
Gradient of B-splines in Volume Rendering  
 

Ž. Mihajlović, L. Budin and J. Radej 
University of Zagreb, Faculty of Electrical Engineering and Computing 

Department of Electronics, Microelectronics, Computer and Intelligent Systems, 
Unska 3, 10000 Zagreb, Croatia 

{zeljka.mihajlovic, leo.budin, josko.radej}@fer.hr 
phone: (+385) 1 6129 944; fax: (+385) 1 6129 653 

 
 

Abstract — This paper deals with surface reconstruction 
and the gradient reconstruction in the volume rendering. In 
the volume rendering procedure, reconstruction according 
discrete set of samples is required. Due to the reconstruction 
procedure alias artifacts, in the final image, could not be 
neglected. In this paper we focus our attention on the 
gradient reconstruction based on the surface reconstruction. 
For the surface reconstruction we use the cubic B-splines 
and for the gradient reconstruction corresponding 
derivative. 
If the noise is present in the input data the approximation B-
spline is used, and the interpolation B-spline is used for the 
input signal without the noise. The shading procedure 
requires normal estimation. Two approaches are used for 
normal estimation. The classic approach for normal 
estimation is central difference calculation, and we propose 
derivative calculation of the reconstruction B-spline 
function. We show that calculation of the normal vector has 
important influence on the alias artifacts in the result. 

I. 

)

INTRODUCTION 
In the volume visualization input data are sampled on 

the regular rectilinear grid. Computer tomography (CT), 
magnetic resonance (MR), ultrasound slices, and 
numerically generated data are examples of data 
acquisition for volume visualization. Volume visualization 
enables visual insight in the object. This noninvasive 
technique is important for medical purposes, fluid 
visualization, engine visualization and numerous other 
applications. It is very important to reduce the errors 
introduced by the visualization procedure and to render 
the reconstructed object as accurately as possible. The 
alias artifacts in the result can cause incorrect 
interpretation of the object. 

The volume rendering [4] is one of the visualization 
techniques. In the volume rendering rays are cast from the 
viewer through the projection plane in the volume element 
space. Along the rays, at arbitrary positions in the volume 
element space, reconstruction is required. The 
reconstruction is done using the samples that are 
positioned at the regular rectilinear grid. According to 
reconstructed value, intersection of the ray with the object 
surface is defined. At that intersection, illumination is 
calculated. For the illumination calculation, normal vector 
on the surface is required. Since the surface of the object 
is implicitly defined, definition of normal vector is not 
straightforward.  

For the reconstruction purpose it is best to find the 
continuous function  according to the given set 

of samples. When continuous function is defined, one can 
easily find the value at the arbitrary position in the three-
dimensional space, at the resampling points as well as 
derivatives at those points. But, the intersection point of 
the ray with the surface is still implicitly defined.  
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where × is cross product and xu, xv are partial derivatives 
[2]. The tangent is defined by , and the main normal 
m as t

xt ′=
mκ=′ . The surface of the object in the volume 

element space is implicitly defined by the threshold value 
. The frontier of 0f ( ) 0ff <x  defines surface, where the x 

is any point in the volume element space.  At these 
circumstances we approximate the normal vector on the 
surface with the gradient at that point. 

The reconstruction problem appears in various 
algorithms in computer graphics e. g. texture mapping 
image rotation, ray tracing, scan conversion. The 
derivative calculation is useful for edge detection in image 
processing. The basic ideas and experience in volume 
reconstruction are also applicable on similar problems in 
other fields and vice versa. 

Much work has been done towards the design of 
reconstruction filters and error characterization [5], [6], 
and [9]. Simple approaches are nearest neighbor and 
trilinear interpolation, but continuity of the reconstructed 
function is only C0 and C1 respectively. Better approaches 
for reconstruction are cubic spline, e. g. BC-splines 
introduced by Mitchell and Netravali [8], Catmull-Rom 
spline and approximation and interpolation B-splines [11], 
[12].  

Bentum [1] analyses responses of the gradient filters in 
frequency domain, but he did not consider interpolation or 
least squares B-splines. 

The high quality volume rendering of the isosurface 
requires continuous and continuously differentiable model 
of volumetric discrete and regular data. P. Thévenaz and 
M. Unser [10] show that quadratic B-spline is the shortest 
support function that maximizes order of approximation 
that satisfies the continuity requirements. They also 
propose several preprocessing steps that significantly 
accelerate the rendering. 



Our approach is based on the cubic B-spline [3], [7] and 
we show the artifacts that appear due to the 
approximations in normal estimation. 

B-SPLINES II. 

A. 

In computer graphics B-splines are the most important 
for curve and surface interpolation and approximation [2]. 
Non-uniform rational B-splines (NURBS) enable conic 
section representation and more control, but for many 
purposes simple uniform non-rational B-splines are 
sufficient. Uniformly spaced samples in the volume 
element space are suitable for periodic uniform B-spline 
interpolation and approximation. 

The original definition of the B-splines is appropriate 
for non-uniform representation, but for the uniform case, 
representation of the B-splines as convolution form in 
signal processing is more intuitive and useful [11]. 

