
Robust watermarking for 3D objects

Zoran Rušinovića
, Željka Mihajlovićb

a R&D Center, Ericsson - Nikola Tesla, Krapinska 45, 10000 Zagreb
bZEMRIS, Faculty of Computing and Electrical Engineering, Unska 3, 10000 Zagreb

E-mail: zoran.rusinovic@ericsson.com, zeljka.mihajlovic@fer.hr

Abstract: Copyright protection of digital media is an
important issue in the distribution of digital content. More
and more interest is being taken in methods to protect the
copyright of digital data and prevent illegal duplication of it.
Digital watermarking technology allows users to embed
specific information, identifying the owner, in the host data
imperceptibly. After developing the theory and practical
details of the Yu-Kwok's watermarking scheme, it is shown
that this method will produce pathological case in some
circumstances. Modification of the algorithm that will reduce
this unwanted impact of the embedded watermark on the local
geometry is proposed. The effectiveness of the proposed
technique is then presented by the windows application for
robust watermarking of 3D triangular mesh models that
implements our modified algorithm.

I.INTRODUCTION

In the field of watermarking, until recently, most of the
work was concentrated on audio, image and movie
watermarking. However, spread of networks and digital
multimedia materials, such as Web3D, MPEG4 as well as
various 3D geometric CAD data, has prompted much
attention to the watermarking techniques for 3D. Contrary
to bitmap-based, data types in many fields are vector based,
including 3D virtual environment represented by VRML
scenes and 2D vector graphic that is part of PostScript and
PDF documents.
As it can be seen, more and more 3D data is entering the
World Wide Web. For that reason companies and
copyright owners who present or sell their products in
virtual environments are facing copyright-related problems.
If an author produces 3D-based (catalogue) material and
wishes them to be copyrighted against unauthorized use or
distribution, there must be a method for determining the
original author of the model for copyright laws to be
enforced in the court of law. Conventional cryptographic
system permit only authorized key-holders access to data,
but once such data are decrypted there is no way to track its
reproduction or transmission. For that reason an old
technique known as watermarking has been adapted for use
with digital data.

A. Background

Digital watermarking embeds imperceptible information,
called a digital watermark, in digital content. Such an
information is called a watermark code (or a watermark
signal). Watermark code can be can be inserted in into a
content in many ways, including spatial domain, frequency
domain or using some statistical approach. Watermarks can
be divided into robust and fragile watermarks, depending
on the end applications. A robust watermark is used for

ownership assertion, which means that such a watermark
must be difficult (hopefully impossible) to remove by any
innocent or malicious attack. On the other hand fragile
watermarking is used for detecting any changes in host
data. Such a watermark can become undetectable once a
host data has been changed, or it can alternatively change
in such a way that it in some way indicates part of the host
data that has been changed. This work is concerned with
robust watermarking only.

B. 3D oriented watermarking systems

The design of watermarking schemes for 3D models is
particularly complex for a few reasons. The most important
are that only a low volume of data is available for
watermark embedding (3D models usually consist of only
few thousand vertices) and secondly there is no known
transformation of a 3D object from a spatial domain to
some other domain that would make an object robust to
complex geometrical and topological transformations.
The first watermarking research on 3D models was
presented by Ohbuchi et al [1]. They proposed several
watermarking algorithms for 3D models: Triangle
similarity quadruples (TSQ), Tetrahedral volume ratio
(TVR) and mesh density pattern embedding algorithm.
These techniques fall into spatial domain and include mesh
altering, topology altering and pattern embedding method,
respectively.
These algorithms are well suited for embedding public
watermarks, but are not sufficiently robust for copyright
protection, because they are vulnerable to most of the usual
mesh operations (e.g. re-mashing, polygon simplification,
noise addition).
In 1999. Praun et al. [2] proposed a robust mesh
watermarking scheme that generalized spread spectrum
technique to 3D surfaces. They firstly applied a mesh
simplification based on edge collapses and then by
analyzing approximations errors associated with collapses
they identified those vertices that contain ‘low frequency’
components (i.e. visually the most important components).
Those vertices are than in the original mesh displaced in
normal/reverse direction (depending of the watermark bit
value). The reason to choose ‘low frequency’ components
is that they correspond to the visually most significant
features of the model, and are therefore least affected by
many types of attack.
In Ref. [3], Yin et al. proposed a watermarking sceheme
based on multiresolution edit. They adopted Guskov’s
multiresolution signal processing method for mashes and
used his 3D non-uniform relaxation operator to construct a
Burt-Adelson pyramid for mesh. After they displace
vertices at the coarse level, the mesh pyramid is inverted.
Yu et al. in Ref [4], presented a novel watermarking
scheme that embeds the watermark via perturbing the

