scores

Let f(X) denote the classification score of the image representation X. Then,

the contribution of patch xi to the overall image score can be expressed as:

pcdirect(xi) = f(X)− f(X− x) . (6)

In the case of a linear classification model and un-normalized FV representation,

we have flinear(X) = w⊤X. Therefore, we can reverse the scoring and sum-

pooling operations and express the patch contribution as a simple dot product:

pclinear(xi) = flinear(X)− flinear(X− x) = w⊤xi (7)

In the case of improved FV [30], the linear image score can be expressed as:

f(X) = w⊤s(X)/
√
n(X) (8)

We see that non-linear normalizations described in Section 3.1 invalidate addi-

tivity of the Fisher representation and make the linear decomposition impossi-

ble: w⊤s(X)/
√
n(X) ̸=

∑
i w

⊤s(xi)/
√
n(xi). Instead the patch contribution
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may be computed directly, as in (6). This requires the following operations210

to be applied at each image patch: (i) subtracting the patch representation x

from the image representation X, (ii) applying the power and ℓ2 normalizations

onto the result, (iii) scoring with the model w and (iv) subtracting the obtained

score from the image score. Unfortunately, this procedure is computationally

very complex which makes its application to all image patches impractical. We215

therefore propose a first-order approximation which corresponds to taking the

dot-product between the un-normalized patch representation and the gradient

of the normalized image score.

We now derive the gradient of the classification score of the normalized

image representation w.r.t. non-normalized patch representation x. The partial220

derivative of the score w.r.t. an element of the non-normalized patch xd is given

by ∂f(X)/∂xd = ∂f(X)/∂X · ∂X/∂xd. The derivative of the non-normalized

image representation w.r.t. the d-th element of the patch FV corresponds to

the vector with all zero elements except the d-th which is equal to one. Hence,

the gradient w.r.t. the patch element xd is equal to the gradient w.r.t. image225

element Xd:

∂f(X)

∂xd
=

∂f(X)

∂Xd
=

ρ|Xd|ρ−1√
n(X)

(
wd −

s(Xd)f(X)√
n(X)

)
. (9)

For more details regarding the gradient derivation, the reader can refer to Ap-

pendix A. The above expression is undefined in cases where Xd = 0 (a rare case

since the full image FV are dense). In such cases, we set the derivative to zero

to ignore the impact of such dimensions.230

In the case of intra-component normalization, the classification score is a sum

of per-component classification scores: f(X) =
∑

k fk(X
k). Since the fk(X

k)

have precisely the same form as f(X) above, we can compute the gradients in

the same manner, per each component.

3.5. Efficient patch scoring with a sparse model235

The complexity of patch scoring can be subdivided into the following three

stages with similar computational complexity: i) computing the soft-assign
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p(k|x), ii) computing the FV, and iii) determining the patch contribution by

(6), (7), or (9). In this paper, we consider efficient implementation of the lat-

ter two stages for CPU architectures (efficient soft-assign is addressed in [36]).240

In the naive implementation, both of these two stages are O(NKD) where N

is number of patches, K is the number of components, while D is raw feature

dimensionality. We reduce that complexity by exploiting two kinds of sparsity.

The soft-assign sparsity refers to the fact that the GMM posterior is very sparse:

a majority of patches are dominantly assigned to only one GMM component.245

The model sparsity indicates that our models typically reference only a tiny

part of the representation as described in Section 3.3.

First, we find GMM components with significant soft-assign p(k|x) > 1/K

and denote their number with Ks. Due to soft-assign sparsity we typically have

Ks ≪ K. Second, we identify Kw non-zero blocks of the model w, where blocks250

correspond to the GMM components. In the case of a group-sparse regularizer,

Kw is directly influenced by the amount of regularization and we typically have

Kw ≪ K. At this point we can reject the patches that are not assigned to

any of the Kw selected components. This reduces the number of patches from

N to N ′ and, depending on the abundance of the object class, may result in255

very large speedups (N ′ ≪ N), similarly to the effects of the first few stages

of a cascaded classifier [37]. For the remaining N ′ patches we need to compute

only the parts of the Fisher vector which correspond to the intersection of Ks

assigned components and Kw components incident to the model. Therefore,

we need to compute Fisher vectors and patch contributions only for at most260

K ′ = min(Ks,Kw) components. Total complexity of these two stages for all

image patches is O(N ′K ′D), corresponding to a tiny fraction of the original

complexity.

This efficient procedure is equally applicable for linear scoring with the model

w and the gradient (9). The proposed procedure can also be applied for direct265

scoring (6) of intra-normalized patch representations. In this case the sparsity

of patch representation and the locality of intra-normalization ensure that only

the patches generated by the Kw selected components may result in non-zero
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scores.

Please note that the efficient procedure is not exact in the case of global270

normalization (8) and direct scoring (6), since the contribution outside the se-

lected Kw components alters the representation norm. Hence, this combination

requires exhaustive evaluation of the patch score which results in extraordinary

long execution times as we shall see in the experiments.

3.6. From patches to objects275

We extract low-level patches on several scales, embed them into high-dimensional

FV space and compute their contributions to the overall image score as described

in previous sections. We explore two different approaches for generating local-

ization responses from top-rated patches: (i) independent processing of each

particular scale, and (ii) combining per-scale responses in a unified heat map.280

3.6.1. Per scale approach

We build a spatial graph by connecting top T rated patches on each partic-

ular scale which overlap more than P%. Localization responses are generated as

a union of patches assigned to the particular connected component. Connected

components with less than N patches are removed from consideration. The285

main motivation behind this approach is to prevent co-occurring background

patches of different sizes to be recognized as objects. This approach has been

used to generate localization responses in experiments presented in Section 5.3,

which contains referent values for parameters T, P and N.

