
1

Camera Space Shadow Maps for Large Virtual Environments

Ivica Kolic
1
 ⋅⋅⋅⋅ Zeljka Mihajlovic

2

1 Ivica Kolić
Systemcom d.o.o.
mail: ivica.kolic@systemcom.hr

2 Željka Mihajlović
University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

Unska 3, 10 000 Zagreb, Croatia

mail: zeljka.mihajlovic@fer.hr

Abstract This paper presents a new single-pass

shadow mapping technique that achieves better

quality than the approaches based on perspective

warping, such as perspective, light-space and

trapezoidal shadow maps. The proposed technique

is appropriate for real-time rendering of large

virtual environments that include dynamic objects.

By performing operations in camera space, this

solution successfully handles the general and the

dueling frustum cases, and produces high-quality

shadows even for extremely large scenes. This

paper also presents a fast non-linear projection

technique for shadow map stretching that enables

complete utilization of the shadow map by

eliminating wastage. The application of stretching

results in a significant reduction in unwanted

perspective aliasing, commonly found in all

shadow mapping techniques. Technique is

compared with other shadow mapping techniques,

and the benefits of the proposed method are

presented. The proposed shadow mapping

technique is simple and flexible enough to handle

most of the special scenarios. An API for a generic

shadow mapping solution is presented. This API

simplifies the generation of fast and high-quality

shadows.

Keywords: Shadow maps, Real-time shadows,

Dynamic shadows, Virtual environments

1 Introduction

A shadow is one of the most important elements for

achieving realism in virtual environments. Over the

years, many real-time shadow-generation

approaches have been developed. The most well-

known approaches are fake and planar shadows,

shadow volumes (Crow 1977), and shadow

mapping (Williams 1978).

This paper primarily focuses on the shadow

mapping technique that is recognized as the most

important shadow generation tool today because of

its simplicity, generality, and predictability. The

basic shadow mapping principle involves two

steps. In the first step, the shadow map is generated

by storing the depth of the scene from the point of

view of the light. In the second step, the scene is

rendered regularly; however, for every drawn pixel,

the shadow map is consulted to determine whether

that particular pixel is directly visible to the light.

This is accomplished by comparing the distance of

the shadow map from the light with the distance of

the pixel (depth) from the light.

In this paper, we will present a new shadow

mapping approach, termed camera space shadow

maps (CSSM). This approach acquires the shadow

map in a simple manner by directly using a camera.

We will also describe a method for the maximum

utilization of the shadow map to prevent wastage

and significantly reduce the perspective aliasing of

the shadow near the camera.

The organization of the remainder of this paper is

as follows: Previous work in the area of shadow

mapping is summarised in Section 2, while the new

CSSM approach is described in Section 3. Section

4 presents a novel pixel-accurate shadow map

stretching technique. In Section 5, the experimental

results are discussed, and the new CSSM approach

is compared with other approaches. Details of the

2

generic shadow mapping API (Kolic 2010) are

provided in Section 6, while section 7 presents the

conclusions and future work.

2 Previous Work

Shadow mapping techniques can be classified as

single-pass and multi-pass approaches, based on

the number of passes required to create the shadow

map. Single-pass approaches are fast and less

demanding; however, in general, they cannot be

used for large-scale environments because it is

difficult to achieve good shadow map distribution

for both near and distant shadows. Several

approaches such as perspective shadow maps

(PSM) (Stamminger and Drettakis 2002; Kozlov

2004), light space shadow maps (LiSPSM)

(Wimmer et al. 2004), trapezoidal shadow maps

(TSM) (Martin and Tan 2004, Martin 2008), and

soft shadow maps (Mo et al. 2007) have been

developed to address this issue. However, a single-

pass robust solution capable of handling most of

the special cases has not yet been proposed. Multi-

pass approaches, on the other hand, are widely used

today due to their ability to provide good-quality

shadows in most of the special cases (such as

dueling frustum). In these approaches, the scene is

split into smaller segments for which individual

shadow maps are acquired and applied. The main

disadvantages of these approaches are low speed,

high memory consumption, and discontinuity in

shadow quality in the region where separate

shadow maps connect. Hence, their usage is mainly

reserved for scenes with only one dominant light,

such as the Sun. Two popular multi-pass

approaches are cascaded shadow maps (Dimitrov

2007) and parallel split shadow maps (Zhang et al.

