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Abstract    This paper presents a new single-pass 

shadow mapping technique that achieves better 

quality than the approaches based on perspective 

warping, such as perspective, light-space and 

trapezoidal shadow maps. The proposed technique 

is appropriate for real-time rendering of large 

virtual environments that include dynamic objects. 

By performing operations in camera space, this 

solution successfully handles the general and the 

dueling frustum cases, and produces high-quality 

shadows even for extremely large scenes. This 

paper also presents a fast non-linear projection 

technique for shadow map stretching that enables 

complete utilization of the shadow map by 

eliminating wastage. The application of stretching 

results in a significant reduction in unwanted 

perspective aliasing, commonly found in all 

shadow mapping techniques. Technique is 

compared with other shadow mapping techniques, 

and the benefits of the proposed method are 

presented. The proposed shadow mapping 

technique is simple and flexible enough to handle 

most of the special scenarios. An API for a generic 

shadow mapping solution is presented. This API 

simplifies the generation of fast and high-quality 

shadows. 

 

Keywords: Shadow maps, Real-time shadows, 

Dynamic shadows, Virtual environments 

 

 

 

 

 

 

1 Introduction 

A shadow is one of the most important elements for 

achieving realism in virtual environments. Over the 

years, many real-time shadow-generation 

approaches have been developed. The most well-

known approaches are fake and planar shadows, 

shadow volumes (Crow 1977), and shadow 

mapping (Williams 1978). 

This paper primarily focuses on the shadow 

mapping technique that is recognized as the most 

important shadow generation tool today because of 

its simplicity, generality, and predictability. The 

basic shadow mapping principle involves two 

steps. In the first step, the shadow map is generated 

by storing the depth of the scene from the point of 

view of the light. In the second step, the scene is 

rendered regularly; however, for every drawn pixel, 

the shadow map is consulted to determine whether 

that particular pixel is directly visible to the light. 

This is accomplished by comparing the distance of 

the shadow map from the light with the distance of 

the pixel (depth) from the light. 

In this paper, we will present a new shadow 

mapping approach, termed camera space shadow 

maps (CSSM). This approach acquires the shadow 

map in a simple manner by directly using a camera. 

We will also describe a method for the maximum 

utilization of the shadow map to prevent wastage 

and significantly reduce the perspective aliasing of 

the shadow near the camera. 

The organization of the remainder of this paper is 

as follows: Previous work in the area of shadow 

mapping is summarised in Section 2, while the new 

CSSM approach is described in Section 3. Section 

4 presents a novel pixel-accurate shadow map 

stretching technique. In Section 5, the experimental 

results are discussed, and the new CSSM approach 

is compared with other approaches. Details of the 
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generic shadow mapping API (Kolic 2010) are 

provided in Section 6, while section 7 presents the 

conclusions and future work. 

2 Previous Work 

Shadow mapping techniques can be classified as 

single-pass and multi-pass approaches, based on 

the number of passes required to create the shadow 

map. Single-pass approaches are fast and less 

demanding; however, in general, they cannot be 

used for large-scale environments because it is 

difficult to achieve good shadow map distribution 

for both near and distant shadows. Several 

approaches such as perspective shadow maps 

(PSM) (Stamminger and Drettakis 2002; Kozlov 

2004), light space shadow maps (LiSPSM) 

(Wimmer et al. 2004), trapezoidal shadow maps 

(TSM) (Martin and Tan 2004, Martin 2008), and 

soft shadow maps (Mo et al. 2007) have been 

developed to address this issue. However, a single-

pass robust solution capable of handling most of 

the special cases has not yet been proposed. Multi-

pass approaches, on the other hand, are widely used 

today due to their ability to provide good-quality 

shadows in most of the special cases (such as 

dueling frustum). In these approaches, the scene is 

split into smaller segments for which individual 

shadow maps are acquired and applied. The main 

disadvantages of these approaches are low speed, 

high memory consumption, and discontinuity in 

shadow quality in the region where separate 

shadow maps connect. Hence, their usage is mainly 

reserved for scenes with only one dominant light, 

such as the Sun. Two popular multi-pass 

approaches are cascaded shadow maps (Dimitrov 

2007) and parallel split shadow maps (Zhang et al. 