3.6.2. Multi-scale heat map approach290

We compute per-scale patch contributions at the resolution of the low-level

features, and up-sample them to the resolution of the full original image by

nearest neighbour interpolation. Let f(xi|c, s) denote the patch score at the

pixel xi for the class c obtained by up-sampling the scores of patches at the

scale s. The cumulative score f(xi|c) at each pixel xi is then computed as:

f(xi|c) =
∑
s

f(xi|c, s) . (10)
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In order to generate localization responses from the obtained unified heat map,

we consider pixels with a score greater than some threshold T. In practice, we set

T to be an average of all pixels with a positive score, i.e. T = 1/P ·
∑

i f(xi|c),

such that f(xi|c) > 0, where P denotes the number of such pixels. We group the

selected pixels into connected components and generate localization polygons as295

convex hulls of pixels in a particular component. This approach has been used

in conjunction with convolutional low-level features in Section 5.2.

4. Weak labels for road mapping

This section describes how to generate image-wide labels by matching crowd-

sourced location database such as OpenStreetMap [38] to geo-referenced video.300

4.1. OpenStreetMap data representation

The OpenStreetMap (OSM) database comprises three basic entities: nodes,

ways and relations [38]. An OSM node represents a point object defined by

its GPS coordinates, i.e. longitude and latitude. A way is defined as an or-

dered list of nodes and its purpose is to describe linear or area-like features305

(e.g. roads, rivers, buildings). A relation is defined as an ordered list of nodes,

ways or relations and its goal is to define logical or geographical relationships

(e.g. bus routes, turn restrictions or multi-polygons). Each of these entities

can be assigned a collection of tags which provide semantic meaning. Tags are

defined as key-value pairs, where keys are used to organize entities into differ-310

ent categories. In general, road-environment objects are designated with a key

”highway”. Some examples of tags include ”highway”=”traffic_signals” (used

to denote the traffic lights), ”highway”=”give_way” (used to denote the ”yield”

traffic sign) or ”highway”=”crossing” (used to denote the zebra crossing). OSM

entities [39, 40] can be accessed through the Overpass website [41] which pro-315

vides an interface to query the OSM database for specific features (e.g. zebra

crossings, rest area facilities or traffic signs).
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4.2. Geo-referenced video

Geo-referenced video consists of a file with video data in one of the standard

video formats, and a corresponding text file containing spatio-temporal infor-320

mation such as time, GPS location and camera direction. There are numerous

ways on how to acquire a geo-referenced video [42] including GPS enabled cam-

eras and camcorders, or smartphone applications like Mapillary [43] or Open-

StreetView [44]. In this paper, we used geo-referenced video sequences delivered

by the E-roads projects for Croatian cities of Karlovac and Sisak [27]. The ob-325

tained material consists of 1536 videos captured by different cameras, ranging

from high resolution 1080p to 720p devices. Each video sequence is assigned a

corresponding text file in a JSON format, where each JSON object contains an

array of GPS coordinates and a time offset from the beginning of the video, e.g.

{”coordinates”: [15.603174, 45.478279], ”time”: 53.5}. The frequency of the330

GPS sampling depends on the underlying video and ranges from 5Hz to 0.5Hz.

The frame rate of video sequences is 25 fps.

4.3. Matching OSM objects to geo-referenced videos

We use the OSM nodes tagged as ”highway”=”crossing” and match them to

geo-referenced video sequences to obtain positive training images with weak la-335

bels. In order to improve performance, we preprocess the list of spatio-temporal

coordinates (GPS location, time offset) assigned to the video, by partitioning it

into segments g of at least 5m in length. These segments are used to quickly

locate the pertinent part of the video, as illustrated in Figure 1.

For each OSM node n, the matching algorithm considers all segments gi340

which are i) in a 10m radius around n, and ii) closer to n than the neighbouring

nodes gi−1 and gi+1. On each such segment we find the GPS reference pn which

is closest to n. This can be seen as an approximate projection of n onto gi.

Subsequently we take T snapshots from the video every ∆d meters backward,

in order to retrieve images for which the desired object is visible and close to345

the viewpoint. The whole procedure is summarized in Algorithm 1.
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Figure 1: Matching the OSM node with osm_id = 2043645281, located at n = 45.487347 N,

15.556345 E to geo-referenced videos V1 and V2. The first step of matching selects segments

g12 and g21. We detail the second step for the segment g12: i) a GPS reference closest to

n is located and designated as pn, ii) each of T=2 images is extracted by following the path

backwards for ∆d=3m.

Algorithm 1 Matching OSM objects to geo-referenced videos
Parameters:

T : number of images per each occurrence of the desired OSM node,

∆d: desired spatial distance between images;

Input:

OSM node n=(lat, lon),

Videos V = (F,G) where

i) F = {Ii,pi}: video frames and the corresponding GPS references

ii) G = {gj}: piecewise linear approximation of {pi}

(each gj represents a range of GPS references {pk}, k ∈ gj)

1: For all videos V = (F,G)

2: For all gj ∈ G : ∥gj − n∥ < min(∥gj−1 − n∥, ∥gj+1 − n∥)

3: find n = argmink∈gj ∥pk − n∥,

4: if ∥pn − n∥ > 10m

5: continue

6: For t ∈ 1, 2, . . . T

7: find it = argmini(t ·∆d−
∑n

k=i+1 ∥pk − pk−1∥)2

8: if it = 0

9: break

10: extract image Iit

Return: extracted images with the label ”object”16



In order to account for discrepancies between the OSM geometry and GPS

data, we set T=3 and ∆d=3m. Due to various kinds of uncertainty involved

(errors in GPS references, imprecise OSM tags, etc.) the proposed algorithm

may also extract some images without an object of interest. The prevalence350

of such images in the case of zebra crossings was around 15%. In the actual

experiments, we filter such images out by manual inspection. An interesting

direction for future work would be to fully automate the process by omitting

the manual filtering and learning the desired visual concept from noisy labels.