2006). A detailed description of shadow mapping

approaches can be found in Nealen (2002) and

King (2004).

3 Camera space shadow maps

The aim of this paper is to provide the first

complete shadow mapping solution that, in a single

pass, always produces the highest quality shadow

map for any type of light/scene/camera and various

special cases. In theory, the highest-quality shadow

map would be achieved if every pixel on the screen

has exactly one corresponding texel in the shadow

map. This level of quality can only be achieved by

ray tracing. Hence, in this paper, a considerably

simpler definition is used: the highest shadow

mapping quality is achieved when the resulting

shadow map is completely free of wastage, and

every texel is reserved exclusively for shadow

passing through visible space.

The shadow mapping solution must also provide an

easy method to control distance-based shadow

distribution. This can be implemented by allowing

the specification of a distance value for which a

certain percentage of the shadow map should be

reserved. For example, the shadow within 20 m

from the camera should occupy 50% of the shadow

map. This cannot be achieved using linear

transformation.

Existing perspective warping approaches (such as

TSM and LiSPSM) were designed primarily for the

general case, and they cannot efficiently handle

complex dueling frustum cases and various other

possible lighting conditions. Therefore, a new,

more generic approach will be presented, in which

it is easy to perceive the configuration to be used

for special cases, such as dueling frustum, camera

without far clipping and the most difficult case of

the large omnidirectional light located within

visible space.

3.1 Construction of shadow map

The main principle of perspective warping-based

approaches involves treating geometry with the

projections of both camera and light. Thus, a

shadow closer to the camera gets more shadow map

space. The goal must be decided on the basis of the

manner in which regular geometry is treated by the

camera. The goal must be to transform shadow

mapping geometry into camera space, using the

camera matrix for shadow map warping. However,

it is not possible to simply transform, rotate, and

scale geometry because this would cause loss of

light occlusion and depth information. Depth

information is not very relevant because it can

always be calculated separately in a vertex or even

pixel shader, but the preservation of occlusion

information is essential. We, however, made the

following observation: If shadow casting geometry

is projected on any arbitrary plane, the limitations

on translation, rotation, and scaling are avoided,

and the geometry can be transformed into camera

space without losing occlusion information. Once

the geometry is in camera space, perspective

warping occurs automatically.

Fig. 1 demonstrates a new, simple method for

acquiring the shadow of the entire visible space

using only one projection plane and the camera

itself. Projection plane P is placed such that it

touches the lower point of the viewing frustum at

the near clipping distance and the opposite point at

the far clipping distance. However, today, a

common scenario involves rendering of enormous

scenes where far clipping is not done at all. In this

case, the shadow plane should be parallel with the

appropriate side of the view frustum, as shown in

the figure. Fig. 1 also suggests that if a light is

located slightly in front of the viewer, the starting

point for the plane should be the upper point of the

viewing frustum at the near clipping distance.

3

Fig. 1. Basic principle of CSSM. The projective plane P is

located within the view frustum V. The case with the limited

view frustum is shown on the left. When the view frustum is not

far clipped (right), the projective plane is parallel to the side of

the view frustum.

The dueling frustum case is shown in Fig. 2. From

the figure on the left, it is clearly visible that a

single projection plane cannot provide good

shadow projection into visible space, and hence,

multiple planes must be used, as shown in the

figure on the right. In the 2D representation shown

in the figure, only two planes are used; however, in

the actual 3D case, four projective planes are

required (top, bottom, left, and right).

Fig. 2. The dueling frustum case cannot be solved with only one

plane (left), where the unshadowed area is marked as N. The

correct approach requires multiple planes with a common point

t, as shown on the right.

As seen from the figures, various shadow mapping

operations are performed in camera space and the

camera itself is used to capture the shadow map.

This is in contradiction with all other shadow

mapping approaches where the shadow map is

exclusively captured from the point of view of the

light. The proposed approach is therefore

appropriately termed camera space shadow maps

(CSSM).

