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Abstract: This paper describes several methods for evaluation of kinematic parameters of a Stewart platform. One of 
those methods is the calculation of workspace area both in numerical and graphical form. The second 
method allows us to analyze and estimate inherent mechanism errors that occur due to actuator errors, 
elastic and thermal deformations and other error sources. Furthermore, another procedure is presented which 
calculates certain kinematic parameters throughout the workspace area of the model and outputs them as 
numerical and graphical data. Finally, a forward kinematics algorithm designed for use in real-time 
conditions and its adaptation is presented. The described algorithms are implemented and made available as 
web services on the project web site (http://hexapod.zemris.fer.hr/). 

1 INTRODUCTION 

Parallel kinematic manipulators (PKMs) have been 
rediscovered in the last decade as microprocessor's 
power finally satisfies computing force required for 
their control. Their great payload capacity, stiffness 
and accuracy characteristic as result of their parallel 
structure make them superior to serial manipulators 
in many fields. 

One of the most accepted PKMs is Stewart 
platform based manipulator, also known as hexapod 
or Gough platform. Hexapod, originally, consists of 
two platforms, one fixed on the floor or ceiling and 
one mobile, connected together via six extensible 
struts with spherical or other types of joints. That 
construction gives mobile platform 6-DOF (degrees 
of freedom). Hexapod movement and control is 
achieved only through strut lengths changes. One 
variation to this structure, also observed here, is 
when struts are fixed in length but one of their ends 
is placed on a guideway. Control is then obtained 
only by moving the joints positioned on guideways. 
Although in this model the forces acting on struts are 
not just along the axis of the strut, as in the original 
design, practically attainable sliding characteristics 
of guideways make it a very considerable structure 
for manipulators. 

One of the qualities we want from a manipulator 
is its good kinematics behavior. The kinematic 
characteristics have direct impact on manipulability 

and working speed of a manipulator. In this paper 
we present several methods for calculating various 
kinematic parameters of Stewart platform. These 
methods can be used to optimize hexapod structure 
for better kinematic characteristics or combined with 
other procedures were kinematic can be just one 
measure in optimization process.  

The forward kinematic (Merlet, 1993) of a 
parallel manipulator is the problem of finding the 
position and orientation of the mobile platform when 
the strut lengths are known. This problem has no 
known closed form solution for the most general 6-6 
form of hexapod manipulator (with six joints on the 
base and six on the mobile platform). In this paper 
we present a method for numerical solving of 
forward kinematics, which is derived from our 
previous work where several mathematical 
representations of the forward kinematic problem, in 
the form of optimization functions, were combined 
with various optimization algorithms and adaptation 
methods in order to find an efficient procedure that 
would allo w for precise forward kinematic solving 
in real-time conditions. 

2 THE INVERSE KINEMATICS 
PROBLEM 

The inverse kinematics problem compared to 
forward kinematics is almost trivial for parallel 
manipulator such as hexapod. Inverse kinematics 
will be presented here for two different hexapod 



structures: standard Stewart platform based 
manipulator as shown in Figure 1 and hexapod 
shown on Figure 2. 

Standard Stewart Platform based manipulator as 
shown in Figure 1 can be defined with: minimal and 
maximal struts length (lmin, lmax), radii of fixed and 
mobile platforms (r1, r2), joint placement defined 
with angle between closest joints for both platforms 
(α, β) and joint moving area (assuming cone with 
angle γ). 

Inverse kinematics can be described with 
equations: 
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where iA
r

 and iB
r

 are joint position vectors on 
base and mobile platform, iar  are joint position 
vectors of mobile platform, i

Pa
r

 are joint position 
vectors in local coordinate system of mobile 
platform, rr  is translation vector between base and 
mobile systems, R  is orientation matrix of mobile 
platform, d() is distance funtion and iq  are strut 
lengths calculated with inverse kinematics. 