5. Experimental evaluation355

We evaluate the proposed workflow on two kinds of traffic infrastructure: ze-

bra crossings and triangular warning signs. We compare efficiency of two kinds

of local features and quantify the localization accuracy with average precision

(AP) [45] for various IoU thresholds. Experiments show that our method suc-

ceeds to localize objects of varying size, both very small and large, in rich traffic360

scenes. Besides the recognition accuracy, we also measure the execution time

spent in scoring of feature embeddings as the critical part of the localization

pipeline.

5.1. Implementation details

We perform experiments on two kinds of local features: VGG conv5_4 [18]365

and dense SIFT [46]. We extract approximately 80·103 128-D SIFT descriptors

per image at 4 scales for traffic signs and 5 scales for zebra crossings. The

smallest patch size was set to 16 (traffic signs) and 32 (zebra crossings) pixels,

while the stride was always set to 1/8 patch width. Subsequently, the descriptors

are ℓ2 normalized and projected onto an 80-D principal component subspace.370

VGG conv5_4 features correspond to 512-dimensional activations from the

conv5_4 layer of the deep convolutional model VGG-19 [18]. We use the pro-

vided parameters trained on ImageNet and abstain from fine-tuning [14, 10, 17]

in order to avoid catastrophic forgetting [47] and preserve applicability to a
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diverse set of object classes. In the case of zebra crossings, we extract VGG375

conv5_4 features at 3 scales obtained by rescaling the image by factors 2s where

s ∈ {0,−0.5,−1} [18]. In the case of traffic signs we use single scale s = 0.

We embed the extracted local features into Fisher vectors with respect to

GMMs with diagonal covariances, trained with the EM implementation from

Yael [48]. We used KSIFT = 1024 and KVGG = 128 components. Doubling380

these figures did not produce noticeable effects on a held-out dataset. The

dimensionalities of the Fisher vectors are 164864 (SIFT) and 131200 (VGG).

We aggregate local Fisher vectors into image descriptors and apply different non-

linear normalizations [30]. Both local and image-wide Fisher vectors are scored

with linear models trained by SPAMS [49], as described in Section 3.3. The385

regularization hyper-parameter λ was determined by 10-fold cross-validation.

5.2. Zebra crossings

Experiments on zebra crossings provide a proof of concept for the road map-

ping scenario presented in Section 4. We detail the semi-automatic dataset

acquisition procedure, present classification and localization experiments, and390

discuss the experimental results. We first present experiments on VGG conv5_4

features extracted from the dataset with noiseless labels. Experiments on SIFT

descriptors and noisy labels are presented towards the end of this section.

5.2.1. Dataset

We collected the images from geo-referenced video obtained in the scope of a395

public road mapping project [27]. We recovered the locations of zebra crossings

by querying the OpenStreetMap (OSM) database with a ”highway=crossing”

tag using the Overpass API interface [41]. We matched the object locations

to geo-references of the video frames as described in Section 4. For each OSM

entry, we extracted on average 6 images taken from different videos and different400

distances to the object, and rescaled them to the lowest common resolution 1280

× 720. In this way we recovered 1259 noisy positive images and 1122 negative

images by random selection far from OSM entries. The extracted images depict
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Figure 2: Top row: images extracted for the query osm_id 981409265 located at 45.483031

N, 15.546749 E. From left to right: an image in which the zebra crossing was freshly painted,

an image acquired from a bicycle, a close-up image in which the crossing was worn-out, and

another image from that video taken 20 metres from the crossing. Bottom row: negative

images contain many objects with patterns which are similar to zebra crossings.

objects under different perspectives and various weather conditions as shown in

Figure 2.405

We produced a clean version of the dataset by manual filtering of the 1259

noisy positives into 1067 positives and 192 negatives, and by manual verification

that the 1122 negatives do not contain an unmapped object. The cleaning

procedure took around 20 minutes. We split both versions of the dataset into

roughly equal train and test subsets by taking care that all physical objects are410

assigned to the same subset.

In order to evaluate the localization performance, we annotated the ground-

truth object locations in the test set with polygonal approximations. Some of

the test images contain several objects at different distances from the camera.

For the sake of completeness, we annotated all of them, even the smallest ones.415

Details concerning the statistics of annotated objects with respect to the image

area are shown in Table 1. Hence, from 484 positive test images we obtained

674 object annotations, where 337 images contain a single object, 120 of them

contain 2 objects, 14 contain 3 objects and another 13 contain more than 3

objects. The complete dataset shall be made public upon publication of this420

manuscript.
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Table 1: Annotated object size statistics for the zebra crossing dataset. The first column

contains the object size intervals expressed in percentages of an image area. The second

column indicates the overall share of objects in the corresponding size interval.

Relative object size Frequency

<1% 30%

2% − 7% 48%

>7% 22%

5.2.2. Classification with VGG conv5_4 and noiseless labels

These experiments evaluate effects of cross-validated regularization and non-

linear normalization to the classification AP. The first section of Table 2 (rows

#1-#3) assumes that images are represented with raw Fisher vectors. We notice425

that the ℓ2,1 regularization succeeds to induce a five-fold increase of component-

level sparsity with respect to ℓ1 regularization, which shall be especially useful

in localization experiments.