In the general case, CSSM is acquired in the

following manner:

• Rotate (roll) the camera around its Z-axis so

that the light always originates from above (as

shown in Fig. 1).

• Change the FOV (Field of view) angles of the

rotated camera so that the entire view frustum

of the original camera can fit within the new

view frustum.

• Design a plane that passes through the two

lower points of the near clipping plane and the

two upper points of the far clipping plane, as

shown in Fig. 1. If the source of light is located

slightly in front of the camera, opposite points

should be used and the FOV angle of the X-axis

of the camera must be slightly increased, so that

the plane seen from the point of view of the

light covers the entire view frustum.

• Light-project shadow casting geometry on the

constructed plane.

• Use the projection matrix of the rotated camera

to acquire the shadow map.

In the dueling frustum case, CSSM is acquired in

the following manner:

• Determine a point on a near clipping plane by

applying the projection of the camera on the

position/direction of the source of light.

• Construct four planes that cross through the

acquired point and all the edges of the far

clipping plane.

• Light-project geometry on the projective planes

using geometry shader. For each projective

plane, a projected triangle must be created with

clipping distances of two neighbouring planes

set at every vertex. Thus, the clipper will

remove unnecessary geometry, and the

geometry shader will always generate a

predictive number of triangles as output.

• Use the camera projection matrix to acquire the

shadow map.

3.2 Distribution of shadow map

A close examination of Fig. 1 reveals a problem

commonly found in all perspective warping

approaches: approximately half of the shadow map

is allocated for the shadow that resides within the

near clipping distance (n) from the start of the

viewing frustum. An example is as follows:

• Near clipping occurs at 0.2 m (n)

• Far clipping occurs at 1000 m (f).

In this example, the first half of the shadow map is

reserved for a very small shadow located between

0.2 and 0.4 m from the camera: [n, 2n>, and the

second half of the shadow map is reserved for an

enormous shadow area located between 0.4 and

1000 m: <2n,f].

Almost every approach (PSM, TSM, LiSPSM)

addresses this problem of near shadow

oversampling by moving the camera backward,

thus increasing the near clipping distance. The

effect of this method can be observed in Fig. 3.

4

Fig. 3. View frustum V replaced with the view frustum V
�
 seen

from a side and top. V
�
 is introduced so that the lower half of the

shadow map would be reserved for the shadow residing within

the focus region. Wastage W is introduced.

As seen in Fig. 3, the focus region is introduced as

a controlling distance for which half of the shadow

map should be reserved (along the Y-axis). The

new view frustum V
�
 is then constructed by

adjusting the position of the camera, moving it

backward and upward, and thus, appropriately

narrowing the viewing angle to avoid wastage

along the Y-axis.

In the general case with a single plane, the camera

must be pushed backward and in the upward

direction. In the dueling frustum case, however, the

camera need not be pushed backward (although it

can be). Instead, point t could be pushed forward in

the direction of light, so that it resides within the

focus region with respect to the camera. Hence, the

focus region would be applied, and the appropriate

planar distribution would be preserved. If point t is

simply pushed forward, regardless of the direction

of light, every plane would get an almost equal

share of the shadow map, which is not desired. It is

important to note that for the dueling frustum case,

the focus region has a different meaning, but the

general idea remains the same: a larger focus

region results in more shadow map for distant

geometry and less shadow map for near geometry.

The focus region itself is an application-dependent

constant, which should be in the range of 10 to 20

m, 50 to 100 m, and 500 m and more for first-

person games, racing simulations, and flight

simulations, respectively.

The negative effect of pushing the camera

backward can be observed in the lower part of Fig.

3, where the scene is observed from the top.

Distance-based (Y-axis) distribution of shadow

maps has been corrected at the cost of width-based

(X-axis) distribution and wastage W has been

introduced. The wastage problem is greatest at the

shadow near the camera, where shadow aliasing is

introduced. This is solvable only by increasing the

X-resolution of the shadow map. Although near

shadow quality is significantly improved by

perspective warping approaches, the wastage

introduced prevents perfect pixel-accurate results

and introduces aliasing. Near shadow is

oversampled along the Y-axis and undersampled

along the X-axis. In case of the far shadow, the

problem is reversed. Along the X-axis, the shadow

map is completely utilized; however, this is not

beneficial because the shadow map is greatly

undersampled along the Y-axis. This ratio, where

the Y-axis distribution is corrected at the expense

of the X-axis distribution, is common to all shadow

mapping approaches, and no linear transformation

will ever achieve better results.