2006). A detailed description of shadow mapping 

approaches can be found in Nealen (2002) and 

King (2004). 

3 Camera space shadow maps 

The aim of this paper is to provide the first 

complete shadow mapping solution that, in a single 

pass, always produces the highest quality shadow 

map for any type of light/scene/camera and various 

special cases. In theory, the highest-quality shadow 

map would be achieved if every pixel on the screen 

has exactly one corresponding texel in the shadow 

map. This level of quality can only be achieved by 

ray tracing. Hence, in this paper, a considerably 

simpler definition is used: the highest shadow 

mapping quality is achieved when the resulting 

shadow map is completely free of wastage, and 

every texel is reserved exclusively for shadow 

passing through visible space. 

The shadow mapping solution must also provide an 

easy method to control distance-based shadow 

distribution. This can be implemented by allowing 

the specification of a distance value for which a 

certain percentage of the shadow map should be 

reserved. For example, the shadow within 20 m 

from the camera should occupy 50% of the shadow 

map. This cannot be achieved using linear 

transformation. 

Existing perspective warping approaches (such as 

TSM and LiSPSM) were designed primarily for the 

general case, and they cannot efficiently handle 

complex dueling frustum cases and various other 

possible lighting conditions. Therefore, a new, 

more generic approach will be presented, in which 

it is easy to perceive the configuration to be used 

for special cases, such as dueling frustum, camera 

without far clipping and the most difficult case of 

the large omnidirectional light located within 

visible space. 

3.1 Construction of shadow map 

The main principle of perspective warping-based 

approaches involves treating geometry with the 

projections of both camera and light. Thus, a 

shadow closer to the camera gets more shadow map 

space. The goal must be decided on the basis of the 

manner in which regular geometry is treated by the 

camera. The goal must be to transform shadow 

mapping geometry into camera space, using the 

camera matrix for shadow map warping. However, 

it is not possible to simply transform, rotate, and 

scale geometry because this would cause loss of 

light occlusion and depth information. Depth 

information is not very relevant because it can 

always be calculated separately in a vertex or even 

pixel shader, but the preservation of occlusion 

information is essential. We, however, made the 

following observation: If shadow casting geometry 

is projected on any arbitrary plane, the limitations 

on translation, rotation, and scaling are avoided, 

and the geometry can be transformed into camera 

space without losing occlusion information. Once 

the geometry is in camera space, perspective 

warping occurs automatically. 

Fig. 1 demonstrates a new, simple method for 

acquiring the shadow of the entire visible space 

using only one projection plane and the camera 

itself. Projection plane P is placed such that it 

touches the lower point of the viewing frustum at 

the near clipping distance and the opposite point at 

the far clipping distance. However, today, a 

common scenario involves rendering of enormous 

scenes where far clipping is not done at all. In this 

case, the shadow plane should be parallel with the 

appropriate side of the view frustum, as shown in 

the figure. Fig. 1 also suggests that if a light is 

located slightly in front of the viewer, the starting 

point for the plane should be the upper point of the 

viewing frustum at the near clipping distance. 
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Fig. 1. Basic principle of CSSM. The projective plane P is 

located within the view frustum V. The case with the limited 

view frustum is shown on the left. When the view frustum is not 

far clipped (right), the projective plane is parallel to the side of 

the view frustum. 

The dueling frustum case is shown in Fig. 2. From 

the figure on the left, it is clearly visible that a 

single projection plane cannot provide good 

shadow projection into visible space, and hence, 

multiple planes must be used, as shown in the 

figure on the right. In the 2D representation shown 

in the figure, only two planes are used; however, in 

the actual 3D case, four projective planes are 

required (top, bottom, left, and right). 

 

 

Fig. 2. The dueling frustum case cannot be solved with only one 

plane (left), where the unshadowed area is marked as N. The 

correct approach requires multiple planes with a common point 

t, as shown on the right. 

