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AGENDA
Part 1: attention in natural language understanding
o complementing recurrent models with attention

O basic and extended formulation, transformer architecture

Part 2: attention for visual recognition

O visual transformers, shifted windows etc

Part 3: properties of visual transformers

0 self-supervised learning

O robustness, generalization quality, inductive biases
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NLP: RECURRENT RECOGNITION

Classic recurrent models for natural language (cca 2014) involve recurrent encoder (left)
and recurrent decoder (right):

Hidden state of the encoder (light green)

yo -~ ¥¥  absorbs the input (bottom-left).

y(Z) - -

Decoder inputs the encoder state (left)
and the translation so far (bottom-right).

Decoder produces the output while using
its hidden state (dark green) as memory

Weaknesses: i) the encoder state unable
to remember the entire input sequence,
wtekezaq 1) SIOW sequential learning.

y(2)
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NLP: RECURRENCE + ATTENTION

Idea: instead of remembering everything, the de-
coder learns to associate its state with an appro-
priate mix of encoder states.

y™M

The mix is produced by weighted pooling within the
attention module.

The weights correspond to the similarity between
the current decoder state and all encoder states.

Each decoder output observes the current de-
coder state (that encodes the broad sense) and
a pool of encoder states (that encode the detalils).

[tutek22du]
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NLP: RECURRENCE + ATTENTION

1

|

y

1

[tutek22du]
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Xfrmrs — NLP (3) 5/55



NLP: BAsSIC ATTENTION

All kinds of attention rest upon similarity between keys K and the query q.
In recurrent seq2seq models these are defined as:

KO = pE) ¢ e [0..T)

g9 = h)..

We denote scalar similarity between the ¢(*) and all k(*) as:

S(t:t/) — Sim(q(t)7 k(tj))
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NLP: BASIC ATTENTION (2)

The basic attention requires similarity between the query and all T keys:

s = sim(q®, K), where s\ € RT, and K = [k, ... k7],

Similarities are normalized to a probability distribution:

a%) = softmax(s(Kt)) :
Finally, the attention outputs a weighted pool of the hidden encoder states:

T

attn(¢'9, K) = > alk) .
v
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NLP: BAsIC ATTENTION (3)

To conclude, the basic attention recovers a conditioned pool of the input set K.
o the pooling mechanism is conditioned upon the query gq.
0 different queries give rise to different pools

0 no parameters involved so far

Important property: attention is invariant to permutations

o extremely good fit for recognition upon graphs!

0 works quite good for vision as well
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NLP: SIMILARITY

How to formulate similarity?

1. differentiable module with parameters W, (matrix) and wy, (vector) [bahdanaui4iclr]:
s = w) - tanh(W, - [¢; K1) .

2. Scalar product (condition: dim(g) = dim(k))

gOT k)

V/dim(k)

S6)

o this is the most popular formulation, at least in vision
o still no parameters involved

o why do we scale with dimension size k?
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NLP: SIMILARITY - VISUALIZATION

c
v
£ §E o % A
() o O O gr\l o
o ¥ v 2 S8 wc > o c
E86§sa8x54e33 .V
L
accord
sur
la
zone
économique
européenne
a
été
signé
en

aolt
1992

<end>

[tutek22du]

Similarity between the hidden encoder and the decoder for French to English translation.
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NLP: EXTENDED ATTENTION

Extended attention derives keys and values from the same input:

k,' = fk(X,'>, Vi = fV<X,') .

In practice, f, and f, are projections:

k,' = WkX,'7 Vi = WVX,' .

Extended attention pools values according to similarity of the keys and the query:

ak = softmax(sim(q, K)),

-
z= Z oztv(t) .
t
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NLP: SELF-ATTENTION?

Suppose we wish to use basic attention as a layer that operates on input representation K.