Table 2: Classification of zebra crossings with different FV normalizations (p: power, ℓ2 global,

ℓ2 intra) and regularizations (ℓ1, ℓ2, ℓ2,1: ℓ2 inside component, ℓ1 between components).

Average overall density (AOD) and average component density (ACD) denote percentages of

non-zero model coefficients and non-zero model coefficient groups, respectively.

Nr. FV norm. Penalty AOD ACD AP train AP test

1 - ℓ2 77.4 100.0 97 95

2 - ℓ1 2.1 78.9 94 95

3 - ℓ2,1 8.5 14.8 95 95

4 p, ℓ2 global ℓ2 77.4 100.0 100 97

5 p, ℓ2 global ℓ1 0.2 30.5 100 98

6 p, ℓ2 global ℓ2,1 3.8 7.0 100 98

7 p, ℓ2 intra ℓ2 77.4 100.0 100 97

8 p, ℓ2 intra ℓ1 0.1 21.1 97 98

9 p, ℓ2 intra ℓ2,1 2.6 4.7 100 98
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The next section (rows #4-#6) considers models trained on Fisher vectors

with power and global ℓ2 normalization. We notice that non-linear normaliza-430

tions increase the classification performance (all models) and the component-

level sparsity (ℓ1 and ℓ2,1). We believe that non-linear normalizations promote

the model sparsity by decreasing the range of Fisher vector elements and there-

fore encouraging the model to bring decisions by testing presence instead of

testing the aggregated value. Finally, we consider intra-component ℓ2 normal-435

ization (rows #7-#9). This technique works especially well in conjunction with

the group-sparse ℓ2,1 regularization, since the combined model retained only 5%

of GMM components while reaching the same level of classification performance

as in the case of global ℓ2 normalization (rows #4-#6).

To summarize, the sparse models achieve comparable or better results with440

respect to their dense counterparts, despite the fact that they utilize only a tiny

fraction of the visual dictionary. Non-linear normalizations boost the perfor-

mance on the test dataset up to 3 percentage points (pp).

5.2.3. Localization with VGG conv5_4 and noiseless labels

In these experiments, we train the model on entire images, apply it to all445

image patches at multiple scales, and recover objects as described in Section 3.

In order to compensate for large variability in scale and semi-automatic dataset

generation, we first use a permissive IoU threshold [45] of 0.10 while other IoU

thresholds shall be considered in one of the following paragraphs. The obtained

results are summarized in Table 3 and Figure 3.450

The first section of Table 3 (rows #1-#3) shows that sparse models outper-

form the dense baseline (ℓ2) for up to 16 pp in AP and 15 pp in pmiss. We also

note that the ℓ2,1 model (row #3 in Table 3) outperformed the ℓ1 model (row

#2), despite employing much less GMM components. The first row in Figure 3

reflects that result: the ℓ2,1 model (right) selects less background pixels than455

the ℓ1 and ℓ2 models. This advantage was consistent in all our experiments

and supports the hypothesis outlined in Section 3.3 that the ℓ2,1 model may

perform better due to agreement with the group structure of the Fisher vector.
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Table 3: Localization of zebra crossings with different configurations (M: direct patch contribu-

tion, G: gradient) and FV normalizations. pmiss denotes the miss frequency at the rightmost

data point of the PR curve. top denotes the average time required to compute the scores

for the selected patches. For gradient configurations (rows#6-#7), we show the speed-up

w.r.t. corresponding row with direct patch contribution.

Nr. Conf. FV norm. Penalty ACD AP test pmiss top/s speed-up

1 M - ℓ2 100.0 76 0.46 26.6

2 M - ℓ1 100.0 91 0.33 19.1

3 M - ℓ2,1 14.8 92 0.31 2.8

4 M p, ℓ2 global ℓ2,1 7.0 92 0.27 29.8

5 M p, ℓ2 intra ℓ2,1 4.7 93 0.25 0.8

6 G p, ℓ2 global ℓ2,1 7.0 90 0.28 1.0 28.8×

7 G p, ℓ2 intra ℓ2,1 4.7 92 0.25 0.3 2.7×

Hence, we include only the results of ℓ2,1 models in the rest of the table. The

middle section of Table 3 (rows #4-#5) employs normalized Fisher vectors and460

computes the patch contribution directly as f(X) − f(X − x). This further

decreases the pmiss frequency and selects fewer pixels in the background as con-

firmed by rows 2 and 3 in Figure 3. We notice that the best localization result

(93% AP and 0.25 pmiss) is obtained by intra-component ℓ2 normalization which

constrains the influence of unusual patches to the components with significant465

soft-assign probability. We also note that intra-component ℓ2 normalization

has a negative effect when ℓ1 regularization is used. We believe this happens

because ℓ1 regularization disrupts the component structure of the Fisher vector

and thus makes intra-component normalization counter-effective for localization

purposes. The final section of Table 3 (rows #6-#7) evaluates the effects of the470

gradient approximation (9) to the configurations from the previous section (rows

#4-#5). The results show that the performance hit is minimal: up to 2 pp drop

in AP, and up to 1 pp increase in pmiss. We arrive to the same conclusion by

performing a qualitative comparison between rows 2-3, and rows 4-5 in Figure 3.
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Failure cases. Figure 4 shows representative examples of our best configuration475

