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Abstract. In this paper we present a method for creating scheduling
heuristics for parallel proportional machine scheduling environment and
arbitrary performance criteria. Genetic programming is used to syn-
thesize the priority function which, coupled with an appropriate meta-
algorithm for a given environment, forms the priority scheduling heuris-
tic. We show that the procedures derived in this way can perform simi-
larly or better than existing algorithms. Additionally, this approach may
be particularly useful for those combinations of scheduling environment
and criteria for which there are no adequate scheduling algorithms.

1 Introduction

Scheduling is concerned with the allocation of scarce resources to activities with
the objective of optimizing one or more performance measures, which can as-
sume minimization of makespan, job tardiness, number of late jobs etc. Due
to inherent problem complexity and variability (most of the real-world schedul-
ing problems are NP complete), a large number of scheduling systems employ
heuristic scheduling methods. Given different performance criteria and user re-
quirements, the question arises as to which heuristic to use in a particular envi-
ronment? The problem of selecting an appropriate scheduling policy is an active
area of research [1][2] and a considerable effort is needed to choose or develop
the algorithm best suited to the given environment. An answer to this prob-
lem may be provided using machine learning methods to create problem specific
scheduling algorithms.

The combinatorial nature of most scheduling problems allows the use of
search based and enumerative techniques [1], such as genetic algorithms, branch
and bound, simulated annealing, tabu search etc. These methods usually offer
good quality solutions, but at the cost of a large amount of computational time.
Search based techniques are hence not applicable in dynamic or uncertain con-
ditions where there is a need for frequent schedule modification or reaction to
changing system requirements (i.e. resource failures or job parameter changes).
Scheduling with fast heuristic algorithms is therefore highly effective, and the
only feasible solution, in many instances.

In this paper we describe a methodology for evolving scheduling heuristics
with genetic programming (GP). Genetic programming has rarely been employed



in scheduling, mainly because it is impractical to use to search the space of poten-
tial solutions (i.e. schedules). It is, however, very suitable for searching the space
of algorithms that provide solution to the problem. Previous work in this area of
research includes evolving scheduling policies for the single machine unweighted
tardiness problem [3][4][5], single machine scheduling subject to breakdowns [6],
classic job shop tardiness scheduling [7][8] and airplane scheduling in air traffic
control [9][10]. The scheduling procedure in those papers is however defined only
implicitly for a given scheduling environment. In this paper we structure the
scheduling algorithm in two components: a meta-algorithm which uses priority
values to perform scheduling and a priority function which defines values for dif-
ferent elements of the system. To illustrate this technique we develop scheduling
heuristics for multiple proportional machine environment (described in the next
section) for which a methodology with GP has, to the best of our knowledge, not
been published previously. We also include several combinations of additional re-
quirements, such as dynamic job arrivals, sequence dependent setup times and
different scheduling criteria.

2 Parallel Machine Environment

2.1 Problem Statement

In a parallel machine environment, a number n of jobs Jj compete for processing
on either of m machines. In a static problem each job is available at time zero,
whereas in a dynamic problem each job has a release date rj . The nominal
processing time of the job is pj and its due date is dj . Each machine in the
system has a speed si so that the actual processing time of job j on a machine
i is given with pij = pj/si. Relative importance of a job is denoted with its
weight wj . The most widely used scheduling criteria for this environment include
weighted tardiness, number of tardy jobs, flowtime and makespan. If Cj denotes
the finishing time of job j, then the job tardiness Tj is defined as

Tj = max {Cj − dj , 0} . (1)

Lateness of a job Uj is taken to be 1 if a job is late, i.e. if its tardiness is
greater than zero, and 0 otherwise. Flowtime of a job is the time the job has
spent in the system, i.e. the difference between job release time and completion
time: Fj = Cj−rj , whereas the makespan (Cmax) is the maximum finishing time
of all the jobs in a set. Based on these output values, the weighted scheduling
criteria are defined as follows: weighted tardiness for a set of jobs is defined as

Tw =
∑

j
wjTj , (2)

weighted number of late jobs as

Uw =
∑

j
wjUj , (3)



and weighted flowtime as

Fw =
∑

j
wjFj . (4)

In the case where a machine may need to process more than one type of job,
there is sometimes the need to adjust the machine for the processing of the next
job. If the time needed for adjusting depends on the previous and the following
job, this is referred to as sequence dependent setup time and must be defined for
every possible combination of two jobs [11] [12]. This condition further increases
the problem complexity for some scheduling criteria.