We are tempted to use queries from the same input, however then attn(k;, K) may
approach one-hot vector e;...
O we can avoid this with learned queries as we show here;

O note that recent algorithms appear not to suffer from this problem!
Self-attention with a learned query (free parameter) w;:

&Y = softmax(attn(w;, K)),

-
zj= Z d%/) -
t

Intuitively, w; correspond to latent topics such as slang, football, middle east, etc.
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NLP: EXTENDED SELF-ATTENTION

Suppose we have a set of tokens Xyxp = {x/ }.

We project X onto keys, queries and values by simple matrix multiplication:

Knxr = X- W,
QuxrF = X- W,
Vo = X- Wy

We determine similarity between all queries g; and all keys k;:

sij = sim(qj, kj)
S=Q -K'.
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NLP: EXTENDED SELF-ATTENTION (2)

The weight matrix a now activates rows of S with softmax:

o = softmax(S/V'F, axis = 1) .

" Qutputs Z = {z;} are linear combinations of values V.

o of course, the weights correspond to the elements of «a:

Zi = E Ck,JVJ
J

The above formulation can be used as a standard layer of a deep model!
O parameters: Wy (F x D), W, (F x D), W, (D' x D).

O it has been found useful beyond sequence-to-sequence translation
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NLP: SELF-ATTENTION IN PRACTICE

Transformers alternate cross-token mixing through ¥+ X141
attention with intra-token mixing through projection. ——

0 related to fully connected "mixers" (resMLP) |ET:|

FFN
. . . . . . 2

0 caching the similarity matrix is O(n®) o

Consider the sentence: "LET US START RIGHT NOW":
Layer Norm @i(ion
O the word right can denote opposite than left, f J\

Multi-Head

Attention

forward, correct, entitlement

Multi-Head

Xy

Xfrmrs — NLP (13) 15/55

0 a red blob can be an apple or a Japanese flag

~—fHi

o the transformers disambiguate the input by

consulting the context through attention x
[xiong20icml]



NLP: CROSS-TOKEN MIXING WITH MLP-MIXER

e Rl
\ Skip-connections Skip-connections Mixer Layer |
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3 —
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[tolstikhin21neurips]
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NLP: MULTI-HEAD ATTENTION

We can increase the capacity of such layers by supplying h triplets of W, W,, W,.
0 different triplets lead to different similarities and different pooling sources.

0 we denote each of these triplets as an attention head.
O if we wish that the output Z has the same shape as input X, we choose h= D/D'.

O if we assume W) and W, with binary columns, we come close to grouped
convolutions where output maps perceive only a subset of all input maps.

o if we assume fixed inter-token weights, we approach depthwise-separable convolution

1uB, Dwise

[sandler18cvpr] Xfrmrs — NLP (15) 17/55



NLP: ATTENTION IS ALL YOU NEED
Scaled Dot-Product Attention

MatMul

‘ Concat

;
)2

Multi-Head Attention

Scaled Dot-Product
Attention s

| | |

[ILinear ]_] [!I_inear ]J [JLinear ]J
i

Q KV

Mask (opt.)

[vaswani17nips]
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NLP: ATTENTION IS ALL YOU NEED (2)

Output
Probabilities

Add & Norm

Feed
Forward

J

e ' A (Add & Norm J«~
Add & Norm Mult-Head
Feed Attention
Forward Nx
N Add & Norm
Add & Norm NMasked
Multi-Head Multi-Head
Attention Attention
A ’ A }

. J \ —
Positional A Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Transformer architecture:

0 encoder and decoder inputs (word embeddings)
are extended with positional encoding

O encoder with N encoding modules
o reads the whole sentence in one go

0 decoder with N decoding modules

o infers autoregressively for each output word

o trains in parallel on whole sentences (!)

O linear projection + softmax

Positional codes are non-optional: if omitted, the model
will be invariant to permutation of input tokens.

