
Using Unrestricted Loops in Genetic Programming for Image
Classification

Jan Larres, Mengjie Zhang, Will N Browne

Abstract— Loops are an important part of classic program-
ming techniques, but are rarely used in genetic programming.
This paper presents a method of using unrestricted, i.e. nesting,
loops to evolve programs for image classification tasks. Con-
trary to many other classification methods where pre-extracted
features are typically used, we perform calculations on image
regions determined by the loops. Since the loops can be nested,
these regions may depend on previously computed regions,
thereby allowing a simple version of conditional evaluation.
The proposed GP approach with unrestricted loops is examined
and compared with the canonical GP method without loops
and the GP approach with restricted loops on one synthesized
character recognition problem and two texture classification
problems. The results suggest that unrestricted loops can have
an advantage over the other two methods in certain situations
for image classification.

I. INTRODUCTION

This paper is concerned with the loop construct in genetic
programming (GP) for image classification. Our world is
full of recurrences and many real world problems require
iteration as a part of a solution. Iteration is an important
feature in computer programming and provides a mechanism
to execute a sequence of instructions repeatedly. This is
reflected in classic programming languages such as C and
Python by supporting loop constructs that allow iteration over
data structures and other recurring tasks.

In terms of whether there is a fixed number of cycles
to be executed for the loop body, loops can be categorised
into two different types [1]. The first is the so-called count-
controlled loops, which execute the loop body a fixed number
of times and is usually implemented by either a for-loop or
some while-loops in modern programming languages. The
second type is the so-called event-controlled loops, which
repeatedly execute the loop body until a certain condition is
met. In this case, the number of times for the loop body to
be executed is unknown in advance, and this loop is typically
implemented by the while-loop only. These different loops
have been discussed in [1] and [2].

Regarding whether a loop can be embedded into another
loop, the loops can be categorised into two types: restricted
loops, which do not allow any loops within any other loop,
and unrestricted loops, which allow one or more loops to
occur within another loop (nested loops). It is important to
note that our form of nesting occurs in the conditions of the
loops and not the bodies as is usually the case with nested
loops as the loop bodies are just simple operations.

Authors are with the School of Engineering and Computer Sci-
ence, Victoria University of Wellington; email: larresjan@ecs.vuw.ac.nz,
mengjie.zhang@ecs.vuw.ac.nz, will.browne@vuw.ac.nz.

A. Image Classification using GP with Loops

Image classification tasks arise in a very wide variety
of practical situations. Detecting tanks and helicopters from
satellite images, identifying suspected terrorists from finger-
print images and diagnosing medical conditions from X-ray
images are just three examples. In many cases, performing
these tasks by hand is too expensive or too slow. Given the
amount of image data that needs to be classified, computer
based classification programs are of immense social and
economic value.

Popularised in the 1990s, genetic programming (GP) [3]
employs the Darwinian principle of survival of the fittest to
automatically generate computer programs for a particular
task. Since the 1990s, GP has been successfully applied to
image classification tasks and achieved a certain level of
success [4], [5], [6].

Unlike many other classification tasks, image classification
tasks often include repeated patterns. For example, within
an image, the neighbouring pixels are more likely to have
similar intensities. So it was considered worthwhile applying
GP with loop structures to image classification.

However, compared with the standard arithmetic operators,
which are commonly used in GP, loops are more complex
and usually require different types of input variables and
Boolean conditions. In addition, there is a great potential for
infinite loops – so keeping loops valid is still challenging in
GP. So the use of loops in GP is still relatively uncommon.
So far, a number of papers have already applied loops to
GP [1], [2], [7], but most of these works used the simple,
restricted loops only. GP with unrestricted, nested loops for
image classification is still rarely investigated.

When using GP approaches to image classification, a
typical step is to determine a set of features to extract
from the images that will then be used as terminals by the
genetic programs during the evolutionary process. In this
way, the features that are most likely to be useful in the
classification task can be made available, thereby providing
a good basis for a successful result. However, this also
has some limitations: the feature set is typically problem
specific and manually predefined, and it is possible that some
important features are not included. It would be beneficial if
the features, particularly some useful ones that may not be
obvious to humans, could be automatically constructed for a
particular problem by the GP evolutionary process.