(row #5 in Table 3). The correct localization polygons are shown in yellow,

incorrect ones are shown in red while ground truth polygons for the missing

localizations are shown in magenta. Our method is able to localize objects

taken from different viewpoints (frontal, lateral) as well as worn-out objects

(cf. row 1, far right). Most false negatives (80%) correspond to extremely small480
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Figure 3: A comparison of multi-scale heat maps for different non-linear normalizations (rows)

and different regularizations (columns). The input image contains 2 zebra crossings: one in

the lateral position very close to the viewpoint, and another one in the frontal position 10

meters from the camera. Magenta polygons denote the ground truth instances; they are used

for evaluation purpose only. Yellow polygons denote the resulting localization responses.
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objects far away from the viewpoint. The remaining false negatives arise in

images with adjacent objects (ground-truth polygons are touching each other)

where our method reports one instead of two or more objects (cf. rows 2 and

3, far right). The average size of the missed objects corresponding to the first

Figure 4: Localization results on test images: correct localization polygons (yellow), false

postive responses (red), and ground-truth polygons for false negatives (magenta).

failure type is 4573 px, which is only 0.5% of the total image. As we already485

pointed out in Section 3, such failures are not critical for accurate road mapping

where we care most about the objects which are close to the viewpoint.

IoU threshold. Figure 5 explores the influence of the IoU threshold to the lo-

calization performance for our best configuration (row #5 in Table 3). The

left subfigure shows the counts of objects and the corresponding average IoU490

depending on the ground-truth size interval. The graph reveals that most of

objects which are missed for IoU < 0.1 are smaller than 104 pixels which cor-

responds to 1% of the image size. The right subfigure shows the effect of the

IoU threshold to average precision and the miss frequency for objects which are

greater than 104 pixels. The graph shows that the increase of IoU threshold495

results in gradual decrease of AP and increase in pmiss. Setting IoU to 0.3 re-

sults in 80% AP and 0.3 pmiss, which is still a fairly good localization accuracy

in a weakly supervised setting. Further increase of the IoU threshold severely

degrades the AP due to false negatives and failures to distinguish nearby objects.
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Figure 5: Influence of the IoU threshold to the localization AP performance on the zebra

crossings dataset for the configuration #5 from Table 3. Left: distribution of objects over a

range of ground-truth area intervals. For each ground-truth area range, we report the average

IoU. Right: the effect of the IoU threshold on AP and pmiss for objects greater than 1% of

the image area.

Execution time. Finally, we provide a brief analysis of the execution profile. We500

extract on average 6344 CNN features per image, which takes around tlf = 1

s on an NVidia GTX 980 GPU. All subsequent processing is performed on a

single CPU core of a 2.00 GHz Intel Xeon E5-2620. Computing the soft assign

probability for the extracted features takes tsa = 0.11 s. The times tlf and tsa are

constant for all configurations. Our Python implementation takes on average505

1.9 s per image (tlf + tsa + top) for our best configuration in terms of AP (row

#5 in Table 3). The gradient approximation further reduces that time to 1.4 s

with a small penalty on the localization AP (row #7 in Table 3).

We conclude that ℓ2,1 models are faster than their ℓ1 counterparts due to a

better chance of having an empty intersection with the Fisher vector of image510

patches (improvement over ℓ2 models is even larger). Intra-component nor-

malization further decreases the processing time since it allows to pre-compute

most components of f(X− x) when patch contributions are computed directly.

Finally, the gradient approximation allows to score a patch with a simple dot

product. Gradient approximation works very well with intra-component nor-515

malization since the latter preserves the sparsity of ∂f(X)/∂xd and therefore

leads to empty intersections for most patches. When compared with the base-
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line (row #1 in Table 3), our fastest configuration (row #7 in Table 3) leads to

89-fold improvement in top or about 20-fold improvement in overall execution

time.520

5.2.4. Comparison with SIFT and noisy labels

Table 4 further explores our best configuration in terms of localization AP

by presenting results with different features and noisy labels. For convenience of

comparison, the row #1 repeats the results from the row #5 in Table 3. The row

#2 shows effects of replacing VGG conv5_4 features with dense SIFT features.525

The results show that our weakly supervised pipeline is able to successfully

accommodate different kinds of local features on this dataset. The row #3

shows effects of training the model on raw image dataset obtained by sampling

the geo-referenced video at GPS locations provided by crowdsourced OSM tags.

The raw dataset contained significant noise in positive labels since around each530

9th positive image in the training set was in fact a negative (we used a clean

test dataset in all experiments). Nevertheless the obtained results show that

this leads to only a slight decrease (1 pp) in localization AP. We hypothesize

that this robustness is due to regularization imposed by the ℓ2,1 penalty and

the low capacity of the chosen classification model. This suggests that fully535

automated road environment mapping is feasible.

Table 4: Comparison of our best configuration in terms of localization AP (row #5 in Table

3) with the results obtained with different features and noisy labels. All experiments use

ℓ2,1 regularization, and direct computation of the patch contribution. Experiments on VGG

conv5_4 use intra-component normalization, while experiments on traffic signs use raw Fisher

vectors.

Nr. Features Training set ACD AP test pmiss top/s

1 VGG conv5_4 noiseless 4.7 93 0.25 0.8

2 SIFT noiseless 4.1 95 0.26 0.9

3 VGG conv5_4 noisy 3.9 92 0.25 0.7
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5.3. Traffic signs

Experiments on traffic signs explore the capability of our approach to deal

with extremely small objects. We focus on 33 different kinds of European tri-

angular warning signs [50] which we treat as a single object class in weakly540

supervised localization experiments. We first present experiments on SIFT fea-

tures, while the comparison with VGG conv5_4 is presented in the subsequent

subsection.

5.3.1. Dataset

We use a public traffic sign dataset [51] and adapt it for weakly supervised545

localization2. The adapted dataset contains 1705 train and 1591 test images.

Most images contain only one traffic sign while around 16% images contain two

traffic signs. The train and test subsets are disjoint: all physical object are

present in only one subset. The main challenge in this dataset is object size,

since many instances are less than 30×30 pixels large (0.2% of image size). All550

images are correctly labeled and they have the common resolution 720×576.