As seen from the figures, various shadow mapping 

operations are performed in camera space and the 

camera itself is used to capture the shadow map. 

This is in contradiction with all other shadow 

mapping approaches where the shadow map is 

exclusively captured from the point of view of the 

light. The proposed approach is therefore 

appropriately termed camera space shadow maps 

(CSSM). 

In the general case, CSSM is acquired in the 

following manner: 

• Rotate (roll) the camera around its Z-axis so 

that the light always originates from above (as 

shown in Fig. 1). 

• Change the FOV (Field of view) angles of the 

rotated camera so that the entire view frustum 

of the original camera can fit within the new 

view frustum. 

• Design a plane that passes through the two 

lower points of the near clipping plane and the 

two upper points of the far clipping plane, as 

shown in Fig. 1. If the source of light is located 

slightly in front of the camera, opposite points 

should be used and the FOV angle of the X-axis 

of the camera must be slightly increased, so that 

the plane seen from the point of view of the 

light covers the entire view frustum. 

• Light-project shadow casting geometry on the 

constructed plane. 

• Use the projection matrix of the rotated camera 

to acquire the shadow map. 

In the dueling frustum case, CSSM is acquired in 

the following manner: 

• Determine a point on a near clipping plane by 

applying the projection of the camera on the 

position/direction of the source of light. 

• Construct four planes that cross through the 

acquired point and all the edges of the far 

clipping plane. 

• Light-project geometry on the projective planes 

using geometry shader. For each projective 

plane, a projected triangle must be created with 

clipping distances of two neighbouring planes 

set at every vertex. Thus, the clipper will 

remove unnecessary geometry, and the 

geometry shader will always generate a 

predictive number of triangles as output. 

• Use the camera projection matrix to acquire the 

shadow map. 

3.2 Distribution of shadow map 

A close examination of Fig. 1 reveals a problem 

commonly found in all perspective warping 

approaches: approximately half of the shadow map 

is allocated for the shadow that resides within the 

near clipping distance (n) from the start of the 

viewing frustum. An example is as follows: 

• Near clipping occurs at 0.2 m (n) 

• Far clipping occurs at 1000 m (f). 

In this example, the first half of the shadow map is 

reserved for a very small shadow located between 

0.2 and 0.4 m from the camera: [n, 2n>, and the 

second half of the shadow map is reserved for an 

enormous shadow area located between 0.4 and 

1000 m: <2n,f]. 

Almost every approach (PSM, TSM, LiSPSM) 

addresses this problem of near shadow 

oversampling by moving the camera backward, 

thus increasing the near clipping distance. The 

effect of this method can be observed in Fig. 3. 
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Fig. 3. View frustum V replaced with the view frustum V
�
 seen 

from a side and top. V
�
 is introduced so that the lower half of the 

shadow map would be reserved for the shadow residing within 

the focus region. Wastage W is introduced. 

 

As seen in Fig. 3, the focus region is introduced as 

a controlling distance for which half of the shadow 

map should be reserved (along the Y-axis). The 

new view frustum V
�
 is then constructed by 

adjusting the position of the camera, moving it 

backward and upward, and thus, appropriately 

narrowing the viewing angle to avoid wastage 

along the Y-axis. 

In the general case with a single plane, the camera 

must be pushed backward and in the upward 

direction. In the dueling frustum case, however, the 

camera need not be pushed backward (although it 

can be). Instead, point t could be pushed forward in 

the direction of light, so that it resides within the 

focus region with respect to the camera. Hence, the 

focus region would be applied, and the appropriate 

planar distribution would be preserved. If point t is 

simply pushed forward, regardless of the direction 

of light, every plane would get an almost equal 

share of the shadow map, which is not desired. It is 

important to note that for the dueling frustum case, 

the focus region has a different meaning, but the 

general idea remains the same: a larger focus 

region results in more shadow map for distant 

geometry and less shadow map for near geometry. 