B. Goals

To cope with the above issues, this paper aims to in-
vestigate a GP approach with unrestricted loops to image

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

classification. Instead of using a small set of predefined
image features, this approach seeks to enable good features
to be automatically constructed during evolution based on
image pixel values. This approach will be examined and
compared with GP with restricted loops and canonical GP
without loops on a number of image classification problems
of varying difficulty. Specifically, we will investigate whether
the new approach can do perform adequately on these image
classification tasks and whether the new GP approach with
unrestricted loops can outperform the other two methods.

C. Organisation

The rest of the paper is organised as follows. Section
2 briefly describes some related work to GP with loops
and GP for image classification. Section 3 describes the GP
system with restricted and unrestricted loops, and the related
parameter settings. Section 4 describes the first test of the
experiments and results by testing the proposed approach to
character recognition. Section 5 presents the results of the
second test of the proposed approach to two texture classi-
fication tasks. Finally, section 6 gives the main conclusions
with future research directions.

II. RELATED WORK

This section describes very briefly related work to GP with
loops, GP for image classification, and GP with loops for
image classification.

A. Loops in GP

The evolution of loops using GP was first explored by
Koza [3], where the Do Until (DU) operator is intro-
duced to allow the evolution of loops for the block stacking
problem. The DU operator takes two arguments and appears
in the form (DU WORK PREDICATE). The first argument
specifies the loop body, and the second specifies a predicate
as a condition. To avoid infinite loops, Koza applies both a
limit to the total number of loops (100) in a program and a
limit to the number of cycles in each loop (25). Since the
data types of the variables are not constrained effectively,
the system produces many ill-formed programs causing an
infinite loop.

To evolve a sorting algorithm, Kinnear used an iterative
function (dobl start end work) [8], [9]. The system
uses an index variable for the loop to control execution
of the loop body work, ranging from value start, to the
value end. In an attempt to avoid infinite loops, Kinnear used
the same approach as Koza, but with larger limits (2000 and
200).

Langdon [10] utilised an iteration operator forwhile to
evolve a list data structure. In his experiments, the form of
the iteration is: forwhile(s,e,l). This is also a counter-
controlled approach, where the values of s and e specify the
number of cycles in the loop. In this structure, nested loops
were not allowed and the number of iterations was restricted
to 32. The experiments shows that the forwhile provided
the capability to process multiple list elements.

Recently, Ciesielski and Li used both restricted and unre-
stricted loops to evolve programs for controlling an agent in
the modified Santa Fe Ant problem and sorting a 7-element
array [11]. This work was extended later to use a variant
of the for-loop in a binary classification problem [12]. In
their implementation, Strongly-Typed Genetic Programming
[13] is used to ensure that the generated programs are
syntactically correct, and semantics is restricted to avoid
infinite loops. Another experiment using only unrestricted
loops on a factorial and a modified Santa Fe Ant problem
was done by Chen and Zhang [1].

B. GP for Image Classification

Since the early 1990s, there has been a reasonable amount
of work on applying GP techniques to image classification
and object recognition. Some examples are Tackett’s object
classification [14], [15], Song’s work on texture classification
[16], [17], Ciesielski’s landmark detection [18], Zhang’s
object classification and detection [19], [20], [4], Bhanu’s
work on object detection [21]. Typically, most of these works
use a small set of predefined features as terminals in GP for
evolution.

More detailed work about GP and other evolutionary com-
putation techniques for object recognition, image analysis
and computer vision applications can be seen from a recent
journal special issue [22] and a recent book [23].

C. GP with Loops for Image Classification

There has not been much work in GP with loops for image
classification tasks. A typical piece of such work is done
by Wijesinghe and Ciesielski [6], where they examined the
use of restricted loops for image classification tasks, using
a range of greyscale images. Their goal was to determine
if using restricted loops on image regions provided any
advantage over single pixels, and if these loops would result
in simpler programs or less overfitting. Their findings were
very promising, with loops improving over programs without
loops in every tested category. They also did a short test
with unrestricted loops in one of their experiments, but found
that these loops provided no benefit over restricted loops. An
earlier work using loops that operated line-wise over images
was done by Li and Ciesielski [24]. These loops did not
allow nesting, and the images were relatively small.

III. THE APPROACH: GP WITH LOOPS

Here we present the exact approach we used in our
experiments.

A. Unrestricted vs Restricted Loops

We developed two different types of functions for a genetic
program to access the image data: a function that returns the
value of a single pixel, and a loop that performs an operation
over a whole region.

