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Abstract: Copyright protection of digital media is an 
important issue in the distribution of digital content. More 
and more interest is being taken in methods to protect the 
copyright of digital data and prevent illegal duplication of it. 
Digital watermarking technology allows users to embed 
specific information, identifying the owner, in the host data 
imperceptibly. After developing the theory and practical 
details of the Yu-Kwok's watermarking scheme, it is shown 
that this method will produce pathological case in some 
circumstances.  Modification of the algorithm that will reduce 
this unwanted impact of the embedded watermark on the local 
geometry is proposed. The effectiveness of the proposed 
technique is then presented by the windows application for 
robust watermarking of 3D triangular mesh models that 
implements our modified algorithm. 
 

I.INTRODUCTION 
 

In the field of watermarking, until recently, most of the 
work was concentrated on audio, image and movie 
watermarking. However, spread of networks and digital 
multimedia materials, such as Web3D, MPEG4 as well as 
various 3D geometric CAD data, has prompted much 
attention to the watermarking techniques for 3D. Contrary 
to bitmap-based, data types in many fields are vector based, 
including 3D virtual environment represented by VRML 
scenes and 2D vector graphic that is part of PostScript and 
PDF documents.  
As it can be seen, more and more 3D data is entering the 
World Wide Web. For that reason companies and 
copyright owners who present or sell their products in 
virtual environments are facing copyright-related problems. 
If an author produces 3D-based (catalogue) material and 
wishes them to be copyrighted against unauthorized use or 
distribution, there must be a method for determining the 
original author of the model for copyright laws to be 
enforced in the court of law. Conventional cryptographic 
system permit only authorized key-holders access to data, 
but once such data are decrypted there is no way to track its 
reproduction or transmission. For that reason an old 
technique known as watermarking has been adapted for use 
with digital data.  
 
A. Background 

Digital watermarking embeds imperceptible information, 
called a digital watermark, in digital content. Such an 
information is called a watermark code (or a watermark 
signal). Watermark code can be can be inserted in into a 
content in many ways, including spatial domain, frequency 
domain or using some statistical approach. Watermarks can 
be divided into robust and fragile watermarks, depending 
on the end applications. A robust watermark is used for 

ownership assertion, which means that such a watermark 
must be difficult (hopefully impossible) to remove by any 
innocent or malicious attack. On the other hand fragile 
watermarking is used for detecting any changes in host 
data. Such a watermark can become undetectable once a 
host data has been changed, or it can alternatively change 
in such a way that it in some way indicates part of the host 
data that has been changed.  This work is concerned with 
robust watermarking only.  
 
B. 3D oriented watermarking systems 
 
The design of watermarking schemes for 3D models is 
particularly complex for a few reasons. The most important 
are that only a low volume of data is available for 
watermark embedding (3D models usually consist of only 
few thousand vertices) and secondly there is no known 
transformation of a 3D object from a spatial domain to 
some other domain that would make an object robust to 
complex geometrical and topological transformations.   
The first watermarking research on 3D models was 
presented by Ohbuchi et al [1]. They proposed several 
watermarking algorithms for 3D models: Triangle 
similarity quadruples (TSQ), Tetrahedral volume ratio 
(TVR) and mesh density pattern embedding algorithm. 
These techniques fall into spatial domain and include mesh 
altering, topology altering and pattern embedding method, 
respectively.  
These algorithms are well suited for embedding public 
watermarks, but are not sufficiently robust for copyright 
protection, because they are vulnerable to most of the usual 
mesh operations (e.g. re-mashing, polygon simplification, 
noise addition).  
In 1999. Praun et al. [2] proposed a robust mesh 
watermarking scheme that generalized spread spectrum 
technique to 3D surfaces. They firstly applied a mesh 
simplification based on edge collapses and then by 
analyzing approximations errors  associated with collapses 
they identified those vertices that contain ‘low frequency’ 
components (i.e. visually the most important components).  
Those vertices are than in the original mesh displaced in 
normal/reverse direction (depending of the watermark bit 
value). The reason to choose ‘low frequency’ components 
is that they correspond to the visually most significant 
features of the model, and are therefore least affected by 
many types of attack.  
In Ref. [3], Yin et al. proposed a watermarking sceheme 
based on multiresolution edit. They adopted Guskov’s 
multiresolution signal processing method for mashes and 
used his 3D non-uniform relaxation operator to construct a 
Burt-Adelson pyramid for mesh. After they displace 
vertices at the coarse level, the mesh pyramid is inverted. 
Yu et al. in Ref [4], presented a novel watermarking 
scheme that embeds the watermark via perturbing the 