In the evolution process, a single scheduling criteria can be selected as fitness
function where smaller values indicate greater fitness. The total quality estimate
of an algorithm is expressed as the sum of criteria values over all the test cases.

2.2 Test Cases Formulation

Each scheduling instance is defined with the following parameters: the number of
machines m and their speeds si, the number of jobs n, their nominal processing
times pj , due dates, release dates and weights. The values of processing times
are generated using uniform, normal and quasi-bimodal probability distributions
among the different test cases. The number of jobs varies from 12 to 100 and
number of machines from 3 to 20. With machine speeds we can define the effective
number of machines m̂ as the sum of speeds of all machines:

m̂ =
m∑

i=1

si , (5)

where m represents the actual number of machines.
In some of the test environments we allow for the job sequence dependent

setup times. A distinct setup time, which does not depend of the speed of the
machine, is defined for every possible sequence of two jobs. The values of all of
the above parameters are generated in accordance with methods and examples
given in [4], [11], [12] and [13]. Overall, we defined 120 test cases for learning and
600 evaluation test cases for comparison of the evolved and existing scheduling
heuristics.

2.3 Scheduling Heuristics

The scheduling method investigated in this work is priority scheduling, in which
certain elements of the scheduling system are assigned priority values. The choice
of the next activity being run on a certain machine is based on their respective
priority values. This kind of scheduling algorithm is also called, variously, ’dis-
patching rule’, ’scheduling rule’ or just ’heuristic’. The term scheduling rule, in a
narrow sense, often represents only the priority function which assigns values to
elements of the system (jobs in most cases). For instance, a scheduling process
may be described with the statement ’scheduling is performed using EDD rule’.



While in most cases the method of assignment of jobs on machines based on pri-
ority values is self-evident, in some environments it is not. This is particularly
true in dynamic conditions where jobs arrive over time or may not be run before
some other job finishes. That is why a meta-algorithm must be defined for each
scheduling environment, dictating the way activities are scheduled based on their
priorities and possible system constraints. The meta-algorithm encapsulates the
priority function, but the same meta-algorithm may be used with different prior-
ity functions and vice versa [14]. In virtually all the literature on the subject the
meta-algorithm part is never explicitly expressed but only presumed implicitly,
which can lead to many misunderstandings between different projects.

The time complexity of priority scheduling algorithms depends on the meta-
algorithm, but it is in most cases negligible compared to search-based techniques,
which allows the use of this method in on-line scheduling [15] and dynamic
conditions. All the heuristics presented in this paper, including the evolved ones,
provide a solution for several hundred instances in less than a second (since the
priority functions are evolved offline).

In this work, we included the following widely used scheduling heuristics for
efficiency comparison: weighted shortest processing time (WSPT), earliest due
date (EDD), longest processing time (LPT), X-dispatch bottleneck dynamics
heuristic [13] (XD), Rachamadugu & Morton heuristic [16] (RM), weighted Mon-
tagne heuristic [13] (MON) and Apparent Tardiness Cost with Setups heuristic
[11] (ATCS). Each heuristic is defined with its priority function which is used
by a meta-algorithm for a given environment (stated in the next section).

3 Scheduling With Genetic Programming

In this work we use the described elements of priority scheduling paradigm,
so that the meta-algorithm part is defined manually for a specific scheduling
environment and the priority function is evolved with genetic programming using
appropriate functional and data structures. This way, using the same meta-
algorithm, different scheduling algorithms best suited for the current criteria can
be devised. The task of genetic programming is to find such a priority function
which would yield the best results considering given meta-algorithm and user
requirements. The solution of genetic programming is represented with a single
tree that embodies the priority function. After the learning process, single best
found priority function is tested on all evaluation test cases and compared with
existing heuristics. Following the described priority scheduling procedure, we
define the following meta-algorithm which is used with all the existing heuristics
as well as with GP evolved priority function for static job availability:

while there are unscheduled jobs do
wait until a machine (k) is ready;
calculate priorities of all available jobs on machine k;
schedule job with best (greatest) priority on machine k;

end while



Handling Dynamic Job Arrivals. In a dynamic environment the scheduler
can use algorithms designed for a static environment, but two things need to be
defined for those heuristics. The first is the subset of the jobs to be taken into
consideration for scheduling, since some jobs may arrive in some future moment
in time. The second issue is the method of evaluation of jobs which have not yet
arrived, i.e. the question should the priority function for those jobs be different
and in what way. This can be resolved in the following ways:

1. no inserted idleness - we only consider jobs which are immediately available;
2. inserted idleness - waiting for a job is allowed and waiting time is added to

job’s processing time in priority calculation;
3. inserted idleness with arbitrary priority - waiting is allowed but the priority

function must be defined so that it takes waiting time into account.

When using existing heuristics for comparison, we apply the second approach
where necessary, i.e. if the priority function does not take job’s release date
into account. Genetic programming, on the other hand, is coupled with the
third approach, as it has the ability to learn and make use of waiting time
information on itself. Scheduling heuristics that presume all the jobs are available
are modified so that the processing time of a job includes job’s time till arrival
(waiting time), denoted with

wtj = max {rj − time, 0} . (6)

Thus, if an algorithm uses only the processing time of a job, that time is
increased by wtj of the job. All the described heuristics, except the XD heuristic
which is defined for a dynamic environment, are modified in this manner when
solving the dynamic variant of the scheduling problem.

The question remains as to which jobs to include when calculating the priority
function? It can be shown that, for any regular scheduling criteria [13], a job
should not be scheduled on a machine k if the waiting time for that job is longer
than the processing time of the shortest of all currently available unscheduled
jobs on that machine (some scheduling software implementations also include
this condition [17]). In other words, we may only consider jobs j for which

wtj < min
i

{pki} ,∀i : ri ≤ time . (7)

This approach can be illustrated with the following meta-algorithm which is
used in dynamic conditions with an arbitrary priority function:

while there are unscheduled jobs do
wait until a machine (k) and at least one job are ready;
pMIN = processing time of the shortest available job on machine k;
calculate priorities of all jobs j with wtj < pMIN ;
schedule job with best priority;

end while



Table 1. The genetic programming parameters

Parameter / operator Value / description

population size 10000

max. individual depth 17

selection steady-state, tournament of size 3

stopping criteria maximum number of generations (150) or maximum num-
ber of consecutive generations without best solution im-
provement (30)

crossover 85% probability, standard crossover

mutation standard, swap and shrink mutation, 3% probability each

reproduction 5% probability

initialization ramped half-and-half, max. depth of 5

Handling Sequence Dependent Setups. Almost any heuristic may be ad-
justed to include sequence dependant setup time with a method presented in
[13]. The job priority obtained with the original function is decreased by a cer-
tain value that measures the additional cost brought by setup time for that job.
If the original priority value is denoted with πj , then the priority with setup
times is given with

πlj = πj −
slj

(pAV /m̂) · (pj/sk)
, (8)

where l is the last processed job, slj setup time between job l and job j and
pAV the average nominal processing time of all unscheduled jobs. All existing
heuristics are modified in this way when solving for setup times, except the
ATCS heuristic which is specifically designed for this scheduling condition.

Genetic Programming Parameters, Functions and Terminals. The GP
parameters used are presented in Table 1. We did not experiment with many
parameter combinations as the GP efficiency did not vary noticably in respect to
scheduling heuristic efficiency. The most crucial decision is finding the minimal
set of functions and terminals that will satisfy the sufficiency property for a given
environment. We define the same function set for every scheduling environment
and a different terminal set depending on the variant of the problem (for sequence
dependent setups and/or dynamic job arrivals). The complete set, along with
guidelines for terminal usage, is given in Table 2.