The difference between the restricted and the unrestricted
versions of the functions (both the point and loop types)
is as follows. The restricted functions take only terminals
as arguments: generated numbers for the coordinates, which

TABLE I
GP FUNCTION AND TERMINAL SETS

Method Node Type Name Description

No loops Functions + + Operation
- - Operation
PointR x y Grey value at coordinate (x,y)

Terminals rX A random integer X

Restricted loops Functions Same as for no loops, and
ForLoopR x1 y1 x2 y2 Op Execute Op from (x1, y1) to (x2, y2)

Terminals Same as for no loops, and
f+ Positive sum of pixels
f- Negative sum of pixels

Unrestricted loops Functions Same as for restricted loops, except
PointU instead of PointR
ForLoopU instead of ForLoopR

Terminals Same as for restricted loops

are guaranteed to be inside the image boundaries, and an
operation for the loops. This means that they can not be
nested, the regions they are operating over only depend on
the terminals that are created together with the program and
are therefore the same for each evaluation of this program.
The unrestricted versions, on the other hand, allow for
the coordinates to come from function outputs as well as
terminals, thereby allowing for them to nest. This poses a
minor “problem”: the outputs of functions are not necessarily
inside the image boundaries. Thus, the unrestricted single
pixel and loop functions transform those values into legal
coordinates by taking them modulo the size of the image.
This makes it clear that the term unrestricted refers to the
structure of the loops and not the results since the results
obviously have to be restricted to the image boundaries.

The single “pixel” functions have the following syntax:
(PointR x y) and (PointU x y)

where PointR refers to the restricted version and PointU to
the unrestricted version, and x and y are the coordinates of a
pixel to use. The function (PointR x y) simply returns
the brightness of the pixel (x, y), where x and y can
only take a random number within the range of the image
size (width and height). In the function (PointU x y),
however, x and y can come from either a particular pixel of
an image, or from any other function return values includ-
ing simple (PointU x y) and loop functions described
below.

Similarly, the loop functions also have two versions:
(ForLoopR Begin End Operation)
(ForLoopU Begin End Operation)

where Begin and End are pairs of (x, y) coordinates that
specify the rectangular region the loop operates over, and
Operation is either a sum or a subtraction operation that is
performed over all the pixels in the region.

For example, the loop function (ForLoopR 1 1 2 2
f+) will return the value of [0+I(1, 1)+I(1, 2)+I(2, 1)+
I(2, 2)], where I(i,j) is the brightness of pixel (i,j),

while the loop function (ForLoopR 1 1 2 2 f-) will
return the value of [0− I(1, 1)− I(1, 2)− I(2, 1)− I(2, 2)].
In other words, in both the loop functions, the return values
will be initialised to zero.

The image size information is used to guarantee that the
evolved coordinates of the unrestricted versions lie inside
their boundaries.

A possible use for the unrestricted features is tested in
our experiments, where the important characteristic of the
images is not always in the same position.

B. Overall Experiment Setup

In this approach, we used the tree-structure to represent
genetic programs [3]. The ramped half-and-half method was
used for generating programs in the initial population and
for the mutation operator [25]. The proportional selection
mechanism and the reproduction, crossover and mutation
operators [26] were used in the learning and evolutionary
process.

In particular, we used strongly typed genetic programming
(STGP) [13] in experiments. STGP allows multiple data
types used in a system, and enforces closure by generating
parse trees that satisfy the type constraints. During the
process of crossover and mutation, only sub-programs (sub-
trees) of the same type can be swapped or mutated. This
ensures that the generated programs are syntactically correct.

This system was implemented using the RMITGP package
due to its support for strongly typed GP, to ensure that only
valid programs are evolved.

As mentioned earlier, this paper compares the GP with
unrestricted loops method to the GP with restricted loops
method and the canonical GP without using loops. The func-
tions and terminals used in the three methods are summarised
in Table I. For comparison purposes, the three methods
used the same settings of the parameter values, which are
summarised in Table II.

TABLE II
GP SYSTEM SETUP

GP Setting Value

Runs 20
Population size 100
Max. generations 1000
Termination 0% error or >max gens.
System RMITGP v1.5
Min. tree depth 1
Max. tree depth 6
Crossover rate 70%
Mutation rate 28%
Elitism rate 2%

Notice that the number of generations was intentionally
set to 1000, which is larger than usual. This is because
the goal here is to investigate the evolvability of the three
methods rather than training time. Other parameter values
are set based on the common settings and some initial trials
via experiments.