Xfrmrs — NLP (17) 19/55



NLP: ATTENTION IS ALL YOU NEED (3)

Output
Probabilities

Linear

Add & Norm

Feed
Forward

J

e ' A (Add & Norm J«~
Add & Norm Mult-Head
Feed Attention
Forward Nx
N Add & Norm
Add & Norm NMasked
Multi-Head Multi-Head
Attention Attention
A ’ A }

. J \ —
Positional A Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Encoder modules consist of:

O multi-head attention

O layer normalization + residual connection

o fully connected module

O layer normalization + residual connection

Decoder modules consist of:

0 masked MHA + layernorm + residual

o masking allows training on whole sentences

O multi-head cross-attention wrt encoder +

layernorm + residual

0 FC module + layernorm + residual

Xfrmrs — NLP (18) 20/55



NLP: GENERATIVE PRE-TRAINED TRANSFORMER

12x —

Text Task
Prediction | Classifier

®

®
Masked Multi
Self Attention
Text & Position Embed

Classification | Start | Text | Extract H»l Transformer H Linear |
Entailment | Start | Premise | Delim ‘ Hypothesis | Extract ﬂ—-l Transformer H Linear |
Start | Text 1 | Delim ‘ Text 2 |Extran:t H——l Transformer
Similarity Linear
| Start | Text 2 | Delim ‘ Text 1 |Extract H—»l Transformer
| Start | Context | Delim } Answer 1 | Extract H——l Transformer H Linear
Multiple Choicel Start | Context | Delim ‘ Answer 2 | Extract |H Transformer H Linear
[ st | context

| Delim ‘ Answer N | Extract |H Transformer H Linear

[radford18openai]
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VisiON: NON-LOCAL CONNECTIONS

Some convolutional models capture long-range dependencies through attention.
/

;\JDT;HXWX’OM Input: abstract representation X
O 4th-o tensor TxHxWx 1024
TxHxWx512 .
- O can be viewed as THW x1024.
softmax THWx512
THWATHW O H - height, W - width, T - time
THWx512 SI2xTHW mwxs>  Output:  representation Z with improved
TxHxWxS12 | TxHxWx512 TxHxWx512  long-distance connectivity

| 0:1x1x1 | [ g2 1x1x1 | | g: 1x1x1 |

Input X is projected onto queries (6), keys
(¢) and values (g).

I TxHxWx1024
X

[wang18cvpr]
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VisiON: NON-LOCAL CONNECTIONS (2)

Each spatio-temporal feature x; € R'%%4 is both a query and a key.

The similarity matrix S (THW x THW) compares queries with values.

The similarity matrix again can be obtained through matrix multiplication:

S=(Wex™)T - (W),
— (XW)) - (WXT) .

Other formulations of similarity are easily plugged-in.
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VisION: NON-LOCAL CONNECTIONS (3)

The weight matrix « is again obtained by activating rows of S with softmax.

O s; reflects similarity of the query Wyx; wrt the value Wx;
o = softmax(S, axis =1) .

" Outputs Z = {z;} are again weighted pools of values V = g(x;):

o of course, the weights correspond to the elements of «

zi=» - glx) -
J
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VisioN: AN IMAGE 1S WORTH 16x16 WORDS

Vision Transformer (ViT)

MLP
Head

]
[
|
I
[
I
[
[
I
3 [ .
i - @15 )@ e @é | rE=
[
[
I
[
I
1

Transformer Encoder

Transformer Encoder
* Extra learnable
[class] embedding Linear Projection of Flattened Patches

.

III_III,_II
I

Embedded
Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
N acuamant af al (201 7) Xfrmrs — Vision (4) 25/55



VISION: POSITIONAL ENCODING - 2D SIN/COS FORMULATION

We encode positions above a 2D grid so that nearby parches receive similar encodings.

Axes locations can be encoded according to the following handcrafted 2D-aware scheme:

(0,0) ) .
i X clo. L
(3.8) Sm(100004'F) ielo, 7]
’ cos(——+) iel[f £
7.2 (100004F) [7: 5l
o sin(—L) e [£.35]
100004F
300 400 500 600 700 COS( y . ) ic [35’ F[
\ 100004F

Still, learned 1D positional embeddings perform equally well.
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VisioN: VIT INSTANCES

Model Layers Hiddensize D MLP size Heads Params

ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

[dosovitskiy20iclr]