Wastage is caused due to the fact that after the

camera is moved backward, near geometry is

divided by a much larger number (offset + z,

instead of just z) in the perspective process. One

approach to resolve this problem is to deform the

geometry in a vertex shader by scaling the X-axis

of the projected geometry by the factor z/(z +

offset). This approach works only for highly

tessellated geometry, which is not a general case.

Hence, the most obvious solution is to use

tessellation hardware. However, our experiments

performed with DirectX 11 tessellation have shown

that this problem cannot be efficiently solved by

hardware tessellation due to two primary reasons:

• High tessellation required for correct shadow

map stretching is extremely slow.

• Large polygons, mostly used for terrain and

buildings, cannot be sufficiently tessellated.

Even a maximal tessellation factor of 64 is not

sufficient for these polygons; therefore, it

appears that there is no feasible solution.

4 Pixel-accurate shadow map stretching

In this section, a new shadow map stretching

approach is presented. Nonlinear transformation

required to stretch the shadow map is generally

considered as a very difficult problem that can only

be solved using tessellation hardware. However, we

present a new approach that achieves fast pixel-

accurate shadow map stretching using only the

features available in DirectX 10-compatible

hardware.

To summarize, a triangle must be stretched by

applying the factor (z + offset)/z to each of its

pixels. Fig. 4 shows the effect of this process. On

the left, a simple triangle is shown; the stretching

factor is applied to the vertices of this triangle. In

the middle, a highly tessellated version of the same

triangle is shown, in which the effect of the

resulting stretching is clearly visible. Fig. 4.

suggests a method for achieving triangle stretching

using a quad. Using the original triangle, a quad

that is large enough to contain the distorted triangle

is generated.

5

Fig. 4. Triangle stretching is achieved by generating a quad that

is large enough to contain the distorted triangle. Each pixel of

the quad is tested to determine if it lies within the original

triangle.

The easiest method to construct an appropriate

quad is to detect the minimal and maximal

projection positions and the upper left and right

projection points, as shown in the figure. This

approach also works for a quad when the triangle is

clipped by a near clipping plane.

If each pixel of a quad is transformed back in the

space of the original (undistorted) triangle and

tested to determine if it lies within the original

triangle, then, pixel-accurate stretching is achieved.

This is tested by calculating the barycentric UV

coordinates, which are also beneficial for correct

texture coordinate interpolation when bit-masking

is used (for rendering plants, fences, etc.). This

process results in fast and pixel-accurate stretching

that completely eliminates shadow map wastage.

The actual process of testing whether pixel p lies

within the original triangle is shown in Fig. 5. After

z is determined using only the y-coordinate of the

pixel, the correct (unstretched) x-coordinate and the

accompanying point p
�
 on a projection plane can be

determined. The next step involves projecting point

p
�
 on point p

�
 located on the plane of the original

triangle, using the simple line vs. plane test. Then,

the perspective-correct UV coordinates can be

determined, and the actual test can be performed:

stretched pixel p belongs to the triangle if the UV

coordinates are positive and their sum is smaller

than 1. At this point, perspective-correct texture

coordinates can be interpolated if necessary, for

potential bit masking. Although this appears to be a

complicated process, the resulting pixel shader

script contains only a few lines of code since all the

complex calculations are performed only once per

triangle within the geometry shader.

Fig. 5. Determining if pixel p belongs to the stretched triangle T.

After z is determined, the correction factor for the X-axis is easy

to calculate.

It is also important to note that pixel stretching is

only necessary for shadow triangles that are near

the camera. As the distance of the triangles from

the camera increases, the apparent effect of the

deformation decreases. In fact, beyond a certain

distance (dependent on the focus range and triangle

size), pixel accurate stretching is not needed since

the deformation effect is not noticeable, and

shaders can switch to the regular approach in which

stretching is implemented only on vertex basis. The

triangles that are situated at a sufficiently large

distance should be marked in geometry shader.

