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Abstract – Parallel kinematic manipulators posses some 

inherent advantages over their serial counterparts, such as 
rigidity, precision and higher workload. However, their 
movement control is restricted to inverse kinematics only, 
because of the complexity of the forward kinematics relations. 
The aim of this work is to combine different mathematical 
representations of the forward kinematics problem with 
various optimization algorithms and find a suitable 
combination that may be utilized in real-time environment. 
Additionally, we note the existence of equivalent trajectories 
of the mobile platform and suggest an adaptation to the 
solving method that, having satisfied certain assumptions, is 
able to successfully solve the forward kinematics problem in 
real-time conditions with very high precision. 

I. INTRODUCTION 
The Stewart platform mechanism, mainly referred to as 

hexapod, is a parallel kinematic structure that can be used 
as a basis for controlled motion with 6 degrees of freedom 
(d.o.f.), such as manufacturing processes and precise 
manipulative tasks. The mechanism itself consists of a 
stationary platform (base platform, the base) and mobile 
platform that are connected via six struts mounted on 
universal joints. The struts have an in-built mechanism that 
allows changing the length of each individual strut. The 
desired position and orientation of the mobile platform is 
achieved by combining the lengths of the six struts, 
transforming the six transitional d.o.f. into three positional 
and three orientational ones. The lengths of the struts 
cannot, of course, be changed independently, but only in 
such a fashion that the hexapod construction allows. 

Parallel manipulators have received an increasing 
attention in the past two decades due to their inherent 
advantages over their conventional sequential counterparts. 
These include, among others, more robust mechanical 
structure and higher base frequencies. The strength – mass 
ratio is also in favour of parallel manipulators, which 
allows for relatively large workloads. While the 
positioning error in serial mechanisms is accumulated 
through a series of links, this is not the case with parallel 
manipulators, which are consequently capable of 
performing very precise tasks. 

On the other hand, these mechanisms have a relatively 
small workspace, limited with maximum strut lengths and 
angle values at the joints, as well as their dimensions. 
However, the main difficulty with parallel manipulators is 
the complexity of controlling their movement. The 
problem of inverse kinematics for hexapod parallel 
manipulators can be defined as finding the strut lengths 
needed to position the mobile platform in a certain position 
with desired orientation. The solution to this problem is 
indeed not at all complex and can be computed in a very 
short time. Furthermore, the computation of length for 
each strut can be carried away independently in parallel, 
which can additionally speed up the process. This 

procedure is used to guide the mobile platform in 
controlling its movement. 

The forward kinematics of a parallel manipulator is 
finding the position and orientation of the mobile platform 
when the strut lengths are known. This problem has no 
known closed form solution for the most general 6-6 form 
of hexapod manipulator (with six joints on the base and six 
on the mobile platform). This procedure would be 
invaluable in controlling the force-feedback loop of the 
manipulator. It would also provide new application 
possibilities for a hexapod mechanism, such as a force-
torque sensor, position-orientation sensor etc. 

In this work several mathematical representations of the 
forward kinematics problem, in the form of optimization 
functions, are combined with various optimization 
algorithms and adaptation methods in order to find an 
efficient procedure that would allow for precise forward 
kinematics solving in real-time conditions. In the next 
section we define the most promising representations of 
the problem. Optimization algorithms and some 
adaptations regarding the problem at hand are described in 
section III. In section IV the experimental results are 
presented and closing remarks are stated in section V. 

II. THE FORWARD KINEMATICS PROBLEM 
The forward kinematics relations for a hexapod machine 

can be mathematically formulated in several ways. Every 
representation of the problem can have its advantages and 
disadvantages which become emphasized when a different 
optimization algorithm is applied. In this section the five 
mathematical representations used as an optimization 
target functions are described. 