3.1 Scheduling with Static Job Availability

In a static environment all jobs (and all machines) are available at time zero.
The task of genetic programming is to evolve such a priority function that would
produce schedules of a good quality for a given performance criteria. We made



Table 2. The function and terminal set

Function name Definition

ADD, SUB, MUL binary addition, subtraction and multiplication operators

DIV protected division: DIV (a, b) =

{
1, if |b| < 0.000001

a/b, otherwise

POS POS (a) = max {a, 0}
Terminal name Definition

Terminals used in every problem variant

pt nominal processing time of a job (pj)

dd due date (dj)

w weight (wj)

Nr number of remaining (unscheduled) jobs

SPr sum of processing times of remaining jobs

SD sum of due dates of all jobs

SL positive slack, max {dj − pj − time, 0}
SLs positive slack using machine speed, max {dj − pj/sk − time, 0}
SPD speed of the current machine (sk)

Msm the sum of all machine speeds (effective number of machines, m̂)

Terminals for sequence dependent setups

STP setup time from previous to job j

Sav average setup time from previous (l) to all jobs 1
n−1

n∑
j=1

slj

Terminals for dynamic environment

AR job arrival time (waiting time), max {rj − time, 0}

two sets of experiments: one for the simple static problem and another with addi-
tional sequence dependent setups, both optimizing minimum weighted tardiness
criteria.

For the first set (notation Q ||
∑

wjTj in scheduling theory) we conducted
20 runs and achieved mean best result of 37.6 with std. deviation σ = 1.38 in
weighted tardiness as fitness function on evaluation set of 600 unseen test cases.
Apart from total criteria values, a good performance measure for a scheduling
heuristic may be defined as the percentage of test cases in which the heuristic
provided the best achieved result (or the result that is not worse than any other
heuristic). This value can be denoted as the dominance percentage. Both types
of results are shown in the uppermost section of Table 3 and best results in each
category are marked in boldface.

It can be noted that the performance is mainly divided between different
heuristics: GP evolved heuristic achieved best weighted tardiness result, WSPT
rule best weighted flowtime and LPT best makespan. Another set of 20 runs was
conducted in the same environment but with the inclusion of sequence dependent
setups (notation: Q |sij |

∑
wjTj) and additional GP terminals from Table 2. The

best solutions were found with the mean 42.7 and σ = 2.5. The results for this



variant are shown in Table 3. It is clear from the results that in this environment
the GP evolved heuristic obtained very good performance over more criteria.

3.2 Scheduling with Dynamic Job Availability

In dynamic environment the jobs have distinct release times, whereas the ma-
chines are still available from the time zero. In this variant the heuristics are
coupled with the second meta-algorithm and GP terminal set is expanded ac-
cording to Table 2. We conducted four sets of experiments, two sets without and
another two with sequence dependent setups. For each group we experimented
with two different scheduling criteria: weighted tardiness and makespan. All sets
consisted of 20 runs, out of which the best evolved priority function is compared
with existing heuristics on evaluation set of test cases. For the variant without
setup times and with weighted tardiness optimization (notation: Q |rj |

∑
wjTj)

we achieved mean value of 35.0 with σ = 1.4. Additional 20 runs are conducted
with makespan as GP fitness function (notation: Q |rj |Cmax), for which the mean
value was 42.7 with σ = 0.8; the results for both sets are shown in Table 3.

It can be seen that GP can easily outperform other heuristics for arbitrary
scheduling criteria. On the other hand, it is not very likely that a single heuristic
will dominate over more than one criteria, which is particularly true for our
GP system with single fitness function. If we are after a heuristic with good
overall performance, then it is maybe advisable to take some ’general use’ existing
heuristic, but if we want to maximize efficiency for a single criteria, then the
evolved heuristics represent a good choice.

The last two sets of experiments included setup times, and for the first set
we conducted 20 runs with weighted tardiness as fitness function (notation:
Q |rj , sij |

∑
wjTj), for which we achieved mean of 52.9 and σ = 1.7. Finally,

20 runs were conducted with makespan as the performance criteria (notation:
Q |rj , sij |Cmax), and the obtained mean value was 73.9 with σ = 0.34. The
results for both sets are shown in Table 3.

It can be perceived that in the case of a relatively rare scheduling environ-
ment, such as dynamic job arrivals and sequence dependent setups, GP evolved
heuristic easily outperforms existing algorithms. This may be attributed to the
non-existence of appropriate algorithms for this kind of problem, and that is
exactly the situation in which this technique offers the most promising use.