This will enable pixel shader to be aware that

simple implementation should be used. In this case,

the output of the geometry shader is the original

triangle and not the quad.

This action is very important because it

significantly decreases the creation time of the

shadow map, and pixel-accurate stretching is

performed only for a few triangles that cast a

shadow near the camera.

When the X-axis distribution is fixed, bad

perspective aliasing near the camera is reduced

significantly. Along the X-axis, the shadow map is

completely utilized and additional increase of

shadow map resolution would not yield better

results (except at highly angled surfaces). At this

point, the Y-axis distribution is a major problem,

since the entire length of the scene must be fitted

on it. Hence, we propose the usage of longer but

narrower shadow maps to ensure that the fill rate

remains unchanged, while there is a significant

improvement in the general shadow quality. This

will add slight near shadow aliasing. If the usage of

additional shadow map is not desired, the existing

shadow map should at least be rotated in the

perspective process to allow the longer side of the

shadow map to be reserved for the Y-axis (distance

distribution). It is important to note that shadow

map stretching is not applied in the dueling frustum

case, where the shadow map is already fully

utilized.

6

Fig. 6. Comparison between general case for TSM (left) and CSSM (centre) techniques. Dueling frustum CSSM case is shown on the right.

Accompanying shadow maps are shown below. The scene is a ‘Pavilion Garden’.

The effects of pixel-accurate shadow map

stretching are:

• Near shadow quality is significantly improved

by eliminating wastage.

• Far shadow quality is improved by increase in

the Y-axis resolution.

5 Experimental results

In this section, tests are performed to determine the

speed of the newly proposed approach, and

comparisons with other perspective warping

approaches are shown. The results obtained in this

section will help us to choose the optimal

approaches for the generic shadow mapping API.

The most important difference between TSM and

CSSM is shown in Fig. 6. Due to pixel-accurate

stretching, CSSM provides better solutions for near

shadow. Unbiased comparison between TSM and

CSSM was ensured in the case where the focus

region was equalized. It is obvious that without

stretching, both approaches would produce an

almost identical result. The dueling frustum case

for TSM is not shown because this approach is not

designed to work in scenes that are presumed to be

large. Here, scene analysis was not done and small

640 × 640 shadow maps were used to easily

observe the effect of aliasing.

The performance was tested using an ATI Radeon

HD 5770 graphics card, at a rendering resolution of

640 × 640 pixels, using the palm tree model

consisting of 10624 triangles, as shown in Fig. 7.

The scene was rendered from two angles to capture

view from first person (FPS) for the general and the

dueling frustum cases at different shadow map

resolutions, since the usage of large shadow maps

is common. The general case was tested with and

without pixel-accurate stretching. The reference

frame rate is provided for the case when there is no

lighting in order to facilitate the evaluation of the

amount of time taken by regular deferred rendering

passes. The frame rates are specified in Table 1 and

Fig. 7.

From Table 1, the fictive frame rate can be

calculated exclusively for shadow map rendering.

This data is shown in Table 2.

From table 2, we can conclude that at higher

shadow map resolutions, pixel-accurate shadow

map stretching is approximately three times slower

than the approach without stretching (one plane or

TSM). However, in Fig. 8, the improvement in

shadow quality is substantial when stretching is

used. The dueling frustum case shows very good

shadow quality and high speed when a single plane

is used. This proves that an increase in geometry

shader activity (or instancing) caused by the usage

of multiple projection planes has no significant

effect on performance but has a significant effect

on quality. This result was expected and it can be

attributed to the same reason that results in fast

cube mapping: unnecessary triangles are instantly

clipped.

7

Fig. 7. Testing results in frames per second

Table 1 Testing results in FPS for different shadow map

resolutions

Shadow map

resolution
Standard Stretched

Dueling

frustum

No light 746 746 529

320 × 320 572 514 388

640 × 640 541 398 373

1280 × 1280 406 225 316

2560 × 2560 210 86 187

5120 × 5120 70 28 70

Table 2. Fictive frame rate for shadow rendering only (acquiring

and applying).