Approximation B-spline 
For a given set of (n+1) control points , the 

approximation B-spline curve p  is: 
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where Ni, k are the basis or blending functions of degree k. 
For the sequence of the points r , this formula defines the 
continuous curve, where p  is a point on the curve, for a 
given parameter t. For uniformly spaces knots, the basis 
functions that multiply each control point become the 
same, but shifted to the position of corresponding point. 
At this circumstances convolution form is more 
appropriate. Without lost of generality, we focus our 
attention on the cubic case. We can represent the equation 

 in signal processing terms as circular convolution: 
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In the signal processing, input is usually one 
dimensional y(k), but it could be extend to higher 
dimensions. β 3(x) is the filter kernel or the cubic B-spline 
basis function. 

 

Figure 1.  B-splines of the degree 0 to 3. 

Figure 2.  Bicubic B-spline filter kernel. 

For the cubic case, the filter kernel is [11]: 
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where β 0(x) is a central normalized rectangular pulse. The 
B-spline basis functions β 0(x), β 1(x), β 2(x), and β 3(x) are 
shown in Figure 6.  The support width of the cubic B-
spline basis function is [ ]2,2−  and cubic B-spline is: 
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For the two-dimensional mesh of uniformly spaced 
nm×  control points. Two-dimensional circular 

convolution with the bicubic B-spline filter kernel is: 
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We show in Figure 2.  bicubic B-spline filter kernel. 
For the volume rendering filter kernel is expanded to one 
dimension more. 

Interpolation B-spline 
The approximation B-spline is appropriate for the 

reconstruction if noise is present in the input data, because 
lowpass filtering is included in this spline. The 
interpolation B-spline produces function  that 
interpolates the input data, but it requires highpass 
prefiltering. The prefiltering is preprocessing step and it 
could be implemented very efficiently [12]. Frequency 
response of the highpass prefilter for the cubic B-spline 
interpolation is: 
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Figure 3. shows twodimensional frequency response of 
the cubic B-spline highpass prefilter. 

 



III. 
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NORMAL ESTIMATION 
The central difference operator is often used as 

approximation of the gradient in the volume rendering. 
For the unit spacing, the central difference operator is: 
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Figure 5.  

IV. 

V. 

 

Figure 3.  Two-dimensional frequency response of the highpass 
prefilter for the cubic B-spline interpolation.  

Partial derivative of the bicubic B-spline filter kernel. 

To present effect of the gradient reconstruction on the 
appearance of the surface, two approaches are applied. 
The first one is based on improved central difference 
operator and the second is exact calculation of the 
derivative based on the reconstruction kernel. To improve 
the central difference operator we use combination of 
three one dimensional β d3(x) derivatives along each axe. 
For the exact calculation of the derivative we use partial 
derivatives as in equation (9), of the three-dimensional 
filter kernel for parameters t, u and w. 

RESULTS 
The three-dimensional test function is proposed by 

Marschner and Lobb [6]. The size of the volume is 643. 
This test function is very sensitive on reconstruction of the 
object surface as well as on reconstruction of the 
derivative. The first row of the Figure 6.  shows 
reconstruction of the surface by the cubic approximation 
B-spline. The waves are shallow, so this reconstruction is 
appropriate when smoothing is preferred. The second row 
shows the reconstruction with cubic least squares B-
spline. This reconstruction is appropriate for interpolation 
of the volumetric data.  

The derivative β d3(x) of the cubic B-spline can be 
calculated from (5). Derivatives of the B-spline are shown 
in Figure 4.   

 

Figure 4.  Derivative of the B-splines (degree 1 to 3). 

To show the influence of the gradient reconstruction 
two approaches are presented. Improved central difference 
operator is applied on the left images in Figure 6.  for the 
normal reconstruction and derivative of the cubic B-spline 
is applied for the derivative reconstruction on the right 
images. The artifacts due to the gradient reconstruction are 
obvious.  

CONCLUSION 
Estimation of the normal vector in the volume 

rendering is very important for the surface perception. 
Simple approaches such as central difference calculation 
can introduce alias artifacts in the appearance of the 
surface smoothness and that could cause incorrect 
interpretation. We propose for normal estimation 
calculation of the derivative for the reconstruction cubic 
B-spline, because it provides smooth normal on the 
reconstructed surface. Reconstruction with the 
approximation B-spline is suitable when noise is present 
in the input data and the least squares B-spline otherwise. 

The partial derivative of the three-dimensional filter 
kernel in direction of parameter t is: 
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Two dimensional partial derivative filter kernel is 
shown in Figure 5.  



  

  
Figure 6.  Comparison between gradient estimation with the improved central difference operator and gradient of the B-spline function. First row 

shows reconstruction with cubic approximation B-spline (waves are shallow), and the second raw shows reconstruction with least squares B-splines 
(deep waves).  Improved central difference is applied for normal estimation (left) and derivative of the cubic B-spline reconstruction kernel (right) are 

used to show the effect of the derivative reconstruction. 
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