The focus region itself is an application-dependent 

constant, which should be in the range of 10 to 20 

m, 50 to 100 m, and 500 m and more for first-

person games, racing simulations, and flight 

simulations, respectively. 

The negative effect of pushing the camera 

backward can be observed in the lower part of Fig. 

3, where the scene is observed from the top. 

Distance-based (Y-axis) distribution of shadow 

maps has been corrected at the cost of width-based 

(X-axis) distribution and wastage W has been 

introduced. The wastage problem is greatest at the 

shadow near the camera, where shadow aliasing is 

introduced. This is solvable only by increasing the 

X-resolution of the shadow map. Although near 

shadow quality is significantly improved by 

perspective warping approaches, the wastage 

introduced prevents perfect pixel-accurate results 

and introduces aliasing. Near shadow is 

oversampled along the Y-axis and undersampled 

along the X-axis. In case of the far shadow, the 

problem is reversed. Along the X-axis, the shadow 

map is completely utilized; however, this is not 

beneficial because the shadow map is greatly 

undersampled along the Y-axis. This ratio, where 

the Y-axis distribution is corrected at the expense 

of the X-axis distribution, is common to all shadow 

mapping approaches, and no linear transformation 

will ever achieve better results. 

Wastage is caused due to the fact that after the 

camera is moved backward, near geometry is 

divided by a much larger number (offset + z, 

instead of just z) in the perspective process. One 

approach to resolve this problem is to deform the 

geometry in a vertex shader by scaling the X-axis 

of the projected geometry by the factor z/(z + 

offset). This approach works only for highly 

tessellated geometry, which is not a general case. 

Hence, the most obvious solution is to use 

tessellation hardware. However, our experiments 

performed with DirectX 11 tessellation have shown 

that this problem cannot be efficiently solved by 

hardware tessellation due to two primary reasons: 

• High tessellation required for correct shadow 

map stretching is extremely slow. 

• Large polygons, mostly used for terrain and 

buildings, cannot be sufficiently tessellated. 

Even a maximal tessellation factor of 64 is not 

sufficient for these polygons; therefore, it 

appears that there is no feasible solution. 

4 Pixel-accurate shadow map stretching 

In this section, a new shadow map stretching 

approach is presented. Nonlinear transformation 

required to stretch the shadow map is generally 

considered as a very difficult problem that can only 

be solved using tessellation hardware. However, we 

present a new approach that achieves fast pixel-

accurate shadow map stretching using only the 

features available in DirectX 10-compatible 

hardware. 

To summarize, a triangle must be stretched by 

applying the factor (z + offset)/z to each of its 

pixels. Fig. 4 shows the effect of this process. On 

the left, a simple triangle is shown; the stretching 

factor is applied to the vertices of this triangle. In 

the middle, a highly tessellated version of the same 

triangle is shown, in which the effect of the 

resulting stretching is clearly visible. Fig. 4. 

suggests a method for achieving triangle stretching 

using a quad. Using the original triangle, a quad 

that is large enough to contain the distorted triangle 

is generated.  
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Fig. 4. Triangle stretching is achieved by generating a quad that 

is large enough to contain the distorted triangle. Each pixel of 

the quad is tested to determine if it lies within the original 

triangle. 

 

The easiest method to construct an appropriate 

quad is to detect the minimal and maximal 

projection positions and the upper left and right 

projection points, as shown in the figure. This 

approach also works for a quad when the triangle is 

clipped by a near clipping plane. 

If each pixel of a quad is transformed back in the 

space of the original (undistorted) triangle and 

tested to determine if it lies within the original 

triangle, then, pixel-accurate stretching is achieved. 

This is tested by calculating the barycentric UV 

coordinates, which are also beneficial for correct 

texture coordinate interpolation when bit-masking 

is used (for rendering plants, fences, etc.). This 

process results in fast and pixel-accurate stretching 

that completely eliminates shadow map wastage. 