Shadow map

resolution
Standard Stretched

Dueling

frustum

No light 0 0 0

320 × 320 2452 1653 1456

640 × 640 1969 853 1265

1280 × 1280 891 322 785

2560 × 2560 292 97 289

5120 × 5120 77 29 81

The next important analysis is the comparison

between the time taken to render and apply the

shadow map and the time required for regular

rendering passes. This information represents the

increase in rendering time for every new source of

light and it is shown in Table 3.

From Table 3, the most interesting observation is

that the dueling frustum case with four planes

shows better results than the standard case with

only one plane. This can be attributed to the fact

that, in the general case, the palm tree is not

entirely drawn, thus speeding up regular rendering

as opposed to shadow map rendering. In the

dueling frustum case, approximately the same

amount of geometry is rendered in every rendering

pass.

From the test results, it can be concluded that using

multiple projection planes is not more expensive

than using a single projection plane. Hence, our

generic shadow mapping API can be based on this

principle. Shadow map stretching, although fast, is

still several times slower than the multiple plane

solution.

6 Generic shadow mapping API

In this section, we will describe the methodology

for applying the new shadow mapping approach for

every light type. We will also explain the approach

for handling many complex scenarios. When

implemented, the process of achieving computer-

generated shadows, once considered extremely

difficult, becomes trivial. The API handles each

type of light as described below:

6.1 Directional light

Directional light is the simplest case, and all the

details for this scenario have been described in the

previous sections of this paper. Two main

approaches were used: one for the general case, and

the other for the dueling frustum and border case.

Note that for the border case, the camera is initially

slightly rotated towards the light before FOV is

appended, in order to avoid wastage.

6.2 Spot light

Spot light, however, presented a more challenging

problem. Standard (simple) shadow mapping was

used in every case when the light source was

located near the camera, or in front of the camera

facing the forward direction. In these cases,

complex camera space approaches were not needed

because standard shadow mapping offers

satisfactory quality.

8

Fig. 8. Testing model of a palm tree. TSM case that contains wastage is shown on the left. Middle shows CSSM approach that performs

pixel-accurate shadow map stretching. Dueling frustum CSSM case is shown on the right. In every case shadow map resolution was 640 ×

640.

Table 3. Percentage increase in rendering time for every new

source of light at different shadow map resolutions.

Shadow map

resolution
Standard Stretched

Dueling

frustum

No light 0 0 0

320 × 320 30.42 45.14 36.34

640 × 640 37.89 87.44 41.82

1280 × 1280 83.74 231.56 67.41

2560 × 2560 255.24 767.44 182.89

5120 × 5120 965.71 2564.29 655.71

Compared to directional light camera space shadow

mapping, spot light required some modification.

Near and far clipping distances had to be

recalculated by intersecting visible frustum at the

appropriate points. Fig. 8 shows a situation where

the camera origin is not lighted. In this case, a new

focus range must be recalculated to prevent

unnecessary wastage. Therefore, the new near

clipping is done at n
�
 and not n. In this case, the

original focus range f is replaced with the

corresponding focus range f
�
. Parameter f0

represents the theoretical focus range in the

absence of near clipping, and serves as a reference.

In most implementations, this range can be

considered to be equal to f because the near

clipping distance n is very small. The approximate

new focus range is now calculated as:

() nfrfanf ′+′′−=′ /1

In addition, in certain scenarios, depending on the

angle and direction of the light, dueling frustum

can be handled as a general case. This occurs when

light is positioned in the dueling frustum area but

the origin of the camera is not lighted due to the

direction of light.

6.3 Omnidirectional light

Omnidirectional light was the most challenging

case. The following approaches were used:

• General case with one plane for every non-

dueling frustum case.

• Dueling frustum with four planes when light is

located behind the camera.

• Special dueling frustum with eight planes

when light is located in front of the camera.

9

Fig. 9. Fixing the focus region. If camera is not lighted,

alternative near clipping is done at n
�
 with corresponding focus

range f
�
.

Fig. 10. Most problematic omnidirectional light case where

eight planes are used.

• Simple projection on four sides of a

tetrahedron when the light source is small or is

very near the camera.

The special dueling frustum case is shown in Fig.