Xfrmrs — Vision (6) 27/55



VisioN: VIT PERFORMANCE

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student

(ViT-H/14) (ViT-L/16)  (ViT-L/16) (ResNet152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+£0.02 87.54+£0.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+006 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+004 93.90+0.05 93.25+0.05 93.51+0.08 —
Oxford-IIIT Pets 97.56+003 97.32+0.11 94.67+0.15 96.62 +0.23 —
Oxford Flowers-102  99.68 £0.02 99.74+0.00 99.61+0.02 99.63 +0.03 —
VTAB (19 tasks) T7.63+023 76.28+046 72.72+0.21 76.29+1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

[dosovitskiy20iclr]
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VisioN: VIT INSIGHT

RGB embedding filters
(first 28 principal components)

Position embedding similarity ViT-L/16

o L $ L
oCENHHEEE) |
LHSEANNEEEE) ;5
ANEOENERY -

S L L 1-1-1 -1 3 Nk
s % 20 :::' +  Head 3
' ANAAREE A L

1 2 3 4 5 6 7 0 5 10 15 20
Input patch column Network depth (layer)

[dosovitskiy20iclr]
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VisioN: VIT GLOBAL AVERAGE POOL

ImageNet linear 5-shot accuracy [%]
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[dosovitskiy20iclr]
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VisioN: VIT ATTENTION ROLLOUT
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VISION: ATTENTION

D/h

—»E‘—»Q

Y

softmax(QK~T) —_—

3

Ny yy. 7 _{;
y au wj—» K

—

»m—vv

QK

B

N

matmul(V, QK)

— W

performed for each head

=

= N — 1)
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VISION: CROSS-ATTENTION

4

_—

-7 —




VISION: ATTENTION - FOOTPRINT

Attention is O(n?) in both memory and time.

We wish to scale model inputs for larger image sizes.

800

700

memory[MB]
- N w S 0 @D
o o o o o o
o o o o o o

o

0 1000 2000 3000 4000
length

5000

6000

method
» self attention
MFLOPs
® 15000
@ 30000
@ 45000

@ 60000

7000 8000
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VISION: CROSS ATTENTION

Cross attention is O(nm) in memory and time.

D/h
M
M
N
Y
>
D/h ‘ softmax(QK~T) — QK
N 4 '
- K ——
.
matmul(V, QK) ‘
D/h
-V M

Vl
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VISION: LEARNED QUERIES FOR LINEAR COMPLEXITY

val

F

l

[orsic23fer]
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VISION: CROSS-ATTENTION - FOOTPRINT

Cross attention is O(nm) in memory and time.

800 .
700
600
500 method
g o linear
§400 self attention
8 MFLOPs
uEJ @® 15000
300 @ 30000
@ 45000
200 = @ 60000
100
[ ]
0 o 00 ] o ©
0 1000 2000 3000 4000 5000 6000 7000 8000
length
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ViIsION: SWIN TRANSFORMER

segmentation o
classification  detection ... ClaSSl?Cﬂtlﬂﬂ
t

e
LB s
L s i A 16%
L i =<5
Vo i

(a) Swin Transformer (ours) (b) ViT

Figure 1. (a) The proposed Swin Transformer builds hierarchical
feature maps by merging image patches (shown in gray) in deeper
layers and has linear computation complexity to input image size
due to computation of self-attention only within each local win-
dow (shown in red). It can thus serve as a general-purpose back-
bone for both image classification and dense recognition tasks.
(b) In contrast, previous vision Transformers [19] produce fea-
ture maps of a single low resolution and have quadratic compu-
tation complexity to input image size due to computation of self-
attention globally. Xfrmrs — Vision (17) 38/55



ViIsION: SWIN TRANSFORMER
Layer | Layer I+1

A local window to
perform self-attention

A patch

Figure 2. An illustration of the shifted window approach for com-
puting self-attention in the proposed Swin Transformer architec-
ture. In layer [ (left), a regular window partitioning scheme is
adopted, and self-attention is computed within each window. In
the next layer [ 4 1 (right), the window partitioning is shifted, re-
sulting in new windows. The self-attention computation in the new
windows crosses the boundaries of the previous windows in layer