length of the vectors that extend form a vertex to the center 
of the model. Since this vectors possess global surface 
characteristics, the watermark embedded using this method 
are very robust.   
For the issue of visual imperceptibility this algorithm for 
the first time presents a technique to compute the locally 
optimal watermarking strength that doesn’t affect the visual 
quality of the model.  Our work extends this algorithm. 

 
Despite the fact that due to local strength adaptation this 
algorithm has very desirable features in respect to 
imperceptibility, we have discovered cases in which the 
embedding of the watermark, using the described 
algorithm, will produce significant alteration of the local 
geometry. In the next sections circumstances and events 
under which this problem occurs are described.  It is the 
objective of this paper to propose a computational scheme 
which may be able to achieve better degree of control and 
thus reduces the impact of the embedded watermark on 
local geometry.  
 

II. YU-KWOK'S ALGORITHM 
 

We present the algorithm here in a simplified and 
condensed form to explain the way the transformation 
component work and to pinpoint some elements. For a full 
treatment of the algorithm we refer the reader to [4].   

 
A. Watermark embedding 
 

(1.) Watermark signal is given as a binary sequence 
W=(w0, w1,...,wn-1); { }1,1 +−∈iw .

(2.) Scramble the vertices of the original model 
according to the given permutation's key 
V'=Permute(V, K). Vo=(vo0, vo1,...,voL-1) denotes the 
vertices of the original model, L is the number of 
vertices, and V'o =(v'o0, v'o1,..., v'oL-1) denotes the 
vertices of the permuted model.  

(3.) Choose the first S*N vertices from Vo' and divide 
them into N sections V'oi=(v'oi0, v'oi1, voi2,...,voS-1), 
where .0 Ni <≤ Each section has S vertices.  

(4.) Embed a watermark bit into each section 
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⋅+= )(α , Ni <≤0 , Sj <≤0 .

oijL
� denotes the original vector, M0ij is the parameter 

controlling the local watermarking strength and it is 
the function of global watermarking strength α.

oijU
�

is the unit vector of the vector oijL
�

.

(5.) Recover the original order of the watermarked 
vertices.  

 
C. Watermark extracting 
 
(1.) Perform the registration procedure if necessary. 
(2.) Perform the re-sampling procedure if necessary.  
(3.) Scramble and divide the vertices to get the N sections 

V'oi=(v'oi0, v'oi1, voi2,...,voiS-1) of the original model, and 
Vdi'=(v'di1, vdi2,....,vdiS-1) watermarked model.  

(4.) Use the center of the original model as the center of the 
detected model. Compute the length’s difference 

between the vectors of original model that link the 
vertices in each section to the center, and the vectors 
of the detected model that link the vertices in each 
section to the center: Doij=Ld

oij – Lo
oij. 

(5.) Weight the length difference, and calculate the sum   of 
the length differences of each section: 
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. Woij is the weighting coefficient 

(weighting scheme is not important for the scope of 
this work, and it's not discussed here any further). 

(6.) Extract the watermark sequence: wd
i=sign(Doi),

Ni <≤0
(7.) Compute the correlation between the extracted 

watermark sequence and the embedded watermark 
sequence:  
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D. Locally adaptive watermarking strength 
 
In Figure 1, P denotes the vertex to be displaced from P to 
P’ along P’’.  
 