A. The position and orientation of the mobile platform 
In order to define a forward kinematics problem we have 

to represent the actual hexapod configuration, i.e. the 
actual position and orientation of the mobile platform. The 
most common approach utilizes the three positional 
coordinates of the center of the mobile platform and three 
angles that define its orientation. The coordinates are 
represented by vector t
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and the three rotational angles are defined as roll-pitch-
yaw angles α , β  and γ . The angle values represent the 
consecutive rotation about the x, y and z axis, respectively. 
The hexapod geometry is defined with six vectors for base 
and six vectors for mobile platform, which define the six 
joint coordinates on each platform: 
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The above vectors are represented in local coordinate 
systems of the base and mobile platform and are of 
constant value. The base and mobile platform are 
presumed to be planar, which can be perceived from the z 
coordinate of the joint vectors. The strut vectors il

�

 can 
then be expressed as 
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, (3) 
where R  is the rotational matrix, calculated from three 

rotational angles. If the position and orientation of the 
mobile platform is known, the length of each strut is 
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where D represents the Euclidean distance between the 

vector pairs. For an arbitrary solution to a forward 
kinematics problem, i.e. arbitrary position and orientation 
of the mobile, the error can be expressed as the sum of 
squares of differences between the calculated and actual 
length values: 
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Having stated the above relations, we can define the first 
optimization function and the related unknowns as 
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This function is highly non-linear due to the 
trigonometric functions included in the calculation of the 
rotation matrix. On the other hand, it is derivable and is the 
most commonly used one for the representation of the 
forward kinematics problem. 

B. The canonical formulation of the forward kinematics 
The idea behind this approach [1] is to use the elements 

of the rotation matrix, rather than the angle values, to 
represent orientation: 
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The elements of the rotation matrix are interdependent 
in the following fashion: 
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�� , (8) 
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Without loss of generality we can position the origins of 

the local coordinate systems of the base and mobile 
platform at the strut joints with index one, as shown in Fig. 
1, which gives us the following parameter values: 
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Fig. 1 Positioning of coordinate systems for base and mobile platform 

After extensive simplifications, the forward kinematics 
can be expressed as a system of 9 equations with 9 
unknowns: 
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where the constants are 
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The optimization function F2 and the related variables 
vector X2 are then defined as 
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C. Reduced canonical formulation 
The equations (19)-(21) are of linear form which can be 

used to reduce the number of variables without introducing 
additional complexity in the system. Three of the six 
variables tx, nx, ox, ty, ny and oy can be replaced with linear 
combinations of the other three, which leaves us with only 
six unknowns. For instance, if we choose to eliminate the 
following variables 
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we can define another target function as 
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It is possible to further reduce the number of unknowns 
to as low as three, but with inevitable increase in equation 
complexity [1]. That way the fourth optimization function 
can be defined as 
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where the constant elements are 
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D. Vector defined rotation 
The arbitrary orientation can be described with a single 

rotation about a universal rotation vector [3]. If the rotation 
vector, whose length equals one, is denoted with k

�

 and the 
rotation angle with θ , then we can use the components of 
their product 

kr
�

�

⋅= θ  (31) 
to represent a potential solution to the forward 

kinematics problem [2]: 
[ ]Tzyxzyx rrrtttX =5

�

. (32) 
The conversion from roll-pitch-yaw angles to rotation 

vector and vice versa can be found in [3]. The optimization 
function F5 is defined in the same way as the function F1, 
only the elements of the rotation matrix have to be 
calculated from vector r

�  prior to function evaluation. 

III. THE OPTIMIZATION ALGORITHMS 
The forward kinematics problem is presented as five 

optimization functions for which the optimization 
algorithm has to find the minimum, the value of the 
functions being the error of the estimated solution. Several 
optimization methods have been applied to each of the 
functions in order to find an effective combination which 
would allow for real-time application. The algorithms 
applied in this work are Powell's method, Hooke-Jeeves', 
steepest descent search, Newton-Raphson's (NR) method, 
NR method with constant Jacobian and Fletcher-Powell 
algorithm. Each of the algorithms is found to be more 
suitable for some types of functions than for others, which 
can be perceived from experimental results later in this 
paper. 