The second observed hexapod model, shown in 
Figure 1, differs from standard Stewart manipulator 
at base platform and struts. Strut lengths are constant 
but their joints on one side are placed on sliding 
guide-ways where actuators are placed. Parameters 
which describe this model differ only for base 
platform: ikB ,

r
 and ipB ,

r
 define ith guide way and si 

as value between [0, 1] identify actual joint position. 
Inverse kinematics for this model can be defined 

using equations: 
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Values si are calculated from quadratic equation 
and therefore can give two possible joint positions 
on same guide way. This problem must be solved in 
control procedures. 
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Figure 1: Stewart Platform manipulator 
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Figure 2: Hexapod with fixed strut lengths 

End effector (tool) is placed on mobile platform 
above the geometrical center of joints placed on that 
platform by height ltool. Therefore, origin of local 
coordinate system of mobile platform is placed in 
that point. Subsequently vectors iar  and i

Pa
r

 are 
calculated for that origin.  

In our work inverse kinematics is used for 
calculating three hexapod characteristics: workspace 
volume, error study and kinematics evaluation.  

3 WORKSPACE CALCULATION 

For given end effector (tool) position and 
orientation, defined with translation vector rr  and 
rotation matrix R , joint positions on mobile 
platform iA

r
 can be calculated. Using inverse 

kinematics strut lengths iq  and directions iw
r

 can be 
calculated for first model, and joint positions is  and 
directions iw

r
, for second model. With these values 

it is possible to check if hexapod is able to put its 
mobile platform to required position verifying 
several constraints. 

Firstly, strut lengths must be within given ranges 
for first model or joints must lay on guide ways for 
second model.  
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Figure 3: Orientations used in calculations 



Secondly, joint constraints must be met. 
Spherical joints are used in modeling and its 
restrictions checked. 

The third and the last constraints which are 
checked are struts collisions. Since struts have some 
thickness it is possible that collisions between any 
two struts occur. For second hexapod model strut 
collisions with base platform are also checked. 

If all constraint for given end effector are 
satisfied then given position is reachable. With a 
fixed end effector orientation a predefined volume 
can be checked and workspace with given 
orientation found. 

Assuming that manipulator is used for 
machining free surface items, working area can be 
better defined as area were manipulator can work for 
(almost) any required orientation. Required 
orientations which give optimal surface 
characteristics are normals to surface itself. Usually 
they can be defined with vectors within a cone with 
defined angle as shown in Figure 3. Working area 
calculated using this definition gives superior visual 
and numeric description of manipulator. For 
performance reasons such cone is approximated with 
a dozen vectors for each of several different angles ϑ 
smaller than or equal to ϑmax. In this way the result 
isn’t just twofold, and if point isn’t a part of 
workspace, information for which ϑmax it will 
eventually be can still be obtained. 

Using the described methods, workspace area for 
first and second hexapod model can be calculated. 
Detailed description can be found in (Jakobovic, 
2002). 

4 ERROR ANALYSIS 

Control of hexapod manipulator is based on inverse 
kinematics. However, that was valid only for 
models. In reality there must be a feedback through 
some kind of sensors that measure actual strut 
lengths and end-effector position. Because of 
unpredictable environment some hexapod elements 
may have values different from nominal. This can be 
due to the assembly errors, elastic and thermal 
deformations, actuator errors and others error 
sources  (Wang, 1995). Model that includes all 
sources of errors is hardly possible to implement 
because of nonlinear dependent error sources and 
most of error elements can’t even be calculated or 
measured. What is shown in this paper is to give an 
approximate value for error at end effector if error 
sources are given as approximate values 
(tolerances), just quantities, not directions. 

From Figure 1, for one vector chain through ith 
strut, the following equation can be deducted: 
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Differentiating this equation yields: 
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which can be interpreted as relations between 

errors in joint positions i
P

i ab
rr

δδ ,  and actuator errors 
iqδ  with errors at end effector position r

r
δ  and 

orientation Rδ . Furthermore, two more error 
elements are added to (5), errors in joint centre 
position (Patel, 1997), both on mobile and fixed 
platform: 
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Multiplying (6) with T
iw

r
, than replacing 

RR ⋅Ω= ~δδ , where Ω
r

δ  is orientation error vector, 
and with simple vector and mathematics 
transformations (6) becomes (7). 
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Equation (7) can be generalized and used in 
matrix form: 
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With formula (8) error in position and 
orientation at end effector can be calculated if all 
errors are known or at least presumed. 

Formulas for the second hexapod model can be 
achieved following the same procedure, thus 
yielding formulas (13) to (16).  
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Equation (13) is an equivalent for (8) for model 
with fixed strut lengths. But exact values for each 
error element must be known to calculate errors at 
end effector. 
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What can be done if errors can be only 
approximated with some border values? Using worst 
case method and formulas (8) or (13) a maximal 
error can be found searching through all possible 
input error values. This method is used in analysis. 
Because of large search space an approximate 
iterative numerical method very similar to 
coordinate axis search is used to find global 
maximum. 