5.3.2. Classification with SIFT features

Classification experiments evaluate effects of cross-validated regularization

and non-linear normalization. The results are summarized in Table 5. Group

sparse models (ℓ2,1) outperform alternatives (ℓ1 and ℓ2) in all configurations,555

both with respect to generalization performance (AP test) and average com-

ponent density (ACD). This can be observed in rows #1-#3 which address

classification with unnormalized Fisher vectors. Similar effects occur with nor-

malized Fisher vectors as well, however in that case we only show the group

sparse models in order to save space (rows #4-#5). We achieve the best clas-560

sification performance with global normalization (row #4, 81% AP), however,

intra-component normalization is only marginally worse (row #5, 80% AP).

2The adapted traffic sign dataset can be downloaded from

http://multiclod.zemris.fer.hr/ts2010a.shtml
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Table 5: Image classification performance for traffic signs with different FV normalizations

(p: power, ℓ2 global, ℓ2 intra) and regularizations (ℓ1, ℓ2, ℓ2,1: ℓ2 inside component, ℓ1

between components). AOD (average overall density) denotes the percentage of non zero

model coefficients (out of 164 865 total). ACD (average component density) denotes the

percentage of non-zero model components (out of 1024 total).

Nr. FV normalization Penalty AOD ACD AP train AP test

1 - ℓ2 92.8 100.0 100 66

2 - ℓ1 0.1 6.1 87 71

3 - ℓ2,1 1.0 1.1 83 75

4 p, ℓ2 global ℓ2,1 1.1 1.1 87 81

5 p, ℓ2 intra ℓ2,1 0.8 0.8 85 80

5.3.3. Localization with SIFT features

We follow the same experimental setup as in the case of zebra crossings.

Table 6 shows the obtained results. Due to the fact that the traffic sign dataset565

[51] contains ground truth bounding boxes for both train and test splits, we

were able to train a strongly supervised baseline [52] (row #1). We employ

the standard OpenCV implementation and invoke it through Python interface

cv2.HOGDescriptor.detectMultiScale. We configure the baseline approach

for high accuracy, by adjusting parameters of the sliding window according to570

the range of scales at which the traffic signs appear in our dataset. Thus we

extract the HOG features at 64 different scales ranging from 24×24 to 160×160

(the inter-scale factor was set to 1.03), while the stride was set to two pixels.

In comparison to our best weakly supervised result (row #7: 92% AP, 0.15

pmiss), the strongly supervised baseline achieves worse AP (88%) and better575

miss frequency (only 5% of objects were not found). However, please note that

we extract local features on only 4 scales, which is 8 times less than the baseline

(64 scales).

Experiments with weakly supervised models support our hypotheses (i) that

sparse models are a good match for weakly supervised localization, and (ii)580
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Table 6: Localization performance for traffic signs. Configuration B denotes strongly su-

pervised baseline (HOG [52]); the respective execution time includes both top and tlf . The

remaining notation is the same as in previous tables.

Nr. Conf. FV Norm. Penalty ACD AP test pmiss top/s speed-up

1 B - l2 - 88 0.05 10.0

2 M - l2 100.0 66 0.27 8.9

3 M - l1 6.1 81 0.21 1.9

4 M - ℓ2,1 1.1 84 0.23 0.1

5 M p, ℓ2 global ℓ2,1 1.1 92 0.15 27.1

6 M p, ℓ2 intra ℓ2,1 0.8 88 0.13 0.3

7 G p, ℓ2 global ℓ2,1 1.1 87 0.15 0.1 226.0×

8 G p, ℓ2 intra ℓ2,1 0.8 86 0.12 0.1 4.5×

that gradient approximation retains localization accuracy and gains execution

speed. The second section (rows #2-#4) shows that the sparse models (ℓ1,

ℓ2,1) substantially outperform the dense baseline (ℓ2). Recognition performance

is further improved by non-linear normalizations. Similarly to zebra crossings,

intra-component ℓ2 normalization yields a better pmiss. Contrary to zebra cross-585

ings and similarly to classification results, intra-component ℓ2 normalization

yields a lower AP. Experiments with the gradient approximation (rows #7-#8)

achieve slightly worse AP than direct patch contribution (rows #5-#6). Nev-

ertheless, gradient approximation of intra-component normalization (row #8)

yields the best pmiss performance in all weakly supervised experiments.590

Failure cases. Figure 6 shows the results of our best configuration (row #5 in

Table 6). The first row shows that our method is able to successfully localize

very small objects in both urban and rural traffic scenes. The second row shows

two types of failure cases: (i) false positives appearing as parts of house roofs

or other traffic signs seen from behind (the first two images in the second row),595

(ii) cases where top rated patches are located on objects, but either the patch
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Figure 6: Examples of localization results for traffic signs: the top row shows correct localiza-

tions, the bottom one shows examples of failure cases. Localization responses are shown as

yellow rectangles, the ground truth annotations (used for evaluation purpose only) are shown

as red rectangles, centers of top rated patches are illustrated as yellow dots. The images are

shown using grayscale colormap to emphasize the locations of top rated patches.

connectivity is insufficient, or there are too few patches to form a bounding

box. These problems could be mitigated by exploiting the spatial relationship

between the visual words to rule out patches in the background [16].