A. Estimating the initial solution by variable elimination 
The most reduced canonical formulation (function F4) of 

forward kinematics problem contains only three 
independent variables. The choice of those variables can be 
altered in the reduction process, so it is possible to have 



different variable triplets in three-dimensional reduced 
form. However, a single solution in three-dimensional 
space represents not one, but a whole family of hexapod 
configurations, because a single configuration is fully 
described only in six-dimensional space. The form of the 
set of hexapod configurations included in a single solution 
is determined by the variables not present in the remaining 
three. For example, if the reduced form solution is 
represented with variables nx, ox and oy, then none of the 
variables which define the mobile position, i.e. variables tx, 
ty and tz, are not present in the solution. Hence, every 
hexapod configuration with mobile platform orientation 
matching the three values of nx, ox and oy, but with any 
arbitrary position, will be represented with the same 
solution in three-dimensional space. The exact position 
values are restored through constants' values once the 
transformation to six-dimensional space is undertaken. 
This property is used to effectively estimate the initial 
forward kinematics solution, presuming an orientation of 
the mobile platform from the previous last known position. 

IV. EXPERIMENTAL RESULTS 
Solving of forward kinematics was simulated in static 

and dynamic conditions. The static experiments included 
all the combinations of five optimization functions and six 
optimization algorithms applied to 20 test configurations. 
The goal was to find the combination which would yield 
the best results considering the convergence, speed and 
accuracy. The most promising combinations were then 
tested in dynamic conditions, where the algorithm had to 
track a preset trajectory of the mobile platform with as 
small error and as large sampling frequency as possible. 
Those combinations include Hooke-Jeeves' algorithm with 
function F1 and Fletcher-Powell method with functions F2 
and F3, but the most successful optimization method was 
Newton-Raphson's algorithm applied to function F3. That 
combination has achieved the best results in dynamical 
testing as well. 

In dynamic simulation, the starting hexapod 
configuration is known and serves as an initial solution. 
During the sampling period T the algorithm has to find the 
new solution, which will become the initial solution in the 
next cycle. Several hexapod movements were defined as 
time dependant functions of the position and orientation of 
mobile platform. One of those trajectories, hereafter 
denoted as A, is defined with 
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The results of the dynamic simulation are presented in 
the form of a graph where errors in the three rotation 
angles and three position coordinates of the mobile are 
pictured. The sampling period T was set to 2 ms, which 
equals to a 500 Hz sampling frequency. The errors shown 

represent the absolute difference between the calculated 
and the actual hexapod configuration. Due to the large 
number of cycles, the error is defined as the biggest 
absolute error value in the last 100 ms, so the graphs in 
each point show the worst case in the last 100 ms of 
simulation. The errors are presented separately for angles, 
in degrees, and position coordinates. The errors for 
movement A and Newton-Raphson algorithm with function 
F3 are shown in Fig. 2 and Fig. 3. 
 

0 10 20 30 40
Cycle index 

1. × 10−15

5. × 10−15
1. × 10−14

5. × 10−14
1. × 10−13

5. × 10−13
1. × 10−12

A
b
s
o
l
u
t
e
e
r
r
o
r

Fig. 2 Absolute angle error (α = , β = , γ = ),  
NR algorithm with F3, movement A 
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Fig. 3 Absolute coordinate error (x = , y = , z = ), 
NR algorithm with F3, movement A 

The achieved level of accuracy is very high as the 
absolute error is not higher than 10-12 both for angles and 
coordinates.  