I, providing connections among them.
Xfrmrs — Vision (18) 39/55



ViIsION: SWIN TRANSFORMER

P R
' m \
. V| D '
! 1
H,W H,,W H W H,W H W 1 ! ' !
TX T x48 LxIxC Txgx20 16X 16 X4C 33 X3 X8C | vl MLP '
———————————————————— PR R - 1
e Stage 1 Stage 2 S Stage 3 N Stage 4 s ! ' '
1 I . v ! : ' LN 1
V2 " ¥ ' Ve ‘
1
HxWx3 gl s g o E g ol H ' str1(] ;
-~ 1 1

El | & Swin 2 Swin |y Swin il 2 Swin V! ! ' '
Images g | 5 Transformer = Transformer ) = Transformer| = Transformer 1 1 : 1
IR Block 5 Block [v1 |5 Block |11 |5 Block [; ! Pl H
RN B b5 | 8 N ol Yl )
Al |8 A | A . [ . : '
1 a3 N M 1 ! 1 '
1 K e [ , ) '

. X2 X2 _son X6 o X2 s !

(a) Architecture (b) Two Successive Swin Transformer Blocks

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with
Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.
[liu21icev]

Xfrmrs — Vision (19) 40/55



VisioN: CONVNEXT

Swin Transformer Block

96-d
LN

1x1, 96x3

+rel. pos. win. shift

MSA, w7x7, H=3

LN

1x1, 384
GELU
1x1, 96

U

ResNet Block

ConvNeXt Block

| 96-d

v

X

iLN

[ 1x1, 384 ]

iGELU

[ 1x1, 256 ]

(0 ]

a4

D,

RelU

Figure 4. Block designs for a ResNet, a Swin Transformer, and a
ConvNeXt. Swin Transformer’s block is more sophisticated due to
the presence of multiple specialized modules and two residual con-
nections. For simplicity, we note the linear layers in Transformer
MLP blocks also as “1x1 convs’ since thev are eaquivalent.

Changes wrt ResNet:

O

O

O

O

a

stem — patchify

compute ratio: 3-4-6-3 — 3-3-9-3
depthwise separable placement
inverted residuals,

larger convolutional kernels.
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VisioN: VIT vs SwiN vs CoONVNEXT

image throughput IN-1K

(a) Regular ImageNet-1K trained models model . " #param. FLOPs .
. throushput|ImaseNet size (image / s) top-1 acc.
method m%age #pa_ram_ FLOPS . ghp! 8 ImageNet-1K trained models

size (image / s) |top-1 acc. o RegNetY-16G [54] 224° 84M 160G  334.7 82.9
RegNetY-4G [44] [ 224 2IM 4.0G 1156.7 80.0 eEffNet-B7[71] 6002 66M 37.0G  55.1 84.3
RegNetY-8G [44] | 224 39M 8.0G  591.6 81.7 o EffNetV2-L [72] 480% 120M 53.0G  83.7 85.7
RegNetY-16G [44] 2242 84M 160G  334.7 82.9 De%T'S [73] 224: 22M  46G 9785 79.8
VITB/16[10] |384° 86M 554G 859 | 779 CoURD e e e ol o
. 2 - . K .
VITL/16[19] |384" 307M 190.7G  27.3 76.5 o ConvNeXt-T 224> 29M  45G 7747 82.1
DeiT-S[57] [224° 22M 4.6G 9404 79.8 Swin-S 2242 50M 87G 4367 830
DeiT-B [57] 2242 86M 17.5G 2923 81.8 o ConvNeXt-S 224> 50M 8.7G  447.1 83.1
DeiT-B [57] |3842 86M 554G  85.9 83.1 Swin-B 224 88M 154G  286.6 83.5
— P o ConvNeXt-B 224 89M 154G 292.1 83.8
EW{n ; ;;ig ggﬁ g;g EZ; g;g Swin-B 3842 88M 47.1G  85.1 84.5
win- 3 : : : eConvNeXt-B 3842 89M 450G 957 851
Swin-B 224" 88M 154G 278.1 83.5 eConvNeXt-L 224> 198M 344G 1468 843
Swin-B 384 88M 47.0G 847 84.5 o ConvNeXt-L 3847 198M 101.0G  50.4 85.5

[liu21ticev,liu22cvpr]
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SELF-SUPERVISED:. INTRO

Self-supervised learning learns from unlabeleded data by leveraging some surogate loss.