5 KINEMATIC ANALYSIS 

For kinematics evaluation, the relation between 
actuators speed and end effector speed is required. 
Observing one vector chain through ith strut for the 
first model, the following equation can be written: 
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derivation of eq. (17) yields eq. (18), where v
r

 and 
ω
r

 are linear and angular end effector velocities. 

iiiii avwqwq rrrrrr& ×+=×⋅+⋅ ωω  (18) 
Eq. (18) can be easily transformed in form of eq. 

(19) and then finally in matrix form as on eq. (20). 
This is a final kinematics equation, where relation 
between end effector velocity and actuator velocity - 
strut lengths changes, is given. 
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For second model shown on Figure 2, for one 
vector chain through ith strut, the following equation 
can be deducted: 

iiiii arwqlsb
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Derivation of eq. (21) yields eq. (22), and with 
little more mathematical operations we get 
kinematics equation (23) very similar to first 
hexapod model. 
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As equations (20) and (23) show, relation 
between end effector velocities and strut changes is 
given by a matrix commonly called jacobian. 
Kinematics characteristics must therefore be 
extracted from that matrix. Commonly used values 
for kinematics evaluation of manipulator are 
singular values of jacobian (Stoughton, 1993, 
Pittens, 1993, Huang, 1998).  

Three parameters based on singular values are 
usually used for kinematics evaluation:  

1. condition number:κ = σmax /  σmin 
2. minimal singular value: σmin 
3. manipulability: |det(

′−1J )|=? σi. 
Proposed method used to evaluate manipulator 

from a kinematic aspect is to calculate those three 
parameters through whole workspace of the 
manipulator or just in some part of it. For every 
point where calculations are to be performed, those 
three parameters are calculated not only for one end 
effector orientation but for all orientations as shown 
on Figure 3. The value for particular kinematics 
parameter is then calculated as average value. 

6 FORWARD KINEMATICS 

In our work we have combined several mathematical 
representations of the forward kinematics problem 
with various optimization algorithms. The 
algorithms applied in this work were Powell's 
method, Hooke-Jeeves', steepest descent search, 
Newton-Raphson's (NR) method, NR method with 
constant Jacobian and Fletcher-Powell algorithm. 

Solving of forward kinematic was simulated in 
static and dynamic conditions. The goal was to find 
the combination which would yield the best results 
considering the convergence, speed and accuracy. 
The most promising combinations were tested in 
dynamic conditions, where the algorithm had to 
track a preset trajectory of the mobile platform with 
as small error and as large sampling frequency as 
possible. The most successful combination was 
Newton-Raphson's algorithm applied to canonical 
representaion of the problem, of which more 
information can be found in (Jakobovic, 2002) and 
(Dasgupta, 1994). 

In dynamic simulation, the starting hexapod 
configuration is known and serves as an initial 
solution. During the sampling period T the algorithm 
has to find the new solution, which will become the 
initial solution in the next  cycle. Several hexapod 



movements were defined as time dependant 
functions of the position and orientation of mobile 
platform. One of those trajectories is defined with 
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The results of the dynamic simulation are 
presented in the form of a graph where errors in the 
three rotation angles and three position coordinates 
of the mobile are drawn. The sampling period T was 
set to 1 ms, which equals to a 1000 Hz sampling 
frequency. The errors shown represent the absolute 
difference between the calculated and the actual 
hexapod configuration. Due to the large number of 
cycles, the error is defined as the biggest absolute 
error value in the last 100 ms, so the graphs in each 
point show the worst case in the last 100 ms of 
simulation. The errors are presented separately for 
angles, in degrees, and position coordinates. The 
errors are shown in Figure 3 and Figure 4. 

The achieved level of accuracy is very high as 
the absolute error does not exceed 10-12 both for 
angles and coordinates. 