Figure 1. Computing the locally adaptive watermarking strength. 
The original triangle is shown with the full line, while the dotted 
triangle is made by displacement of the vertex P.  

 

∆ PAB is one of the P' neighbor triangles. C is a 
point on line AB and PC⊥ AB. Vector PD is the face 
normal of triangle ∆ PAB. PD intersects triangle 
∆ P'AB in point F. F' is a point on line FC and 
PF'⊥ FC. Since PC⊥ AB and PD⊥ AB, PF'⊥ AB. 
Also since PF'⊥ AB and PF'⊥ FC, F' is the projection 
of P on ∆ P'AB, which means  PF'⊥ P'F'. In order to 



make the embedded watermark as much as possible 
imperceptible, the displacement of vertex should small 
enough. This means that we want an angle ∠ PCF' to 
be quite small. For this reason we can use  ∠ PCF'  as 
the global strength coefficient of the embedded 
watermark. When given maximal ∠ PCF' and the 
direction of displacement of, we can computer the 
maximal displacement of vertex P through calculating 

'PP as follows (α denotes an angle ∠ PCF') : 
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From (2) and (3) we can see that the distance 'PP is a 
function of ∠ PCF', or we can write m=f(∠ PCF') where  
m= 'PP .
As the local watermarking strength the minimum m from 
all P's neighbor triangles is chosen. 
 

III. PROPOSED IMPROVEMENTS TO THE 
ALGORITHM 

 
A. Identification of pathological cases 
 

As already said, local adaptation of the watermark 
strength (i.e. of the displacement of the model’s vertices) is 
achieved by limiting the angle that the old normal vector 
makes with the new normal vector, for all the triangles 
incident to the particular vertex. On the Figure 1 this angle 
is marked as ∠ PCF’ while in the computation of the 
maximal allowed displacement it is denoted as an angle α.
After computing the allowed displacements for the 
particular vertex (in respect to all the incident triangles of 
the vertex in the input mesh), in such a way that no α angle 
exceeds the value of the global watermarking strength 
coefficient, only the minimum value for a displacement is 
chosen. The key fact to notice here is that the value as well 
as the direction of the maximal allowed displacement is 
calculated with respect to the vector PP' (which is 
collinear with the vector extended between the center of the 
3D mash and the particular vertex).  Watermarking bit x 
only determinates whether this displacement will be in the 
direction of this vector (for the bit value of 1) or in the 
opposite direction (for the bit value of 0).  
 
From the above description it is safe to assume that for the 
vertices that are incident to more than one triangle, the 
embedded watermark will not be visible to the naked eye, 
since the distortion of those vertices will be limited by the 
above mentioned minimal displacements. This way even if 

there exists such a triangle, incident to the vertex, that 
allows visually detectable displacement of this vertex, it 
can be assumed that it’s impact will be annihilated by some 
smaller displacement calculated for some other triangle 
incident to it.  
 
However, using the described algorithm, pathologic case 
will occur in all those cases where no other incident 
triangle exists as well as in those cases where the other 
triangles may induce displacements no smaller than the first 
one. In the first case, when the vertex is incident to only 
one triangle, this will happen if the vector ''PP

�����
is 

coplanar, or almost coplanar, with the plane in which this 
triangle lies. This way the vertex of interest for the 
watermark embedding will be significantly moved along 
the vector ''PP

�����
before the angle α reaches the given value 

of global strength coefficient, thus making the 
displacement visually very detectable. This situation is 
shown in Figure 2.  
 

Figure 2. Pathologic displacement of the vertex P.  The vertex P 
is incident only to those triangles. that are almost coplanar with 
the vector extended form the vertex to the center of the model. 
The vertex P is consequentially  moved to point P', forming the 
new, significantly different, triangle. 

The analogue holds true for the second case as well. In that 
case the just described problem is cloned to all the triangles 
incident to the vertex of interest, making it impossible to 
find a triangle that will reduce the displacement of the 
vertex to the visually imperceptible one. This situation is 
also shown in Figure 2.  