The actual process of testing whether pixel p lies 

within the original triangle is shown in Fig. 5. After 

z is determined using only the y-coordinate of the 

pixel, the correct (unstretched) x-coordinate and the 

accompanying point p
�
 on a projection plane can be 

determined. The next step involves projecting point 

p
�
 on point p

�
 located on the plane of the original 

triangle, using the simple line vs. plane test. Then, 

the perspective-correct UV coordinates can be 

determined, and the actual test can be performed: 

stretched pixel p belongs to the triangle if the UV 

coordinates are positive and their sum is smaller 

than 1. At this point, perspective-correct texture 

coordinates can be interpolated if necessary, for 

potential bit masking. Although this appears to be a 

complicated process, the resulting pixel shader 

script contains only a few lines of code since all the 

complex calculations are performed only once per 

triangle within the geometry shader. 

 

Fig. 5. Determining if pixel p belongs to the stretched triangle T. 

After z is determined, the correction factor for the X-axis is easy 

to calculate. 

 

It is also important to note that pixel stretching is 

only necessary for shadow triangles that are near 

the camera. As the distance of the triangles from 

the camera increases, the apparent effect of the 

deformation decreases. In fact, beyond a certain 

distance (dependent on the focus range and triangle 

size), pixel accurate stretching is not needed since 

the deformation effect is not noticeable, and 

shaders can switch to the regular approach in which 

stretching is implemented only on vertex basis. The 

triangles that are situated at a sufficiently large 

distance should be marked in geometry shader. 

This will enable pixel shader to be aware that 

simple implementation should be used. In this case, 

the output of the geometry shader is the original 

triangle and not the quad. 

This action is very important because it 

significantly decreases the creation time of the 

shadow map, and pixel-accurate stretching is 

performed only for a few triangles that cast a 

shadow near the camera. 

When the X-axis distribution is fixed, bad 

perspective aliasing near the camera is reduced 

significantly. Along the X-axis, the shadow map is 

completely utilized and additional increase of 

shadow map resolution would not yield better 

results (except at highly angled surfaces). At this 

point, the Y-axis distribution is a major problem, 

since the entire length of the scene must be fitted 

on it. Hence, we propose the usage of longer but 

narrower shadow maps to ensure that the fill rate 

remains unchanged, while there is a significant 

improvement in the general shadow quality. This 

will add slight near shadow aliasing. If the usage of 

additional shadow map is not desired, the existing 

shadow map should at least be rotated in the 

perspective process to allow the longer side of the 

shadow map to be reserved for the Y-axis (distance 

distribution). It is important to note that shadow 

map stretching is not applied in the dueling frustum 

case, where the shadow map is already fully 

utilized.  
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Fig. 6. Comparison between general case for TSM (left) and CSSM (centre) techniques. Dueling frustum CSSM case is shown on the right. 

Accompanying shadow maps are shown below. The scene is a ‘Pavilion Garden’. 

 

The effects of pixel-accurate shadow map 

stretching are: 

• Near shadow quality is significantly improved 

by eliminating wastage. 

• Far shadow quality is improved by increase in 

the Y-axis resolution. 

5 Experimental results 

In this section, tests are performed to determine the 

speed of the newly proposed approach, and 

comparisons with other perspective warping 

approaches are shown. The results obtained in this 

section will help us to choose the optimal 

approaches for the generic shadow mapping API. 

The most important difference between TSM and 

CSSM is shown in Fig. 6. Due to pixel-accurate 

stretching, CSSM provides better solutions for near 

shadow. Unbiased comparison between TSM and 

CSSM was ensured in the case where the focus 

region was equalized. It is obvious that without 

stretching, both approaches would produce an 

almost identical result. The dueling frustum case 

for TSM is not shown because this approach is not 

designed to work in scenes that are presumed to be 

large. Here, scene analysis was not done and small 

640 × 640 shadow maps were used to easily 

observe the effect of aliasing. 

The performance was tested using an ATI Radeon 

HD 5770 graphics card, at a rendering resolution of 

640 × 640 pixels, using the palm tree model 

consisting of 10624 triangles, as shown in Fig. 7. 