length of the vectors that extend form a vertex to the center
of the model. Since this vectors possess global surface
characteristics, the watermark embedded using this method
are very robust.
For the issue of visual imperceptibility this algorithm for
the first time presents a technique to compute the locally
optimal watermarking strength that doesn’t affect the visual
quality of the model. Our work extends this algorithm.

Despite the fact that due to local strength adaptation this
algorithm has very desirable features in respect to
imperceptibility, we have discovered cases in which the
embedding of the watermark, using the described
algorithm, will produce significant alteration of the local
geometry. In the next sections circumstances and events
under which this problem occurs are described. It is the
objective of this paper to propose a computational scheme
which may be able to achieve better degree of control and
thus reduces the impact of the embedded watermark on
local geometry.

II. YU-KWOK'S ALGORITHM

We present the algorithm here in a simplified and
condensed form to explain the way the transformation
component work and to pinpoint some elements. For a full
treatment of the algorithm we refer the reader to [4].

A. Watermark embedding

(1.) Watermark signal is given as a binary sequence
W=(w0, w1,...,wn-1); { }1,1 +−∈iw .

(2.) Scramble the vertices of the original model
according to the given permutation's key
V'=Permute(V, K). Vo=(vo0, vo1,...,voL-1) denotes the
vertices of the original model, L is the number of
vertices, and V'o =(v'o0, v'o1,..., v'oL-1) denotes the
vertices of the permuted model.

(3.) Choose the first S*N vertices from Vo' and divide
them into N sections V'oi=(v'oi0, v'oi1, voi2,...,voS-1),
where .0 Ni <≤ Each section has S vertices.

(4.) Embed a watermark bit into each section

oijoijioij
w
oij UMwLL

���
⋅+=)(α , Ni <≤0 , Sj <≤0 .

oijL
� denotes the original vector, M0ij is the parameter

controlling the local watermarking strength and it is
the function of global watermarking strength α.

oijU
�

is the unit vector of the vector oijL
�

.

(5.) Recover the original order of the watermarked
vertices.

C. Watermark extracting

(1.) Perform the registration procedure if necessary.
(2.) Perform the re-sampling procedure if necessary.
(3.) Scramble and divide the vertices to get the N sections

V'oi=(v'oi0, v'oi1, voi2,...,voiS-1) of the original model, and
Vdi'=(v'di1, vdi2,....,vdiS-1) watermarked model.

(4.) Use the center of the original model as the center of the
detected model. Compute the length’s difference

between the vectors of original model that link the
vertices in each section to the center, and the vectors
of the detected model that link the vertices in each
section to the center: Doij=Ld

oij – Lo
oij.

(5.) Weight the length difference, and calculate the sum of
the length differences of each section:

oij

S

j
oijoi DWD ∑

−

=

=
1

0

. Woij is the weighting coefficient

(weighting scheme is not important for the scope of
this work, and it's not discussed here any further).

(6.) Extract the watermark sequence: wd
i=sign(Doi),

Ni <≤0
(7.) Compute the correlation between the extracted

watermark sequence and the embedded watermark
sequence:

∑∑
∑

−

=

−

=

−

=

−⋅−

−⋅−
=

1

0
21

0
2

1

0

)()(

)()(
),(

N

i i
N

i
dd

i

N

i i
dd

id

WwWw

WwWw
WWCor (1)

D. Locally adaptive watermarking strength

In Figure 1, P denotes the vertex to be displaced from P to
P’ along P’’.

Figure 1. Computing the locally adaptive watermarking strength.
The original triangle is shown with the full line, while the dotted
triangle is made by displacement of the vertex P.