Execution time. As in the case of zebra crossings, we perform all experiments600

on a single core of a 2.00 GHz Intel Xeon E5-2620 CPU. We extract on average

87 ·103 patches from the input image, which takes tlf = 0.7 s. The soft-assign

step takes approximately tsa = 3.7 s, which is a 33-fold increase with respect to

the setup used for zebra crossings. This increase is a combined effect of (i) a 14-

fold increase in the number of features, (ii) an 8-fold increase in the number of605

components (1024 vs 128) and (iii) a 6-fold decrease in feature dimensionality

(80 vs 512). As in the case of zebra crossings, group sparsity and gradient

approximation substantially decrease the execution time. Processing an image

with the configuration #8 (cf. Table 6) takes on average 4.4 s which is more

than two times faster than the strongly supervised HOG approach.610
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5.4. Comparison with related work

We compare our best configurations from Tables 3, 4 and 6 with the re-

lated approach [13] which is similar to our work since it also refrains from

fine-tuning pre-trained convolutional features. However, instead of Fisher em-

bedding and linear classification, they postprocess convolutional features with a615

mini-net comprised of two adaptation layers which are subsequently pooled and

trained with the maximum likelihood classification loss. The adaptation layers

are implemented as convolutions 3×3×D×2048 and 3×3×2048×C, where D is

dimensionality of input features, while C is the number of classes. We have

obtained best results by performing the following changes to the original setup620

[13]: i) we replaced the global max pool [13] with global average pool [14], ii) we

trained with dropout regualrization in both adaptation layers, iii) for fairness,

we use the same convolutional front-end as in our experiments (VGG conv5_4).

The results are summarized in Table 7.

Table 7: Comparison of our best localization results with the related approach [13] on both

datasets. We repeat the best results from Table 3, Table 4, and Table 6, and provide additional

experimental results on traffic signs with VGG conv5_4 features (row #4).

Nr. Dataset IoU Features Aggreg. & scoring AP test pmiss

1 zebras 0.1 VGG conv5_4 FV + linear 93 0.25

2 zebras 0.1 SIFT FV + linear 95 0.26

3 zebras 0.1 VGG conv5_4 mini-net [13] 85 0.38

4 signs 0.5 VGG conv5_4 FV + linear 39 0.72

5 signs 0.5 SIFT FV + linear 92 0.15

6 signs 0.5 VGG conv5_4 mini-net [13] 17 0.89

The first section (rows #1-#3) contains experiments on zebra crossings625

(IoU=0.1) while the second section (rows #4-#6) presents experiments on traf-

fic signs (IoU=0.5). Our approach produced better localization results on both

datasets. The results on traffic signs show that convolutional features pre-

trained on ImageNet are unable to locate very small objects such as traffic
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signs. These results would improve after fine-tuning, however that would ad-630

versely affect the scalability of the approach and simplicity of training. The

results on both datasets show that SIFT features are able to outperform pre-

trained convolutional features in the cases of very small objects and objects with

simple structure.

Finally, we present weakly supervised localization experiments on Pascal635

VOC 2012. As we shall see, this dataset is not very well-suited for our method

due to strong classification cues provided by context. Nevertheless, we present

these results in order to enable comparison with other methods on this widely

used dataset. As in Table 7, we compare our method with a mininet comprised

of two 3×3 adaptation layers initialized from scratch [13]. The mininet is applied640

to VGG conv5_4 features, and trained with dropout and average pooling. As

in Table 7, the max pooling variant resulted in very poor generalization. Log-

mean-exp pooling was better than max-pooling, but still worse than average

pooling which we used in the end. We believe these difficulties are due to differ-

ent features [13] and much less training data than in [14]. Our method embeds645

VGG conv5_4 features into a Fisher space according to a GMM with 64 com-

ponents (doubling this led to same results). We employ the best configuration

from Table 3: power and intra-component normalization and cross-validated ℓ2,1

regularization. Our experiments measure the localization AP for the strongest

per-class response [13]. The results are summarized in Table 8.650

Table 8: Comparison of our method (FV) with the mininet approach [13] (MN) on Pascal

2012 val. We report classification (C) and localization performance (L). The localization

performance considers only the strongest per-class response [13]. Both approaches operate

on VGG conv5_4 features. In order to account for context, we postprocess our per-class

responses by 6 convolutions with the 3×3 mean filter.

mAP

FV C 98 88 95 90 72 93 86 98 77 85 71 97 92 92 97 65 90 72 96 89 87.1
MN C 99 88 96 90 72 93 85 98 76 87 67 97 92 92 97 61 89 67 97 84 86.2

FV L 90 83 89 45 55 84 68 93 45 60 46 94 78 80 88 39 77 52 79 75 71.0

MN L 94 84 91 75 62 86 76 95 44 66 42 95 81 82 93 50 76 43 87 77 75.0
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Clasification results are presented in the first two rows of the table where we

see that Fisher vectors outperform mininet for 0.9pp. This is remarkable, since

the employed FV pipeline has much less parameters than the mini-net approach

(128 000 vs more than one million). Unfortunately, most of our models were

dense (ACD > 50%) which makes them unsuitable for localization. This is655

reflected in the localization results where mininet outperforms our approach for

4pp with the exception of the class sofa where a semi-dense model was selected

(ACD = 50%). These results show that our method is suitable for datasets such

as those from our main experiments, where the object class can not be inferred

from context.660

5.5. Discussion

We have evaluated the performance of our method on two different datasets.

In both cases, the experiments point out four facts: (i) sparse models achieve

better localization accuracy with faster run-time, (ii) non-linear normalizations

increase the localization performance of sparse models, (iii) the gradient approxi-665

mation achieves comparable localization accuracy while substantially improving

the run-time, and (iv) intra-component normalization increases the sparsity and

improves pmiss when used in conjunction with group-sparse regularization while

otherwise achieving negative effects.