For all of the three methods, the evolved genetic programs
are all in a tree form and the outputs of the programs
are a single floating point number. For binary classification
of images, a negative program output corresponds to one
class and a non-negative number to the other class. The
classification error rate is used as the fitness function.

The two image classification problems used are character
recognition and texture classification. The details of the two
problems with a number of specific tasks and the correspond-
ing results will be described in the next two sections.

IV. TEST 1: CHARACTER RECOGNITION PROBLEM

In the first group of test experiments, the test bed is a
binary classification problem where the classifier must de-
termine whether a given image contains either the character
A or B. Figure 1 shows examples of these two classes.

This problem was derived from the task of creating
CAPTCHA (Completely Automated Public Turing Test to
tell Computers and Humans Apart) images [27]. CAPTCHA
images are specifically designed to be hard for computers
to classify, and are used to prevent malicious software from
automatically filling in forms or completing other tasks.

In order to increase the difficulty of the classification, noise
was added to the initial images. This prevents classifiers
from using just a single pixel to distinguish between the two
classes, and forces it to learn more general characteristics.

Our problem set consists of 500 100×100 pixel greyscale
images, with 250 depicting the character A and 250 the
character B. The pixels in each image were generated by
selecting a random number from a normal distribution with
a mean of 170 for the characters and 130 for the background.
Both have a variance of 30 to introduce the noise.

Unrestricted loops are expected to process different regions
of an image depending on previously processed ones. In
order to test whether this has any measurable impact on their
performance, in addition to the normal character images,
several other sets were created where the characters in the
images were shifted by increasing distances away from their

centre position. We expect the unrestricted loops to be able
to adjust their regions depending on the position of the
characters and to potentially lead to better classification
performance than purely random restricted loops.

Based on this idea, we made six sets chars00, chars10,
chars15, chars20, chars25, chars30, each with 500 images,
where the characters are shifted randomly by up to 0, 10,
15, 20, 25, or 30 pixels, respectively, in different directions.
This allows us to determine whether the unrestricted loops
perform better for certain shifting distances than for others.

These sets will be evaluated using all three methods, that
is, GP without any loops, GP with restricted loops, and GP
with unrestricted loops. Each experiment is repeated for 20
independent runs, and the average results are reported in the
rest of this section.

Fig. 1. Character recognition problem: example images for “A” and “B”.

A. Experimental Results

TABLE III
CHARACTER RECOGNITION: AVERAGE CLASSIFICATION ERROR

Experiment Strategy Classification Error rate
mean std. Dev.

chars00 No loops 2.80% 2.67%
Res. loops 0.00% 0.00%

Unres. loops 5.40% 5.34%

chars10 No loops 32.78% 2.36%
Res. loops 21.92% 4.14%

Unres. loops 32.26% 2.27%

chars15 No loops 36.94% 1.72%
Res. loops 32.04% 4.03%

Unres. loops 35.18% 1.21%

chars20 No loops 36.62% 1.78%
Res. loops 35.04% 2.55%

Unres. loops 34.92% 1.75%

chars25 No loops 37.98% 1.68%
Res. loops 36.66% 1.42%

Unres. loops 33.84% 2.42%

chars30 No loops 37.74% 1.64%
Res. loops 36.96% 1.72%

Unres. loops 34.02% 1.63%

The results from our experiments are shown in Table III.
Figure 2 shows the evolutionary process for the three typical
tasks chars00, chars20 and chars30. As can be seen from
Table III and Figure 2, for the non-shifted images (chars00),
the unrestricted loops did not perform as well as the restricted
loops and were even worse than GP without any loops. This

0

5

10

15

20

25

30

35

40

45

50
C
la
ss
ifi
ca
ti
o
n
E
rr
o
r
%

0 100 200 300 400 500 600 700 800 900 1000

Generation

No loops

Restricted loops

Unrestricted loops

(a) chars00: Not shifted

0

5

10

15

20

25

30

35

40

45

50

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r
%

0 100 200 300 400 500 600 700 800 900 1000

Generation

No loops

Restricted loops

Unrestricted loops

(b) chars20: Shifted by up to 20 pixels

0

5

10

15

20

25

30

35

40

45

50

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r
%

0 100 200 300 400 500 600 700 800 900 1000

Generation

No loops

Restricted loops

Unrestricted loops

(c) chars30: Shifted by up to 30 pixels

Fig. 2. Character recognition problem: Average classification error

is very likely due to the arrangements needed to keep the
output of the unrestricted loops within the image boundaries
so that they can be used as input in other functions, thereby
inevitably reducing variety. Another possible reason is that
the task without any shifting is relatively easy, but the high
level features evolved by complex unrestricted loop functions
cannot easily be decomposed into simple features that this

simple task needs. For the task with a little shifting of
chars10, again GP with the simple restricted loops achieved
the best performance and the GP method with unrestricted
loops was not as good as the restricted loops, but it performed
slightly better than, or at least as well as, the GP approach
without any loops.