10. It is the most difficult case, which combines

dueling frustum CSSM approach with four

additional back projection planes. Initially, we used

CSSM for front and back planes. However,

although the resulting shadow quality was excellent

for near and far shadows, it was bad for medium

distance shadow. Hence, we decided to use CSSM

for front planes and standard shadow mapping for

back planes. The distance d where CSSM ends and

standard shadow mapping begins is calculated so

that the shadow quality at the endpoint of CSSM

approach is the same as the standard shadow

mapping quality of the back planes (note that

standard shadow mapping quality is uniform over

the entire back plane and it does not change as

CSSM quality does).

Fig. 11. Shadow map organization for various special cases. For

the general case, long and narrow effect is achieved by splitting

shadow map into columns. Green projection planes indicate the

usage of standard shadow mapping, while red planes represent

the usage of CSSM approach.

Simple projection on four planes of tetrahedron is

used for the case when small light sources are

located within the viewing frustum.

6.4 API implementation

It is necessary for the API to satisfy the following

constraints:

• The usage should be extremely simple (even

simpler than standard shadow mapping) so that

the main API function can be implemented in

standard graphic libraries (DirectX, OpenGL)

and everyone will have access to high quality

shadows out-of-the-box.

• The API should also be very fast (single-pass)

having a speed measurable with standard

shadow mapping, but with better quality.

• Only one shadow map should be used for

various cases and an additional depth buffer

should not be required (so that the memory

usage remains minimal).

10

Fig. 12. Large scene of Citadel is presented without shadows (left) and with CSSM shadows (right)

.

• The API should work even on DirectX 9

hardware.

• The shader implementation should be minimal

and easy to incorporate in the existing

rendering systems.

Due to the introduction of the DirectX 9 constraint,

the general cases for all the light types were

implemented using multiple planes, as shown in

Fig. 11. However, we noted that after the

elimination of wastage, the shadow map used

should be long and narrow. This is in contradiction

with the constraint related to shadow map count

and size, which meant that after planar projection,

pieces of the shadow map should be rearranged for

the regular-sized shadow map to appear like a long

and narrow one (shadow map was split into

multiple columns). Every special case approach,

except the standard dueling frustum, required the

rearrangement of projections within the shadow

map, and some form of clip biasing so that errors in

the region where different projections meet would

not be visible. The placement and clipping of

projection planes for all considered approaches is

shown in Fig. 11. The API implementation consists

of a single function stored in a dynamic linked

library (CSSM.dll), and it is available in Kolic

(2010). Figure 12 depicts a large scene with and

without shadows.

7 Conclusion

Shadow mapping has evolved greatly over the last

few decades and can be considered to have reached

its peak. Simply stated, no linear transformation

will ever be good enough to create better shadow

mapping; hence, there is a need for an alternative

solution using non-linear transformations or

multiple plane projections.

A new perspective shadow map warping approach

has been presented, which is simple and flexible

enough to handle most of the special cases

(compared to TSM and LiSPSM, which are

designed only for the general case).

A new non-linear transformation system based on

the idea of generating quads that are large enough

to contain the distorted triangles and performing

checks in pixel shader has been presented.

The generic shadow mapping API solution was

implemented in a single pass in order to minimize

the expensive render call and changes to render

targets. In rare situations requiring multiple

instances of geometry, the fastest available

methods such as geometry shader and instancing

were used. The API satisfied the four main

constraints: single-pass, single shadow map

(without z-buffer), highest quality (in the form of

complete shadow map utilization), and arbitrary

distance distribution. All these qualities make the

API suitable for implementation in standard

graphic libraries such as DirectX and OpenGL and

for presentation of virtual worlds in real-time.

11

CSSM works well in situations where objects are

evenly distributed around the camera (typical for

FPS games). However, in some situations, such as

flight, where terrain is observed from a great

height, CSSM will not perform very well because

most of the shadow map will be used for the empty

space between the camera and the ground. Varying

the focus range based on distance from the ground

would greatly improve quality; however, in this

case, the ideal solution would be to use the plane of

the ground for shadow projection, which is similar

to the ideas presented by Chong and Gortler

(2004). Therefore, future work could involve

extending the API to accept information about

dominant surface in the scene, and deciding

whether to reserve parts of the shadow map for this

type of projection. Further optimization would

involve implementation of scene analysis, which is

similar to the work by Lauritzen et al. (2011) and

which would automatically detect dominant

surfaces. Further investigation could be pursued if

this analysis and plane construction is done on

GPU and combined with the ideas presented by

Lefohn et al. (2007). Also, instead of just having

fixed focus range, optimal focus range and camera

clipping could be determined dynamically by

sampling minimal, maximal and average scene

depth (in spite of having a few frames delay) which

is very easy to achieve if multi-resolution rendering

is used.