We also note certain differences between the two datasets. For the classifi-670

cation task, the sparse models outperform the dense models on traffic signs (up

to 9 pp), but achieve comparable performance on zebra crossings. For the lo-

calization task, the sparse models achieve better performance on both datasets.

In the case of zebra crossings, there are other objects which commonly appear

in positive images (e.g. traffic signs, traffic lights, or road surface markings).675

Hence, dense models are able to compensate the loss of focus by relying on con-

text. Classification performance of zebra crossings is much better than for traffic

signs (97% vs 81%). This performance gap can be explained as follows: (i) zebra

crossings are in general larger than traffic signs and as such produce a larger

contribution to image representation, (ii) other objects co-occurring with zebra680
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crossings in positive images provide additional classification evidence. Clearly,

these co-occurring distractors make weakly supervised localization harder. For-

tunately, their impact can be alleviated with sparse models. Results from Table

3 and Figure 3 show that sparse models are able to identify patches on zebra

crossings as the ones responsible for the image label, while dense models are not685

able to ignore other content characteristic for positive images. Finally, nonlin-

ear normalizations improve both the localization AP and pmiss on traffic signs,

while on zebra crossings they yield comparable AP and only decrease the miss

frequency.

The overall execution time for zebra crossings is 3 times faster than for traffic690

signs. This discrepancy is due to soft-assign stage being 33 times slower in the

case of traffic signs. Our detectors may be accellerated further by using the fast

approximation of the GMM soft-assignment, as proposed in [36]. We leave this,

however, for future work.

6. Conclusion695

We have presented a novel weakly supervised localization method based on

(i) Fisher embedding of local features (CNN, SIFT) and (ii) component-level

sparsity induced by ℓ2,1 regularization. The Fisher embedding allows weakly

supervised training of localization models by employing image-wide labels. The

induced model sparsity reduces overfitting and enables fast evaluation by effec-700

tive reduction of the representation dimensionality. This dramatically improves

localization accuracy over the dense Fisher vector baseline (16 pp for zebra cross-

ings, 21 pp for traffic signs) and leads to a huge gain in the execution speed since

our models use only a fraction of image representation (5% for zebra crossings,

1% for traffic signs).705

In order to make this approach compatible with power and metric normal-

izations employed in the improved Fisher vector, we have proposed two method-

ological novelties. First, we have introduced a first-order approximation of the

normalized FV score, which allows to determine the patch-level contribution
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by a simple dot product. This approximation achieved comparable localization710

accuracy with respect to the direct approach, while gaining a huge overall ex-

ecution speedup (around 200% on the traffic sign dataset). Second, we have

proposed to use intra-component metric normalization in conjunction with the

component-level sparsity. This setting further increased the model sparsity and

reduced the localization miss frequency.715

We have evaluated our method on two challenging road mapping datasets.

First, we have introduced a novel dataset containing 2381 images of zebra cross-

ings obtained by semi-automated matching of OpenStreetMap data (longitude,

latitude) to GPS references of video frames. Second, we also show experimental

results on an adapted version of a public traffic sign dataset [51]. Our study has720

shown that reliable general purpose object localization models can be trained

from geo-referenced video and crowd-sourced image-wide labels provided by ser-

vices such as OpenStreetMap, despite weak supervision signal provided by these

resources. These localization models can be applied in automated road safety

inspection and other kinds of road-environment mapping.725
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Appendix A. Gradient of the normalized image score

In this appendix, we derive the expression for gradient approximation given

by the equation (9). We consider X to be an un-normalized full image Fisher

vector, and Xd to be a d-th dimension of the corresponding vector. The Fisher
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vector X is first normalized over each dimension d with the power normalization

s(X) = sign(X)|X|ρ. The partial derivative of the vector s(X) with respect to

Xd is given by:
∂s(X)

∂Xd
= [0 . . . ρ|Xd|ρ−1 . . . 0] . (A.1)

After the power normalization, we apply the metric normalization by dividing735

with the square root of n(X) = s(X)⊤s(X). Throughout this appendix, we

assume the global ℓ2 normalization for the sake of simplicity. The proposed

reasoning also holds for intra-component normalization, where we substitute

the n(X) with n(Xk), where Xk corresponds to the k-th Gaussian statistics

from the descriptor X. The partial derivative of the scalar n(X) with respect740

to Xd is given by:

∂n(X)

∂Xd
= 2s(Xd)

∂s(Xd)

∂Xd
(A.2)

= 2s(Xd) ρ|Xd|ρ−1 . (A.3)

The classification score of the normalized image FV is computed as f(X) =

w⊤s(X)/
√

n(X). Thus the gradient ∇Xd
f(X) can be expressed as:

∂f(X)

∂Xd
=

∂w⊤s(X)/
√
n(X)

∂Xd

=
1√
n(X)

∂
∑

d wd · s(Xd)

∂Xd
+w⊤s(X)

∂[n(X)]−0.5

∂Xd

=
wd√
n(X)

∂s(Xd)

∂Xd
− 0.5 · w⊤s(X)

[n(X)]1.5
∂n(X)

∂Xd

(A.4)

When we substitute expressions for power and metric derivatives (A.1) and

(A.3), we arrive to the equation (9):

∂f(X)

∂Xd
=

wd√
n(X)

ρ|Xd|ρ−1 − 0.5 · w⊤s(X)

[n(X)]1.5
· 2 · s(Xd) · ρ|Xd|ρ−1 (A.5)

=
ρ|Xd|ρ−1√

n(X)

(
wd −

w⊤s(X)

n(X)
· s(Xd)

)
(A.6)

=
ρ|Xd|ρ−1√

n(X)

(
wd −

f(X) s(Xd)√
n(X)

)
(A.7)
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