 
B. Displacements restriction technique 

 
After detecting those pathologic cases we next propose the 
solution that will nullify the local geometry changes in the 
cases mentioned, without virtually affecting the robustness 
of the embedded watermark or the watermarking scheme in 
whole.  
The proposed solution is based on a calculation of relative 
displacements and reduction of those displacements that 
induce the biggest visual impact on 3D mesh. First the 
relative displacement is calculated as an absolute 
displacement divided by the length of the vector extended 
between the center of the model and the observed vertex. 
 

'
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Where C denotes the center of the model (please refer to 
the Figure 2).  
 
By examining these values we have concluded that most of 
them have a tendency to cluster around some particular 
value, which is referred to as an estimator. Probably a best 
known one is the mean of the values x1….xn:

∑
=

⋅=
N

j
jx

N
x

1

1
(8) 

However, the mean is not the only available estimator of 
this value, nor is in this case the best one. Because of the 
infrequent occurring of the pathological displacements, 
distribution of the relative displacements has a strong 
central tendency and most of them are under a single peek. 
Computing the kurtosis of those distributions for many 3D 
models has validate this interpretation since all of the 
distributions were leptokurtic. As a quick reminder the 
kurtosis is a nondimensional quantity that measures the 
relative peakedness or flatness of a distribution relative to 
normal distribution. A distribution is said to be leptokurtic 
if it has positive kurtosis, platykurtic if it has negative 
kurtosis, while an in-between distribution is termed 
mesokurtic. The conventional definition of the kurtosis is:  
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For this reason in this case the mean is not very useful, 
since it will give only a compromise value between the two 
peaks. Instead as the estimator of the central value the 
median is used. The median of a distribution is estimated 
from a sample of values x1, …,xn by finding that value xi
which has equal numbers of values above and below it (in 
the case that N is even, it is conventional to estimate the 
median as the mean of the unique two central values).  If 
the values xj, j=1...N are sorted into order (either 
ascending or descending), then the formula for the median 
is:  
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One may argue that calculating the median will 
significantly slow down the original watermarking scheme, 
since it may seems necessary to sort the relative distances 
and than apply (10), and that’s a process of order N log N. 
However, that is not true, because the element xn+1/2 can 
be located in of order N operations (see [5]).  
After characterizing a distribution’s central value, we must 
next define variability around that value. As before, more 
than one measure can be used for that purpose and the most 
common one is variance. We use a more robust estimator 
of variability known as the mean absolute deviation, 
defined by:  
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After completing these two steps the Z-score for each 
displacement can be computed.  The Z-score for a 

displacement, indicates how far that displacement deviates 
from its distribution's mean, expressed in units of the mean 
absolute deviation. The mathematics of the Z-score 
transformation are such that if every item in a distribution 
is converted to its Z-score, the transformed scores will 
necessarily have a mean of zero and a standard deviation of 
one [5]. 

Z=(data point – mean)/standard deviation (12)

Our algorithms then proceeds with work by selecting n 
displacements with top Z-scores, where the number of 
selected displacements can be given as a percentage of the 
whole set of displacements, or implicitly by threshold 
indicating the maximal Z-score of any displacement. After 
those displacements have been identified, they are round 
down to the relative displacement with the mean absolute 
deviation of zero. This way the watermarking capacity is 
saved, since the vertex of interest will nevertheless be 
displaced in the direction defined by the appropriate 
watermark’s bit. At the same time the above described 
pathologic displacement of vertices is prevented thus 
saving the visual quality and usability of the model. 

 

IV. EXPERIMENTAL RESULTS  
 

In order to test this technique for robustness and 
imperceptibility we have created a Windows application 
that implements this modified watermarking algorithm. The 
application is written in C++ and uses win32 and DirectX 
9.0 API.   
 