ViT models have two main architectural differences wrt convnets:

0 there is no information “leak” between neighbours

0 theoretical receptive field is global.

These properties are very useful for obtaining unsupervised representations.

Xfrmrs — self-supervised 43 /55



SELF-SUPERVISED: MASKED AUTOENCODERS

encoder

v
EN -E  EE EEE EE

input

M
EEEENIEE

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

[he22¢cvpr]
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SELF-SUPERVISED: MASKED SIAMESE NETWORKS

[cLs]
anchor view  patchify & mask representation cluster assignments
g
!.k 1“ z
E e — fi —SCCO—a .
original | o - A
HE 1 prediction p
i \
\
; prototypes v
i
EMA : H(pt,p)
i — |
target view patchify : K
g M K
W - %
% =ul, i — N ) x
T [
. target p*

Fig. 1: Masked Siamese Networks. First use random data augmentations to generate
two views of an image, referred to as the anchor view and the target view. Subsequently,
a random mask is applied to the anchor view, while the target view is left unchanged.
The objective is then to assign the representation of the masked anchor view to the same
clusters as the representation of the unmasked target view. A standard cross-entropy
loss is used as the criterion to optimize.

[assran22eccv]
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SELF-SUPERVISED. MASKED SIAMESE NETWORKS (2)

Table 3: Linear evaluation on ImageNet-1K using 100% of the labels.

Table 1: Extreme low-shot. We evaluate the label-efficiency of self-supervised models
pretrained on the ImageNet-1K dataset. For evaluation, we use an extremely small

Method Architecture Params. Epochs Top 1 number of the ImageNet-1K labels and report the mean top-1 accuracy and standard
deviation across 3 random splits of the data.
Comparing similar architectures Images per Class
SimCLRv2 [14] RN50 oM 800 " Method A{rchltecture Epochs 1 . . 2 5
BYOL [25] RN50 24M 1000 74.4 iBOT [61] xﬁsB//lli b s Saior o
DINO [11] ViT-S/16 22M 800 77.0 SETe s REER e
iBOT [61] ViT-S/16 22M 800 77.9 ViT-S/16 800 389+ 04 489+03 585+0.1
MSN ViT-S/16 29M 600 76.9 DINO [11] ViT-B/16 400 418+03 519406 61.4+02
ViT-S/8 800 455+ 0.4  56.0 £ 0.7  64.7 + 0.4
Comparing larger architectures ViT-B/8 300 4584+ 0.5 559+ 0.6 64.6+0.2
MAE [27] ViT-H/14 632M 1600 76.6 ViT-B/16 1600 82403 250+03 405+ 0.2
BYOL [25] RN200 (2x) 250M 800 79.6 MAE [27] ViT-L/16 1600 12.3+02 193+18 423+03
SimCLRv2 [14] RN151+SK (3x) 795M 800 79.8 ViT-H/14 1600 11.6 £ 04 186 +02 328 +02
iBOT [61] ViT-B/16 86M 400 79.4 ViT-$/16 800 471401 558406 628403
DINO [11] ViT-B/8 86M 300 80.1 ViT-B/16 600 498+02 589+04  655+03
MoCov3 [16] ViT-BN-L/7 304M 300 81.0 MSN (Ours)  viT.B/8 600 551401 649407 716+ 03
MSN ViT-L/7 304M 200 80.7 ViT-L/7 200 57.1 + 0.6 66.4 + 0.6 72.1+ 0.2
[assran22eccv
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PROPERTIES: ROBUSTNESS

(e) Auto-Segment  (f) Off-the-shelf Feats.