∆ PAB is one of the P' neighbor triangles. C is a
point on line AB and PC⊥ AB. Vector PD is the face
normal of triangle ∆ PAB. PD intersects triangle
∆ P'AB in point F. F' is a point on line FC and
PF'⊥ FC. Since PC⊥ AB and PD⊥ AB, PF'⊥ AB.
Also since PF'⊥ AB and PF'⊥ FC, F' is the projection
of P on ∆ P'AB, which means PF'⊥ P'F'. In order to

make the embedded watermark as much as possible
imperceptible, the displacement of vertex should small
enough. This means that we want an angle ∠ PCF' to
be quite small. For this reason we can use ∠ PCF' as
the global strength coefficient of the embedded
watermark. When given maximal ∠ PCF' and the
direction of displacement of, we can computer the
maximal displacement of vertex P through calculating

'PP as follows (α denotes an angle ∠ PCF') :

PD

PDtgPCPF ⋅⋅=)(α (2)

PFPCFC −= (3)

FC

FC

FC

FCFPFF ⋅
⋅=' (4)

'' FFPFPF += (5)

'''

'''
''

PFPP

PFPP
PFPP

⋅

⋅
⋅= (6)

From (2) and (3) we can see that the distance 'PP is a
function of ∠ PCF', or we can write m=f(∠ PCF') where
m= 'PP .
As the local watermarking strength the minimum m from
all P's neighbor triangles is chosen.

III. PROPOSED IMPROVEMENTS TO THE
ALGORITHM

A. Identification of pathological cases

As already said, local adaptation of the watermark
strength (i.e. of the displacement of the model’s vertices) is
achieved by limiting the angle that the old normal vector
makes with the new normal vector, for all the triangles
incident to the particular vertex. On the Figure 1 this angle
is marked as ∠ PCF’ while in the computation of the
maximal allowed displacement it is denoted as an angle α.
After computing the allowed displacements for the
particular vertex (in respect to all the incident triangles of
the vertex in the input mesh), in such a way that no α angle
exceeds the value of the global watermarking strength
coefficient, only the minimum value for a displacement is
chosen. The key fact to notice here is that the value as well
as the direction of the maximal allowed displacement is
calculated with respect to the vector PP' (which is
collinear with the vector extended between the center of the
3D mash and the particular vertex). Watermarking bit x
only determinates whether this displacement will be in the
direction of this vector (for the bit value of 1) or in the
opposite direction (for the bit value of 0).

From the above description it is safe to assume that for the
vertices that are incident to more than one triangle, the
embedded watermark will not be visible to the naked eye,
since the distortion of those vertices will be limited by the
above mentioned minimal displacements. This way even if

there exists such a triangle, incident to the vertex, that
allows visually detectable displacement of this vertex, it
can be assumed that it’s impact will be annihilated by some
smaller displacement calculated for some other triangle
incident to it.

However, using the described algorithm, pathologic case
will occur in all those cases where no other incident
triangle exists as well as in those cases where the other
triangles may induce displacements no smaller than the first
one. In the first case, when the vertex is incident to only
one triangle, this will happen if the vector ''PP

�����
is

coplanar, or almost coplanar, with the plane in which this
triangle lies. This way the vertex of interest for the
watermark embedding will be significantly moved along
the vector ''PP

�����
before the angle α reaches the given value

of global strength coefficient, thus making the
displacement visually very detectable. This situation is
shown in Figure 2.

Figure 2. Pathologic displacement of the vertex P. The vertex P
is incident only to those triangles. that are almost coplanar with
the vector extended form the vertex to the center of the model.
The vertex P is consequentially moved to point P', forming the
new, significantly different, triangle.

The analogue holds true for the second case as well. In that
case the just described problem is cloned to all the triangles
incident to the vertex of interest, making it impossible to
find a triangle that will reduce the displacement of the
vertex to the visually imperceptible one. This situation is
also shown in Figure 2.

B. Displacements restriction technique

After detecting those pathologic cases we next propose the
solution that will nullify the local geometry changes in the
cases mentioned, without virtually affecting the robustness
of the embedded watermark or the watermarking scheme in
whole.
The proposed solution is based on a calculation of relative
displacements and reduction of those displacements that
induce the biggest visual impact on 3D mesh. First the
relative displacement is calculated as an absolute
displacement divided by the length of the vector extended
between the center of the model and the observed vertex.

'
'

rel

PP
PP

CP
=

����

����� (7)

Where C denotes the center of the model (please refer to
the Figure 2).