The scene was rendered from two angles to capture 

view from first person (FPS) for the general and the 

dueling frustum cases at different shadow map 

resolutions, since the usage of large shadow maps 

is common. The general case was tested with and 

without pixel-accurate stretching. The reference 

frame rate is provided for the case when there is no 

lighting in order to facilitate the evaluation of the 

amount of time taken by regular deferred rendering 

passes. The frame rates are specified in Table 1 and 

Fig. 7. 

From Table 1, the fictive frame rate can be 

calculated exclusively for shadow map rendering. 

This data is shown in Table 2. 

From table 2, we can conclude that at higher 

shadow map resolutions, pixel-accurate shadow 

map stretching is approximately three times slower 

than the approach without stretching (one plane or 

TSM). However, in Fig. 8, the improvement in 

shadow quality is substantial when stretching is 

used. The dueling frustum case shows very good 

shadow quality and high speed when a single plane 

is used. This proves that an increase in geometry 

shader activity (or instancing) caused by the usage 

of multiple projection planes has no significant 

effect on performance but has a significant effect 

on quality. This result was expected and it can be 

attributed to the same reason that results in fast 

cube mapping: unnecessary triangles are instantly 

clipped. 
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Fig. 7. Testing results in frames per second  

 

Table 1 Testing results in FPS for different shadow map 

resolutions 

Shadow map 

resolution 
Standard Stretched 

Dueling 

frustum 

No light 746 746 529 

320 × 320 572 514 388 

640 × 640 541 398 373 

1280 × 1280 406 225 316 

2560 × 2560 210 86 187 

5120 × 5120 70 28 70 

 

Table 2. Fictive frame rate for shadow rendering only (acquiring 

and applying). 

Shadow map 

resolution 
Standard Stretched 

Dueling 

frustum 

No light 0 0 0 

320 × 320 2452 1653 1456 

640 × 640 1969 853 1265 

1280 × 1280 891 322 785 

2560 × 2560 292 97 289 

5120 × 5120 77 29 81 

 

 

The next important analysis is the comparison 

between the time taken to render and apply the 

shadow map and the time required for regular 

rendering passes. This information represents the 

increase in rendering time for every new source of 

light and it is shown in Table 3. 

From Table 3, the most interesting observation is 

that the dueling frustum case with four planes 

shows better results than the standard case with 

only one plane. This can be attributed to the fact 

that, in the general case, the palm tree is not 

entirely drawn, thus speeding up regular rendering 

as opposed to shadow map rendering. In the 

dueling frustum case, approximately the same 

amount of geometry is rendered in every rendering 

pass. 

From the test results, it can be concluded that using 

multiple projection planes is not more expensive 

than using a single projection plane. Hence, our 

generic shadow mapping API can be based on this 

principle. Shadow map stretching, although fast, is 

still several times slower than the multiple plane 

solution. 

6 Generic shadow mapping API 

In this section, we will describe the methodology 

for applying the new shadow mapping approach for 

every light type. We will also explain the approach 

for handling many complex scenarios. When 

implemented, the process of achieving computer-

generated shadows, once considered extremely 

difficult, becomes trivial. The API handles each 

type of light as described below: 

6.1 Directional light 

Directional light is the simplest case, and all the 

details for this scenario have been described in the 

previous sections of this paper. Two main 

approaches were used: one for the general case, and 

the other for the dueling frustum and border case. 

Note that for the border case, the camera is initially 

slightly rotated towards the light before FOV is 

appended, in order to avoid wastage. 

6.2 Spot light 

Spot light, however, presented a more challenging 

problem. Standard (simple) shadow mapping was 

used in every case when the light source was 

located near the camera, or in front of the camera 

facing the forward direction. In these cases, 

complex camera space approaches were not needed 

because standard shadow mapping offers 

satisfactory quality. 
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Fig. 8. Testing model of a palm tree. TSM case that contains wastage is shown on the left. Middle shows CSSM approach that performs 

pixel-accurate shadow map stretching. Dueling frustum CSSM case is shown on the right. In every case shadow map resolution was 640 × 

640. 