A further check of the results for the shifted tasks reveals
that with greater distances of shifting, the unrestricted loops
slowly overtake the restricted loops and certainly also the
GP approach without any loops. This first happens for
the chars20 task, and is apparent for char25 and chars30.
For these “relatively difficult” tasks, the GP method with
restricted loops still achieved slight improvement over the GP
method without loops, but the improvement is not statistically
significant (after a T-test with the two-side 95% confidence).
The new GP method with unrestricted loops, on the other
hand, always performed better than the other two approaches,
and the improvement was statistically significant although the
amount of improvement was intuitively not large.

It is also interesting to note that the unrestricted loops
almost always resulted in a lower standard deviation than the
two GP methods with the restricted loops and without loops,
except for the chars00 and chars25 tasks. In these cases the
deviation is closer to the one for the no loops strategy.

These results suggest that the unrestricted loops have an
advantage over restricted loops and the absence of loops if
the tasks are more difficult, in this case, when the characters
are shifted further from their centred position. In this case
the unrestricted loops can employ their conditional nature
to improve on the purely static property of the other two
methods.

B. Example Evolved Programs

To check what the evolved programs look like, we give
two example evolved programs here and their corresponding
operated regions in the images.

The following evolved classifier program (figure 3) with
unrestricted loops achieved a classification error of 14.4%
on the chars00 task. As can be seen from the Table III,
this result is not good. The regions it used are shown in
Figure 5a. According to this figure, although this program
was reasonably successful in locating the region of interest,
it has a number of functions including some loops that
are relatively far from the region of interest (close to the
character “A”).

(- (PointU (+ r6 r4) (- r71 r41)) (PointU

(- r97 r79) (ForLoopU r52 (ForLoopU

(ForLoopU r88 r78 r68 r86 f-) r6 (PointU

r3 r72) r81 f+) (PointU (+ r76 r6)

(PointU r57 r15)) (PointU (ForLoopU r79

r65 r75 r29 f+) (ForLoopU r36 r71 r49 r23

f-)) f-)))

Fig. 3. Example program 1.

The following evolved unrestricted-loops classifier pro-
gram (figure 4) achieved a classification error of 36.4% for

the chars30 task. According to Table III, this result is quite
close to the mean value. The regions it used in the image
are shown in Figure 5b. This example shows that the loops
adapt to the image content: all the regions are in the lower
right area of the image where the character is found. This
allows the loop to process the relevant regions of the image
to make a more accurate classification.

(+ (+ (- (+ r5 (PointU r37 r19)) (PointU

r49 r42)) (ForLoopU (PointU r96 r22)

(PointU r49 r55) (ForLoopU r86 r92 r90

r20 f+) (ForLoopU r48 r18 (+ r0 r38) r61

f-) f+)) (ForLoopU (- (PointU r69 r99) (-

r30 r72)) r74 (+ (PointU r26 r0) (PointU

r71 r29)) (- (- r33 r64) (- r22 r16))

f-))

Fig. 4. Example program 2.

(a) Regions for chars00 experiment (b) Regions for chars30 experiment

Fig. 5. Example evolved programs and corresponding regions used.

C. Further Discussion

The disadvantage of both restricted and unrestricted loops
is that evaluating programs with loops takes far longer than
programs without them. One run of our character recognition
problem over 1000 generations took 16 minutes on average
for the restricted loops and 20 minutes for the unrestricted
loops, compared with only 30 seconds for the no loops
strategy, but this is not unexpected. If the unrestricted loops
can lead to better performance for some problems, particu-
larly the relatively difficult problems, a longer evolutionary
training time is an acceptable compromise. This can be very
much offset by the advanced computer hardware such as grid
computing facilities commonly used these days.