By examining these values we have concluded that most of
them have a tendency to cluster around some particular
value, which is referred to as an estimator. Probably a best
known one is the mean of the values x1….xn:

∑
=

⋅=
N

j
jx

N
x

1

1
(8)

However, the mean is not the only available estimator of
this value, nor is in this case the best one. Because of the
infrequent occurring of the pathological displacements,
distribution of the relative displacements has a strong
central tendency and most of them are under a single peek.
Computing the kurtosis of those distributions for many 3D
models has validate this interpretation since all of the
distributions were leptokurtic. As a quick reminder the
kurtosis is a nondimensional quantity that measures the
relative peakedness or flatness of a distribution relative to
normal distribution. A distribution is said to be leptokurtic
if it has positive kurtosis, platykurtic if it has negative
kurtosis, while an in-between distribution is termed
mesokurtic. The conventional definition of the kurtosis is:













−










 −
⋅= ∑

=

N

j

j
n

xx
N

xxKurt
1

4

1 31)...(
σ

(9)

For this reason in this case the mean is not very useful,
since it will give only a compromise value between the two
peaks. Instead as the estimator of the central value the
median is used. The median of a distribution is estimated
from a sample of values x1, …,xn by finding that value xi
which has equal numbers of values above and below it (in
the case that N is even, it is conventional to estimate the
median as the mean of the unique two central values). If
the values xj, j=1...N are sorted into order (either
ascending or descending), then the formula for the median
is:

() 











→+⋅

→
=

+

+

evenNxx

oddNx
x

NN

N

med ,
2
1

,

)12/(2/

2/)1(

(10)

One may argue that calculating the median will
significantly slow down the original watermarking scheme,
since it may seems necessary to sort the relative distances
and than apply (10), and that’s a process of order N log N.
However, that is not true, because the element xn+1/2 can
be located in of order N operations (see [5]).
After characterizing a distribution’s central value, we must
next define variability around that value. As before, more
than one measure can be used for that purpose and the most
common one is variance. We use a more robust estimator
of variability known as the mean absolute deviation,
defined by:

∑
=

−⋅=
N

j
medjn xx

N
xxADev

1
1

1)...((11)

After completing these two steps the Z-score for each
displacement can be computed. The Z-score for a

displacement, indicates how far that displacement deviates
from its distribution's mean, expressed in units of the mean
absolute deviation. The mathematics of the Z-score
transformation are such that if every item in a distribution
is converted to its Z-score, the transformed scores will
necessarily have a mean of zero and a standard deviation of
one [5].

Z=(data point – mean)/standard deviation (12)

Our algorithms then proceeds with work by selecting n
displacements with top Z-scores, where the number of
selected displacements can be given as a percentage of the
whole set of displacements, or implicitly by threshold
indicating the maximal Z-score of any displacement. After
those displacements have been identified, they are round
down to the relative displacement with the mean absolute
deviation of zero. This way the watermarking capacity is
saved, since the vertex of interest will nevertheless be
displaced in the direction defined by the appropriate
watermark’s bit. At the same time the above described
pathologic displacement of vertices is prevented thus
saving the visual quality and usability of the model.

IV. EXPERIMENTAL RESULTS

In order to test this technique for robustness and
imperceptibility we have created a Windows application
that implements this modified watermarking algorithm. The
application is written in C++ and uses win32 and DirectX
9.0 API.

Figure 3. The interface of the watermarking application

Using this application we conducted experiments using two
different models. Both models are standardly shipped with
DirectX 9.0 SDK. The first model was chosen for it’s
ability to practically demonstrate such a topology that
benefits from our modification while the second one was
chosen in relation to the number of vertices and triangles in
the model used in the Yu-Kwok’s paper. With the second
model (that consists of 4647 vertices and 5870 triangle
faces) we have in particular tried to come up with a

triangle mesh that has similar number of vertices as the
model used by Yu and Kwok for the sake of robustness
comparison between the two algorithms.
In both cases we embedded a watermark of 50 bits with
α=0.05.

As it can be seen on Figure 4b, embedding the watermark
using the unmodified algorithm, results in a pathologic
displacement of the vertex (encircled in red).

Figure 4a. The original
mesh model of a space-
ship from the standard

DirectX collection.

Figure 4b. Pathologic
diplacement of the vertex

(encircled in red)

On the Figure 4c the same watermark is embedded using
the modified algorithm. Visually comparing these two
figures we can see that that in our case the embedded
watermark is imperceptible (the original model is shown in
the Figure 4a).

As for the robustness testing we have used the usual set of
attacks.