4 Conclusion

This paper shows how genetic programming can be used to build scheduling algo-
rithms for multiple machine environment with arbitrary criteria. The scheduling
heuristic is divided in two parts: a meta-algorithm, which is defined manually,
and a priority function, which is evolved by GP. We defined the appropriate
meta-algorithms for static and dynamic variants of the problem, as well as func-
tional and terminal elements which form the GP solution. The results are promis-
ing, as for given problems the evolved solutions exhibit better performance on



Table 3. Scheduling criteria values and dominance percentages

Heuristic Scheduling criteria Dominance percentage

Twt Uwt Fwt Cmax Twt Uwt Fwt Cmax

Static job arrivals, weighted tardiness optimization

GP 34.1 28.1 41.1 90.3 79 % 21 % 7 % 11 %

RM 46.2 27.4 41.7 92.1 14 % 22 % 1 % 6 %

MON 46.2 25.0 36.0 92.9 8 % 27 % 24 % 5 %

WSPT 49.8 25.1 35.1 94.4 1 % 31 % 66 % 3 %

EDD 66.1 36.0 41.3 92.9 4 % 9 % 2 % 6 %

LPT 115.7 44.7 52.6 83.6 0 % 0 % 0 % 73 %

Static job arrivals, sequence dependent setups, weighted tardiness optimization

GP 42.1 38.4 63.2 69.4 87 % 75 % 72 % 20 %

ATCS 61.0 44.7 68.7 70.6 9 % 22 % 22 % 9 %

RM 76.4 50.1 78.2 69.7 1 % 12 % 1 % 10 %

WSPT 71.6 47.6 72.9 66.8 1 % 15 % 4 % 45 %

MON 73.8 49.0 76.7 68.7 2 % 13 % 1 % 15 %

LPT 85.8 52.7 83.2 74.4 1 % 16 % 1 % 2 %

Dynamic job arrivals, weighted tardiness optimization

GP 33.0 23.9 26.7 47.9 78 % 45 % 9 % 11 %

XD 39.3 26.5 28.0 48.5 10 % 18 % 5 % 10 %

MON 39.3 24.6 25.0 48.7 5 % 19 % 29 % 11 %

WSPT 41.1 24.3 24.5 48.7 3 % 27 % 54 % 9 %

EDD 50.2 33.0 27.6 47.8 6 % 6 % 4 % 13 %

LPT 81.8 39.4 34.9 44.9 2 % 4 % 2 % 70 %

Dynamic job arrivals, makespan optimization

GP 78.7 39.1 34.2 41.9 5 % 2 % 7 % 68 %

XD 39.3 26.5 28.0 48.5 39 % 24 % 6 % 6 %

MON 39.3 24.6 25.0 48.7 33 % 35 % 30 % 8 %

WSPT 41.1 24.3 24.5 48.7 16 % 45 % 55 % 6 %

EDD 50.2 33.0 27.6 47.8 9 % 9 % 3 % 8 %

LPT 81.8 39.4 34.9 44.9 2 % 3 % 1 % 40 %

Dynamic job arrivals, sequence dependent setups, weighted tardiness optimization

GP 51.1 47.5 71.7 87.4 92% 72% 86% 19%

ATCS 67.8 49.8 81.2 91.5 4% 45% 9% 8%

XD 78.1 53.6 87.8 85.7 2% 27% 2% 17%

WSPT 75.7 51.7 84.6 84.0 1% 30% 2% 31%

MON 78.3 52.6 87.4 85.7 2% 28% 2% 20%

LPT 81.9 54.2 88.8 85.0 1% 27% 1% 35%

Dynamic job arrivals, sequence dependent setups, makespan optimization

GP 53.9 50.2 65.1 73.9 89% 56% 95% 89%

ATCS 67.8 49.8 81.2 91.5 8% 62% 3% 7%

XD 78.1 53.6 87.8 85.7 1% 27% 0% 9%

WSPT 75.7 51.7 84.6 84.0 1% 32% 1% 11%

MON 78.3 52.6 87.4 85.7 1% 28% 1% 9%

LPT 81.9 54.2 88.8 85.0 1% 27% 1% 7%



unseen scheduling instances than existing scheduling methods. Heuristics ob-
tained with GP have shown to be particularly efficient in cases where no ade-
quate algorithms exist, and we believe this approach to be of great use in those
situations.
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