Another point is also noticed. In the previous loop ap-
proaches for non-image classification problems, such as the
factorial program and the Santa Fe Ant problem [1], [2],
it has been shown that the good programs evolved with
loops are typically shorter than those without using loops.
However, this pattern does not hold for this character classi-
fication problem here. In the next section, we will investigate
two texture classification problems and examine whether this
pattern can hold or not.

(a) Examples of the two classes of the Brodatz texture set

(b) Examples of the two classes of the Ponce texture set

Fig. 6. The texture problem.

V. TEST 2: TEXTURE PROBLEMS

The texture problems used here comprise two different
data sets of images depicting varying textures. The first
one (“Brodatz Textures”) comes from the USC-SIPI Image
Database [28] and consists of two classes of textures, where
the second class is a histogram equalized version of the
images from the first class. 13 images per class are provided
by this data set (512×512 pixels). Figure 6a shows an exam-
ple of both classes. The second set (“Ponce Textures” [29])
comes from the Ponce research group at UIUC and consists
of several different textures. Two classes are chosen from the
types available, each providing 40 images (480×480 pixels).
Figure 6b shows an example of both classes.

These two tasks pose two potentially more difficult ma-
chine vision problems than the character recognition problem
in the previous section since it does not rely on artificial
constructs, but instead on naturally occurring recurrences.
The Brodatz set will also test whether histogram related
differences allow the unrestricted loops to utilize their con-
ditional nature to some advantage.

A. Experimental Results

The results on the two texture problems are shown in
Table IV. On the Brodatz problem, the GP method with unre-
stricted loops achieved the best performance among the three
methods: a classification error of 6.62% for the unrestricted
loops, 14.31% for the restricted loops and 15.31% for no
loops. The advantage for the Ponce data set is not as large
as for the Brodatz problem intuitively, but the improvements
over the other two approaches are still statistically significant
(by a T-test with 95% confidence). The results on both

TABLE IV
TEXTURE PROBLEM: AVERAGE CLASSIFICATION ERROR

Experiment Strategy Classifition Error Rate
mean Std. Deviation

Brodatz No loops 15.31% 3.12%
Res. loops 14.31% 3.87%
Unres. loops 6.62% 3.61%

Ponce No loops 23.50% 3.82%
Res. loops 21.00% 2.92%
Unres. loops 18.07% 3.73%

0

5

10

15

20

25

30

35

40

45

50

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r
%

0 100 200 300 400 500 600 700 800 900 1000

Generation

No loops

Restricted loops

Unrestricted loops

(a) The Brodatz texture set

0

5

10

15

20

25

30

35

40

45

50

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r
%

0 100 200 300 400 500 600 700 800 900 1000

Generation

No loops

Restricted loops

Unrestricted loops

(b) The Ponce texture set

Fig. 7. Texture problem: Average classification error.

problems show a clear improvement of the unrestricted loops
over the other two methods.

Figure 7 shows the progression of the average classifi-
cation error over 1000 generations during evolution. These
curves clearly show that among all three methods, GP with
the unrestricted loops has a performance improvement over
the other two methods except for the first few generations in
the Ponce data set.

B. Further Discussion

Another observation is that the GP approach with unre-
stricted loops produced an ideal solution (all the images have

been correctly classified without any false positive or false
negatives) for the Brodatz set in two out of the 20 runs, while
the other two methods did not produce any ideal solutions.
Figure 8 shows an evolved program classifier with 0% error.

(- (ForLoopU (+ (ForLoopU r349 r419
r89 r255 f+) (PointU r396 r111)) r247
(ForLoopU (+ (- r277 r27) r457) (-
r333 r474) r460 (ForLoopU (PointU
r373 r379) r80 r387 r313 f+) f-) (+
r394 (+ (PointU r198 r111) r215))
f+) (ForLoopU (+ (+ r169 r463) (+
r314 r328)) (ForLoopU (+ r500 r402)
(PointU r25 r191) (ForLoopU r234
r247 r438 r36 f-) (PointU r144 r398)
f-) (- (PointU r459 r193) (ForLoopU
r84 r242 r448 r62 f-)) (ForLoopU
(ForLoopU r443 r49 r151 r109 f+)
(PointU r105 r399) (- r506 r8) r454
f-) f+))

Fig. 8. Example evolved program for the Brodatz problem.