Another trajectory is derived from the described one by 
enlarging some of the amplitudes in (33), which is denoted 
as movement B (the altered values are in boldface): 
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The movement B errors are shown in Fig. 4 and Fig. 5. 
While still low, the error for movement B has two 

distinctive peaks at certain points in simulated motion. 
What is the cause of those peaks? Mathematical analysis 
has shown ([4], [5], [6]) that there may exist up to 40 
distinctive solutions for forward kinematics problem for 
Stewart platform with planar base and mobile platform. 
Those 40 solutions are divided in two groups of 20 
between which the only difference is the sign of the z 
coordinate. In another words, only one half of those 
mathematical solutions have a physical meaning, i.e. those 
with positive z axis value. But the existence of multiple 
solutions for the same set of strut lengths may prove as a 
problem for the solving method.  
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Fig. 4 Absolute angle error (α = , β = , γ = ),  
NR algorithm with F3, movement B 
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Fig. 5 Absolute coordinate error (x = , y = , z = ), 
NR algorithm with F3, movement B 

Let us suppose that in one hexapod configuration there 
exists no other forward kinematics solution for actual set of 
strut lengths, but that in some other configuration there 
exist several of them. If hexapod in its movement passes 
through those two configurations, then at a certain point in 
between there has to be a division point where the number 
of solutions increases. In those division points the solving 
algorithm may, unfortunately, begin to follow any of the 
possible paths, because any of them represents a valid 
forward kinematics solution! That is exactly the problem 
that occurs in movement B: the algorithm may or may not 
follow the correct trajectory. If the latter is the case, than 
the absolute error looks like in Fig. 6 and Fig. 7. 
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Fig. 6 Absolute angle error (α = , β = , γ = ),  
NR algorithm with F3, movement B - division 
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Fig. 7 Absolute coordinate error (x = , y = , z = ), 
NR algorithm with F3, movement B - division 

The algorithm will randomly follow either the correct 
trajectory or the equivalent one. It is important to note that 
in both cases the optimization function remains very low 
(app. 10-30 to 10-20) during the whole process because both 
trajectories depict a valid solution to the forward 
kinematics problem. The problem is, only one of them 
represents the actual hexapod configuration in each point 
of time. The error between junction points in Fig. 6 and 
Fig. 7 actually shows the distance between the two 
equivalent trajectories. 

A. The adaptation method 
Without any additional information about the hexapod 

configuration, such as may be obtained from extra 
transitional displacement sensors, there is unfortunately no 
way to determine which of the existent solutions to the 
forward kinematics problem for the same set of strut 
lengths describes the actual hexapod configuration. 
Nevertheless, with some assumptions we may devise a 
strategy that should keep the solving method on the right 
track. 

If the change of the direction of movement is relatively 
small during a single period, which is in this case only 2 
ms, then we can try to predict the position of the mobile 
platform in the next cycle. We can use the solutions from 
the past cycles to construct a straight line and estimate the 
initial solution in the next iteration. Let the solution in the 
current iteration be 0P

�

 and the solutions from the last two 

cycles 1P
�

 and 2P
�

. Then we can calculate the new initial 
solution using one of the following methods: 

100 2 PPX
���

−⋅= , (35) 

200 5.05.1 PPX
���

⋅−⋅= , (36) 

( )
( )

�
�
�

��
�

�

⋅−⋅=

+⋅=

+⋅=

210

212

101

5.15.2

,5.0

,5.0

TTX

PPT

PPT

���

���

���

. (37) 

The above methods were tested in conjunction with NR 
algorithm and function F3 for all the simulated trajectories. 
The results are very good: the solving method was now 
able to track the correct solution during the whole 
simulation process for all three estimation methods. The 
number of conducted experiments was several hundred 
times and every time the algorithm's error margin was 
below 10-11 both for angles and coordinates.  

However, the described algorithm adaptation will only 
be successful if the assumption of a small direction change 
during a few iterations is valid. To test the algorithms 
behaviour, simulated movement B was accelerated by 
factor 2, 4 and 8, while maintaining the same cycle 
duration of 2 ms. Only by reaching the 8-fold acceleration, 
when the total movement time equals a very unrealistic 
half a second, did the algorithm produce significant errors, 
while still holding to the correct solution. In this case only 
some differences can be perceived between the three 
proposed estimation methods. If we set an error margin of 
10-3 for angles (in degrees!) and 10-5 for coordinates, then 
the percentage of breaking those margins for the three 
adaptation methods will be approximately equal to those 
shown in Table I. 