Figure 5. The original and the watermarked model (in the
robustness testing experiments) shown side by side.

For simplification attack we firstly conducted the
progressive mesh conversion. Afterwards, we reduced
50%, 60%, 70%, 80% and 90% of the vertices of the ship
model.

Figure 4c. The same model watermarked
using the modified algorithm

Figures 6a. and 6b. show models with 80% and 90% of
vertices removed respectively.

Figure 6a. 80% of the vertices
removed

Figure 6b. 90% of vertices
removed

The experimental results shown in Table 1. were same in
case were we used our modified algorithm, as well as in
case were the original algorithm was used, indicating that
robustness of the watermarking scheme was not
deteriorated by our modifications.

Table 1.
Results of simplification attacks

Vertices
left (%) 50% 40% 30% 20% 10%

Verrtices
left

(number)
2322 1859 1395 930 465

Correlation 1.0 1.0 0.85 0.96 0.7

We have also tested the watermarking robustness using
other usual attacks such as noise vector adding to each
vertex and cropping of the model in four different cases.
The noise was added by displacing the each vertex by
0.1%, 0.2%, 0.3%, 0.4% and 0.5% of the length of the

longest vector extended from a vertex to the center of the
model.

Figure 7a. adding a noise
vector of 0.4%

Figure 7b. adding a noise
vector of 0.5%

The cropping attacks included removing 25%, 30%, 45%
and 60% of the triangles in the watermarked space-ship
model.

Figure 8a. 45% of the
triangles removed

Figure 8b. 60% of the
triangles removed

These results again demonstrated that the modified
algorithm’s robustness suffered no deterioration since
correlation values were same as in the results obtained by
an unmodified algorithm. These results are shown in Table
3 and Table 4, respectively.

Table 3.
Results of noise attack

Noise 0.1% 0.2% 0.3% 0.4% 0.5%
Correlation 1.0 1.0 1.0 1.0 1.0

Table 4.
Results of cropping attacks

Triangles
left (%) 85 70 55 40

Triangles
left

(number)
7400 6114 4857 3562

Correlation 1.0 1.0 1.0 1.0

V. CONCLUSION

In this paper we presented the modified method for
robust watermarking of 3D models. We have analyzed Yu-
Kwok’s algorithm and detected cases where the embedded
watermark can alter local geometry, making the
watermarked object unusable. This work extends the
original watermarking scheme in a way to make the
embedded watermark visually imperceptible in all cases.
To make this possible we have developed the technique
called displacement restriction that does not require any
extensive computation time and at the same time makes the
watermarking scheme no less robust. Furthermore, we have
implemented this technique in the windows application for
robust watermarking of 3D models. Experiments showed
that with this approach we were able to accomplish our
objectives.

REFERENCES

[1] Ryutarou Ohbuchi, Hiroshi Masuda, and Masaki Aono,
“Embedding data in 3D Models”, Proceedings of the
European Workshop on Interactive Distributed Multimedia
Systems and Telecommunication Services (IDMS) '97, pp.
261-272, 1997

[2] E. Praun, H. Hoppe, A. Finkelstein. “Robust mesh

watermarking”. ACM SIGGRAPH 1999, pp. 69-76.

[3] Kangkang Yin, Zhigeng Pan, Jiaoying Shi, David Zhang,

“Robust mesh watermarking based on multiresolution
processing”, Computers & Graphics 25, (2001), Elsevier
Science Ltd., pp. 409–420

[4] Zhiqiang Yu, Horace H. S. Ip and L. F. Kwok, “A robust

watermarking scheme for 3D triangular mesh models”.
Pattern Recognition, vol. 36, pp. 2603-2614, 2003

[5] William H. Press, Brian P. Flannery, Saul A. Teukolsk

William T. Vetterling, “Numerical recepies in C”,
Cambridge University Press; 2 edition, 1992.

[6] Burt P., Adelson EH., “Laplacian pyramid as a compact

image code”, IEEE Transactions on Communications 1983,
(04.1983), pp. 532–540.

[7] Benedens, O. “Geometry-based watermarking of 3d

models”. IEEE Computer Graphics and Applications,
1999, pp. 46–55.

[8] Mauro Barni, Franco Bartolini, “Watermarking Systems

Engineering”, Marcel Dekker Inc, 2004, ISBN: 0-8247-
4806-9