Again, the ideal solution programs with unrestricted loops
are quite long. Inspection of the evolved programs without
any loops and those with simple restricted loops shows
that they are very similar in length (all very long). This
observation is quite different from the previous work on non
image classification tasks. There are several possible reasons
for this. One is that for the previous problems, such as the
factorial and the Santa Fe Ant problems, there exists one
or more perfect solutions that could be known in advance,
and when designing the experiments, one can consider that
a priori information. Another one could be that this paper
used very low level features (pixels) as terminals, and the
number of such terminal instances is very large. For example,
for the Brodatz texture classification problems, the image
size is 512 × 512, so the number of possible simple point
terminals will be over 2.6× 105. If we consider the fact that
the unrestricted loops and points can be nested, the number
will be even larger. So the potential search space is much
larger, which can substantially increase the program size.

VI. CONCLUSIONS

The goal of this paper was to investigate a GP approach
using unrestricted loops that can evolve better classifiers for
image classification than using restricted or no loops. The
goal was successfully achieved by developing an unrestricted
point function and an unrestricted loop function. This ap-
proach was examined and compared with the GP approach
with simple restricted loops and GP with no loops on a set
of synthesized character classification tasks and two sets of
non-synthesized greyscale images for texture classification.

The results show that unrestricted loops can indeed allow
for an improvement in classification under certain circum-
stances. In our first group of experiments, the unrestricted

loops provided an advantage over the other two methods for
the tasks when the characters in the images were shifted
randomly from their normal positions in each image. In these
situations, the two GP methods with restricted or no loops
adapted less to the new position. The unrestricted loops that
allowed nesting enabled the programs to perform conditional
execution, providing an improvement in classification.

The non-synthesized images in our second experiment
further showed a lower classification error for the unrestricted
loops. The error for the first image set was only half that
of the other two methods, and that for the second set also
showed a clear improvement.

These results suggest that GP with unrestricted loops can
outperform the GP methods with simple restricted loops and
with no loops on relatively difficult problems. For relatively
simple problems, GP with simple restricted loops or even
with no loops can achieve very reasonable performance.

The disadvantage of loops is the increased processing
time required, especially for unrestricted loops due to the
increased search space. Evaluations took 10 times as long
for the loop methods as the no loop method. However,
as the GP with unrestricted loops can achieve significantly
improvement over the canonical GP with no loops on difficult
image classification tasks, using a longer duration is an
acceptable compromise. This is particularly true as the com-
puter hardware is continuing to speed up and grid computing
facilities become common nowadays.

For future work, we will apply this approach to more
image classification problems. We will also investigate new
ways of automatically constructing high level image features
using loop functions.

ACKNOWLEDGEMENT

This work is supported in part by the University Research
grant at Victoria University of Wellington and the Summer
Research Scholarship scheme of the New Zealand Govern-
ment. Thanks also go to the GP program package rmitgp,
which was used in the work. This package was developed by
the Evolutionary Computation and Machine Learning group
RMIT University, Australia.

REFERENCES

[1] G. Chen and M. Zhang, “Evolving While-Loop structures in genetic
programming for factorial and ant problems,” in AI 2005: Advances
in Artificial Intelligence, 2005, pp. 1079–1085.

[2] X. Li, “Utilising restricted for-loops in genetic programming,” Ph.D.
dissertation, Department of Computer Science, RMIT University,
2007.

[3] J. R. Koza, Genetic Programming: On the Programming of Computers
by Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[4] M. Zhang and V. Ciesielski, “Neural networks and genetic algorithms
for domain independent multiclass object detection,” International
Journal of Computational Intelligence and Applications, vol. 4, no. 1,
pp. 77–108, 2004.

[5] Y. Zhang and P. I. Rockett, “Evolving optimal feature extraction using
multi-objective genetic programming: a methodology and preliminary
study on edge detection,” in Proceedings of the 2005 conference on
Genetic and evolutionary computation. 2005, pp. 795–802.

[6] G. Wijesinghe and V. Ciesielski, “Using restricted loops in genetic
programming for image classification,” in Proceedings of the
2007 Congress on Evolutionary Computation, Singapore, 2007, pp.
4569–4576.

[7] V. Ciesielski and X. Li, “Experiments with explicit for-loops in
genetic programming,” in Proceedings of the 2004 Congress on
Evolutionary Computation, vol. 1. IEEE Press, Jun. 2004, pp.
494–501.