Figure 3. The interface of the watermarking application 

 

Using this application we conducted experiments using two 
different models. Both models are  standardly shipped with 
DirectX 9.0 SDK. The first model was chosen for it’s 
ability to practically demonstrate such a topology that 
benefits from our modification while the second one was 
chosen in relation to the number of vertices and triangles in 
the model used in the Yu-Kwok’s paper.  With the second 
model (that consists of 4647 vertices and 5870 triangle 
faces) we have in particular  tried to come up with a 



triangle mesh that has similar number of vertices as the 
model used by Yu and Kwok for the sake of robustness 
comparison between the two algorithms. 
In both cases we embedded  a watermark of 50 bits with 
α=0.05. 
 
As it can be seen on Figure  4b, embedding the watermark  
using the unmodified algorithm, results in a pathologic 
displacement of the vertex (encircled in red). 
 

Figure 4a. The original 
mesh model of a space-
ship from the standard  

DirectX collection. 

Figure 4b. Pathologic 
diplacement of the vertex 

(encircled in red) 

On the Figure 4c the same watermark is embedded using 
the modified algorithm. Visually comparing these two 
figures we can see that that in our case the embedded 
watermark is imperceptible (the original model is shown  in 
the Figure 4a).  
 
As for the robustness testing we have used the usual set of 
attacks.  
 

Figure 5. The original and the watermarked model (in the 
robustness testing experiments) shown side by side. 

For simplification attack we firstly conducted the 
progressive mesh conversion. Afterwards, we reduced 
50%, 60%, 70%, 80% and 90% of the vertices of the ship 
model. 
 

Figure 4c. The same model watermarked  
using the modified algorithm 

 
Figures 6a. and 6b. show models with 80% and 90% of 
vertices removed respectively.  
 

Figure 6a. 80% of the vertices 
removed 

Figure 6b. 90% of vertices 
removed 

The experimental results shown in Table 1. were same in 
case were we used our modified algorithm, as well as in 
case were the original algorithm was used, indicating that 
robustness of the watermarking scheme was not 
deteriorated by our modifications. 
 

Table 1. 
Results of simplification attacks  

Vertices 
left (%) 50% 40% 30% 20% 10% 

Verrtices 
left 

(number) 
2322 1859 1395 930 465 

Correlation 1.0 1.0 0.85 0.96 0.7 

We have also tested the watermarking robustness using 
other usual attacks such as noise vector adding to each 
vertex and cropping of the model in four different cases. 
The noise was added by displacing the each vertex by 
0.1%, 0.2%, 0.3%, 0.4% and 0.5% of the length of the 



longest vector extended from a vertex to the center of the 
model.  
 

Figure 7a. adding a noise 
vector of 0.4% 

Figure 7b. adding a noise 
vector of 0.5% 

The cropping attacks included removing 25%, 30%, 45% 
and 60% of the triangles in the watermarked space-ship 
model. 
 

Figure 8a. 45% of the 
triangles removed 

Figure 8b. 60% of the 
triangles removed 

These results again demonstrated that the modified 
algorithm’s robustness suffered no deterioration since 
correlation values were same as in the results obtained by 
an unmodified algorithm. These results are shown in Table 
3 and Table 4, respectively. 

 

Table 3. 
Results of noise attack 

Noise 0.1% 0.2% 0.3% 0.4% 0.5% 
Correlation 1.0 1.0 1.0 1.0 1.0 

Table 4. 
Results of cropping attacks 

Triangles 
left (%) 85 70 55 40 

Triangles 
left 

(number) 
7400 6114 4857 3562 

Correlation 1.0 1.0 1.0 1.0 

V. CONCLUSION 
 

In this paper we presented the modified method for 
robust watermarking of 3D models. We have analyzed Yu-
Kwok’s algorithm and detected cases where the embedded 
watermark can alter local geometry, making the 
watermarked object unusable. This work extends the 
original watermarking scheme in a way to make the 
embedded watermark visually imperceptible in all cases. 
To make this possible we have developed the technique 
called displacement restriction that does not require any 
extensive computation time and at the same time makes the 
watermarking scheme no less robust. Furthermore, we have 
implemented this technique in the windows application for 
robust watermarking of 3D models. Experiments showed 
that with this approach we were able to accomplish our 
objectives.  
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