Like every other perspective warping approach,

CSSM suffers from shadow flickering; however,

the effect is significantly less due to wastage

elimination. This is not a major problem since

shadow map filtering and smoothing is common

today. In addition, scenes are becoming

increasingly dynamic today; therefore, even stable

shadow mapping approaches are not immune to

flickering. In fact, in a dynamic scene with

considerable vegetation influenced by the wind,

using stable cascaded shadow maps will actually

produce the worst flickering because the shadow

map utilization is not as high as with CSSM. Future

work could also include further investigation of

shadow flickering.

By using the shadow mapping API presented in this

paper, computer-generated shadows that were once

considered very difficult and slow have become

trivial, fast, and appropriate for large virtual

environments.

Acknowledgements The used test scenes are a

‘Pavilion Garden’ model from Google 3D

warehouse, credit goes to Tan Tunny. Citadel and

palm tree models are from Google 3D warehouse

as well.

References

Chong H, Gortler S (2004) A Lixel for Every Pixel, In

Proceedings Fifteenth Eurographic Workshop on Rendering

Crow FC (1977) Shadow algorithms for computer graphics. In

Proceedings of SIGGRAPH ’77, George J., (Ed.), vol. 11,

pp 242–248

Dimitrov R (2007) Cascaded shadow maps, NVIDIA

Corporation'07, Available at http://developer.nvidia.com,

King G (2004) Shadow Mapping Algorithms, Technical report,

NVIDIA Corporation. Available at

http://download.nvidia.com,

Kolic I (2010) Camera space shadow maps (CSSM), Available

at http://free-zg.t-com.hr/cssm/

Kozlov S (2004) Perspective shadow maps: Care and feeding. In

GPU Gems: Programming Techniques, Tips and Tricks for

Real-Time Graphics, pp 217-244

Lauritzen A, Salvi M, Lefohn A (2011) Sample distribution

shadow maps, In Symposium on Interactive 3D Graphics

and Games (I3D '11), pp. 97-102

Lefohn AE, Sengupta S, Owens JD (2007) Resolution-matched

shadow maps, ACM Trans. Graph. 26, 4, Article 20,

October 2007

Martin T, Tan TS (2004) Anti-aliasing and continuity with

trapezoidal shadow maps. In Proceedings of the

Eurographics Symposium on Rendering

Martin T (2008) Trapezoidal Shadow Maps (TSM) – Recipe

http://www.comp.nus.edu.sg/~tants/tsm/TSM_recipe.html.

Mo Q, Popescu V, Wyman C (2007) The Soft Shadow

Occlusion Camera, In Proceedings of the 15th Pacific

Conference on Computer Graphics and Applications (PG

'07), IEEE Computer Society, pp. 189-198

Nealen AV (2002) Shadow Mapping and Shadow Volumes:

Recent Developments in Real-Time Shadow Rendering,

Project report for Advanced Computer Graphics: Image

Based Rendering (CS514), University of British Columbia

Stamminger M, Drettakis G (2002) Perspective shadow maps. In

Proceedings of SIGGRAPH, pp. 557–562

Williams L (1978) Casting curved shadows on curved surfaces.

In Proceedings of SIGGRAPH ’78, vol. 12, pp. 270–274

Wimmer M, Scherzer D, Purgathofer W (2004) Light space

perspective shadow maps. In Proceedings of Eurographics

Symposium on Rendering

Zhang F, Sun H, Xu L, Lun K (2006) Parallel-split shadow

maps for large-scale virtual environments. In Proceedings of

the 2006 ACM international conference on Virtual reality

continuum and its applications, pages 311–318, ACM Press.