[8] J. Kenneth E. Kinnear, “Evolving a sort: Lessons in genetic program-
ming,” In Proceedings of the 1993 International Conference on Neural
Networks, vol. 2, pp. 881–888, 1993.

[9] ——, “Generality and difficulty in genetic programming: Evolving a
sort,” In Stephanie Forrest, editor, Proceedings of the 5 International
Conference on Genetic Algorithms, ICGA-93, pp. 287–294, 1993.

[10] W. B. Langdon, “Data structures and genetic programming,” In Peter
J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, pp. 395–414, 1996.

[11] V. Ciesielski and X. Li, “Experiments with explicit for-loops in genetic
programming,” In Congress on Evolutionary Computation, pp. 494–
501, 2004.

[12] X. Li and V. Ciesielski, “Using loops in genetic programming for a
two class binary image classification problem,” G.I. Webb and Xinghuo
Yu (Eds.): AI 2004, LNAI 3339, pp. 898–909, 2004.

[13] D. J. Montana, “Strongly typed genetic programming. technical report
bbn 7866,” Bolt Beranek and Newman, Inc., Tech. Rep., March 1994.

[14] W. A. Tackett, “Genetic programming for feature discovery and image
discrimination,” in Proceedings of the 5th International Conference on
Genetic Algorithms, ICGA-93, S. Forrest, Ed. University of Illinois
at Urbana-Champaign: Morgan Kaufmann, 17-21 Jul. 1993, pp. 303–
309.

[15] ——, “Recombination, selection, and the genetic construction of com-
puter programs,” Ph.D. dissertation, Faculty of the Graduate School,
University of Southern California, Canoga Park, California, USA,
April 1994.

[16] A. Song, “Texture classification: A genetic programming approach,”
Ph.D. dissertation, Department of Computer Science, RMIT Univer-
sity, Melbourne, Australia, 2003.

[17] A. Song and V. Ciesielski, “Texture analysis by genetic programming,”
in Proceedings of the 2004 IEEE Congress on Evolutionary Computa-
tion. Portland, Oregon: IEEE Press, 20-23 Jun. 2004, pp. 2092–2099.

[18] V. Ciesielski, A. Innes, S. John, and J. Mamutil, “Understanding
evolved genetic programs for a real world object detection problem,” in
Proceedings of the 8th European Conference on Genetic Programming,
ser. Lecture Notes in Computer Science, M. Keijzer, A. Tettamanzi,
P. Collet, J. I. van Hemert, and M. Tomassini, Eds., vol. 3447.
Lausanne, Switzerland: Springer, 30 Mar. - 1 Apr. 2005, pp. 351–360.

[19] W. Smart and M. Zhang, “Classification strategies for image clas-
sification in genetic programming,” in Proceeding of Image and
Vision Computing Conference, D. Bailey, Ed., Palmerston North, New
Zealand, November 2003, pp. 402–407.

[20] M. Zhang and W. Smart, “Using gaussian distribution to construct
fitness functions in genetic programming for multiclass object classi-
fication,” Pattern Recognition Letters, vol. 27, no. 11, pp. 1266–1274,
2006.

[21] B. Bhanu, Y. Lin, and K. Krawiec, Evolutionary Synthesis of Pattern
Recognition Systems. Springer Verlag, New York, 2005.

[22] G. Olaguea, S. Cagnoni, and E. Lutton, (eds.) special issue on evolu-
tionary computer vision and image understanding, pattern recognition
letters.27(11), 2006.

[23] S. Cagnoni, E. Lutton, and G. Olague, Genetic and Evolutionary
Computation for Image Processing and Analysis, EURASIP Book
Series on Signal Processing and Communications, Vol. 8. Hindawi
Publishing Corporation, 2007.

[24] X. Li and V. Ciesielski, “Using loops in genetic programming for
a two class binary image classification problem,” in Proceedings
of the 2004 Australian Joint Conference on Artificial Intelligence.
Springer, Dec. 2004, pp. 898–909.

[25] W. Banzhaf, P. Nordin, R. E. Keller, and Frank D. Francone, Genetic
Programming: An Introduction on the Automatic Evolution of com-
puter programs and its Applications. Morgan Kaufmann Publishers,
1998.

[26] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, 1994.

[27] “http://www.captcha.net/,” accessed December 2009.
[28] “http://sipi.usc.edu/database/database.cgi?volume=textures,” accessed

in December 2009.
[29] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation

using local affine regions,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27, pp. 1265–1278, 2005.