Accuracy Top-1 (%)

iNat CUB DTD GTSRB

Figure 1: We show intriguing properties of ViT including impressive robustness to (a) severe occlusions, (b)
distributional shifts (e.g., stylization to remove texture cues), (c) adversarial perturbations, and (d) patch
permutations. Furthermore, our ViT models trained to focus on shape cues can segment foregrounds without any
pixel-level supervision (e). Finally, off-the-shelf features from ViT models generalize better than CNNs (£).

[naseer21neurips]
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PROPERTIES. OCCLUSION

Figure 2: An example image with its oc- b i S PtCthp
cluded versions (Random, Salient and Non-

Salient). The occluded images are cor-
rectly classified by Deit-S [3] but mis-
classified by ResNet50 [28]. Pixel values
in occluded (black) regions are set to zero.

Salient PatchDrop ~ Non-Salient PatchDrop

[naseer21neurips]
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PROPERTIES: OCCLUSION (2)
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Figure 3: Robustness against object occlusion in images is studied under three PatchDrop settings (see Sec 3.1).
(left) We study the robustness of CNN models to occlusions, and identify ResNet50 as a strong baseline.
(mid-left) We compare the DeiT model family against ResNet50 exhibiting their superior robustness to object

occlusion. (mid-right) Comparison against ViT model family. (right) Comparison against T2T model family.

[naseer21neurips]
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PROPERTIES: SHUFFLING

original 2x26Grid 4x 4 Grid ‘ 8 x 8 Grid 14 x 14 Grid

Figure 9: An illustration of shuffle operation applied on images used
to eliminate their structural information. (best viewed zoomed-in)

[naseer21neurips]
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PROPERTIES: SHUFFLING (2)

With Positional Encoding

Shuffle Grid Size

No Positional Encoding

280 Prmp o
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B 7o 18" DeIrS ‘e, ho ® 20
5 207 = DeiT-T L5 E == DeiT-T-no-pos .
8 101 . .. ResNet50 | BT .‘ 810} e DeiT-T
< 0 Snmm 0

0 4 8 16 32 64 196 256 0 4 8 16 32 64 196 256

Shuffle Grid Size

Figure 10: Models trained on 196 image patches. Top-1 (%) accuracy
over ImageNet val. set when patches are shuffled. Note the performance
peaks when shuffle grid size is equal to the original number of patches
used during training, since it equals to only changing the position of input
patch (and not disturbing the patch content).
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PROPERTIES: IMAGENET-C

Gaussian Noise  Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

3

Brightness Contrast Elastic Pixelate JPEG

Figure 1: Our IMAGENET-C dataset consists of 15 types of algorithmically generated corruptions
from noise, blur, weather, and digital categories. Each type of corruption has five levels of severity,
resulting in 75 distinct corruptions. See different severity levels in Appendix B.

hendrycks19icl
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PROPERTIES. MORE ROBUSTNESS

Trained with Augmentations Trained without Augmentation
DeiT-B DeiT-S DeiT-T T2T-24 TnT-S Augmix ‘ ResNet50 ResNet50-SIN DeiT-T-SIN DeiT-S-SIN
48.5 54.6 71.1 49.1 53.1 653 | 76.7 71.3 94.4 84.0

Table 4: mean Corruption Error (mCE) across common corruptions [13] (lower the better). While ViTs have
better robustness compared to CNNS, training to achieve a higher shape-bias makes both CNNs and ViTs more
vulnerable to natural distribution shifts. All models trained with augmentations (ViT or CNN) have lower mCE

in comparison to models trained without augmentations on ImageNet or SIN.
[naseer21neurips]
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PROPERTIES: BIAS - SHAPE VS TEXTURE
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Thank you for your attention!

Questions?

This presentation would not have been possible without insightful ideas and hard work of Matej Grcic, Jakob Verbeek, Ivan Kre$o, Marin Orsi¢, Petra Bevandic, Josip
Sari¢, Ivan Grubigi¢, Marin Kagan, Iva Sovié, Nenad Marku$ and Jelena Bratulic.
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