TABLE I  
THE PERCENTAGE OF BREACHING ERROR MARGINS 

Adaptation method As (35)  As (36) As (37) 
Error breaching 

percentage 6 % 11 % 3.6 % 

 
There is no way of telling, without extensive 

mathematical analysis for every planned mobile platform 
movement, whether hexapod will pass any division points 
or hyperplains. That is why the sampling period must be 



kept as low as possible, to assure relatively small direction 
changes during a few cycles. 

V. CONCLUSION 
Combining several representations of the forward 

kinematics problem with optimization techniques, an 
efficient method for solving the problem was found. For 
the purposes of real-time simulation, several mobile 
platform trajectories were mathematically predefined. The 
task of a forward kinematics solving method was then to 
track the position and orientation of the mobile platform, 
knowing the starting position. The solving method was 
able to determine the exact position and orientation of the 
mobile platform within insignificant error margins (less 
than 10 to the power of –12 of the minimum hexapod 
dimension) and with 500 Hz sampling frequency. 

The problem of equivalent trajectories was noted: 
because of the existence of multiple solutions to forward 
kinematics, there may exist more than one path that mobile 
platform can follow while having exactly the same strut 
lengths in every point of the way. The solving algorithm 
may, under some circumstances, skip to an equivalent 
trajectory at certain division points. It has to be said that 
every such path represents an equal correct solution of the 
forward kinematics, but only one of them represents the 
true mobile platform trajectory.  

An empirical algorithm was devised which can increase 
the probability of finding the right solution, and it proved 
itself successful in every test case. Unfortunately, it cannot 
be proven that it will do so in every imaginable movement 
of the mobile platform. The solving method will always 
find the right solution if the change in the position or 
moving direction of the mobile platform is relatively small 
during a few sampling periods. If that condition is fulfilled, 

the described method can be used in real-time forward 
kinematics solving. 

VI. ACKNOWLEDGMENT 
This work was carried out within the research project 

"Problem-Solving Environments in Engineering", 
supported by the Ministry of Science and Technology of 
the Republic of Croatia. 

VII. REFERENCES 
[1] B. Dasgupta, T.S. Mruthyunjaya, "A Canonical 

Formulation of the Direct Position Kinematics 
Problem for a General 6-6 Stewart Platform", Mech. 
Mach. Theory, Vol. 29, No. 6, pp. 819-827, 1994. 

[2] J. -P. Merlet, "Direct Kinematics of Parallel 
Manipulators", IEEE Transactions on Robotics and 
Automation, Vol. 9, No. 6, pp. 842-845, 1993. 

[3] R. P. Paul, Robot Manipulators, The MIT Press, 
Cambridge, 1981. 

[4] M. Raghavan, "The Stewart Platform of General 
Geometry has 40 Configurations", Journal of 
Mechanical Design, Vol. 115, pp. 277-282, June 
1993. 

[5] M Husty, "An Algorithm for Solving the Direct 
Kinematic Of Stewart-Gough-Type Platforms", 
ftp://ftp.mcrcim.mcgill.edu/pub/techrep/1994/CIM-
94-01.pdf, 1994. 

[6] F. Wen, C. Liang, "Displacement Analysis of the 6-6 
Stewart Platform Mechanisms", Mechanism and 
Machine Theory, Vol. 29, No. 4, pp. 547-557, 1994. 

 

ftp://ftp.mcrcim.mcgill.edu/pub/techrep/1994/CIM-94-01.pdf
ftp://ftp.mcrcim.mcgill.edu/pub/techrep/1994/CIM-94-01.pdf