Mathematical analysis has shown (Raghavan, 
1993, Wen, 1994) that there may exist up to 40 
distinctive solutions for forward kinematic problem 
for Stewart platform with planar base and mobile 
platform for the same set of strut lengths. Let us 
suppose that in one hexapod configuration there 
exists no other forward kinematic solution for actual 
set of strut lengths, but that in some other 
configuration there exist several of them. If hexapod 
in its movement passes through those two 
configurations, then at a certain point in between 
there has to be a division point where the number of 
solutions increases. In those division points the 
solving algorithm may, unfortunately, begin to 
follow any of the possible paths, because any of 
them represents a valid forward kinematic solution. 

If that is the case, the algorithm may either 
follow the correct trajectory or the equivalent one. It 
is important to note that in both cases the 
optimization function remains very low (app. 10-30 to 
10-20) during the whole process because both 
trajectories depict a valid solution. The problem is, 
only one of them represents the actual hexapod 
configuration in each point of time. 
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Figure 4: Absolute angle error  
(α = , β  = , γ  = ) 
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Figure 5: Absolute coordinate error  
( x  = , y  = , z  = ) 

Without any additional information about the 
hexapod configuration, such as may be obtained 
from extra transitional displacement sensors, there is 
unfortunately no way to determine which of the 
existent solutions to the forward kinematic problem 
for the same set of strut lengths describes the actual 
hexapod configuration. Nevertheless, with some 
assumptions we may devise a strategy that should 
keep the solving method on the right track. If the 
change of the direction of movement is relatively 
small during a single period, which is in this case 
only 1 ms, then we can try to predict the position of 
the mobile platform in the next cycle. We can use 
the solutions from the past cycles to construct a 
straight line and estimate the initial solution in the 
next iteration. Let the solution in the current iteration 
be 0P

r
 and the solutions from the last two cycles 1P

r
 

and 2P
r

. Then we can calculate the new initial 
solution using one of the following methods: 
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The above methods were tested for all the 
simulated trajectories. The results were very good: 
the solving method was able to track the correct 
solution during the whole simulation process for all 
three estimation methods. The number of conducted 
experiments was several hundred and every time the 
algorithm's error margin was below 10-11 both for 
angles and coordinates. However, the described 
algorithm adaptation will only be successful if the 
assumption of a small direction change during a few 



iterations is valid. To test the algorithm's behavior, 
simulated movement was accelerated by factor 2, 4 
and 8, while maintaining the same cycle duration of 
1 ms. Only by reaching the 8-fold acceleration, 
when the total movement time equals a very 
unrealistic half a second, did the algorithm produce 
more significant errors, while still holding to the 
correct solution. 

7 HEXAPOD ANALYSIS AS WEB 
SERVICE 

The described methods of hexapod analysis have 
been implemented as Web services at 
(http://hexapod.zemris.fer.hr/). Hexapod structure 
can be defined through Web interface and then a 
particular operation is performed. Workspace 
volume can be calculated as a number representing 
volume in cubic units, or drawn as VRML shape or 
cross-section with horizontal or vertical plane. Error 
values and kinematics values can be calculated as 
overall values through all workspace or just in cross-
section with a plane. 

Implementation is done through CGI programs, 
PHP scripting language for Apache Web server, 
currently running on a two processor Windows 2000 
Server. CGI is chosen because of performance issues 
since analysis methods are computationally 
intensive. PHP scripts are used to collect hexapod 
parameters from users and temporary store them in 
session variables. Before calling CGI programs , 
PHP script writes parameters to a file on a server. 
CGI then reads those files, performs calculations and 
produces results. Depending on demanded 
calculations, results can be in HTML form, images 
or VRML files. VRML format is used for displaying 
hexapod models and its workspace. An implicit 
surface triangulation method is used for generating 
workspace. Improving and optimizing process of 
this triangulation method is in progress.  

To utilize multiprocessor system a multithreaded 
version of program is written since computations can 
be easily parallelized. Additional 15-20 percent 
speedup is achieved using hyper-threading 
technology of Intel Xeon processors. 

Regarding speed, workspace calculation can take 
up to a few minutes to complete. Kinematics is little 
more time demanding, depending on chosen 
operation and precision. Error analysis , in spite of 
enormous effort in optimizing, is still extremely 
slow and time consuming, and it can take 15 to 20 
minutes or even more to compute. 

8 CONCLUSION 

Methods for hexapod analysis are shown, starting 
with workspace calculation, error sensitivity analysis 
and kinematics evaluation. A forward kinematics 
algorithm designed for use in real-time environment 
is presented. These methods are prepared and 
implemented in a functional Web based system. 
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