Table 3. Percentage increase in rendering time for every new 

source of light at different shadow map resolutions. 

Shadow map 

resolution 
Standard Stretched 

Dueling 

frustum 

No light 0 0 0 

320 × 320 30.42 45.14 36.34 

640 × 640 37.89 87.44 41.82 

1280 × 1280 83.74 231.56 67.41 

2560 × 2560 255.24 767.44 182.89 

5120 × 5120 965.71 2564.29 655.71 

 

 

Compared to directional light camera space shadow 

mapping, spot light required some modification. 

Near and far clipping distances had to be 

recalculated by intersecting visible frustum at the 

appropriate points. Fig. 8 shows a situation where 

the camera origin is not lighted. In this case, a new 

focus range must be recalculated to prevent 

unnecessary wastage. Therefore, the new near 

clipping is done at n
�
 and not n. In this case, the 

original focus range f is replaced with the 

corresponding focus range f
�
. Parameter f0 

represents the theoretical focus range in the 

absence of near clipping, and serves as a reference. 

In most implementations, this range can be 

considered to be equal to f because the near 

clipping distance n is very small. The approximate 

new focus range is now calculated as: 

( ) nfrfanf ′+′′−=′ /1  

In addition, in certain scenarios, depending on the 

angle and direction of the light, dueling frustum 

can be handled as a general case. This occurs when 

light is positioned in the dueling frustum area but 

the origin of the camera is not lighted due to the 

direction of light. 

6.3 Omnidirectional light 

Omnidirectional light was the most challenging 

case. The following approaches were used: 

• General case with one plane for every non-

dueling frustum case. 

• Dueling frustum with four planes when light is 

located behind the camera. 

• Special dueling frustum with eight planes 

when light is located in front of the camera. 
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Fig. 9. Fixing the focus region. If camera is not lighted, 

alternative near clipping is done at n
�
 with corresponding focus 

range f
�
. 

 

 

Fig. 10. Most problematic omnidirectional light case where 

eight planes are used.  

 

• Simple projection on four sides of a 

tetrahedron when the light source is small or is 

very near the camera. 

The special dueling frustum case is shown in Fig. 

10. It is the most difficult case, which combines 

dueling frustum CSSM approach with four 

additional back projection planes. Initially, we used 

CSSM for front and back planes. However, 

although the resulting shadow quality was excellent 

for near and far shadows, it was bad for medium 

distance shadow. Hence, we decided to use CSSM 

for front planes and standard shadow mapping for 

back planes. The distance d where CSSM ends and 

standard shadow mapping begins is calculated so 

that the shadow quality at the endpoint of CSSM 

approach is the same as the standard shadow 

mapping quality of the back planes (note that 

standard shadow mapping quality is uniform over 

the entire back plane and it does not change as 

CSSM quality does). 

 

 

 

 

 

Fig. 11. Shadow map organization for various special cases. For 

the general case, long and narrow effect is achieved by splitting 

shadow map into columns. Green projection planes indicate the 

usage of standard shadow mapping, while red planes represent 

the usage of CSSM approach. 

 

 

Simple projection on four planes of tetrahedron is 

used for the case when small light sources are 

located within the viewing frustum. 

6.4 API implementation 

It is necessary for the API to satisfy the following 

constraints: 

• The usage should be extremely simple (even 

simpler than standard shadow mapping) so that 

the main API function can be implemented in 

standard graphic libraries (DirectX, OpenGL) 

and everyone will have access to high quality 

shadows out-of-the-box. 

• The API should also be very fast (single-pass) 

having a speed measurable with standard 

shadow mapping, but with better quality. 

• Only one shadow map should be used for 

various cases and an additional depth buffer 

should not be required (so that the memory 

usage remains minimal). 
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Fig. 12. Large scene of Citadel is presented without shadows (left) and with CSSM shadows (right) 

. 

 

 

• The API should work even on DirectX 9 

hardware. 

• The shader implementation should be minimal 

and easy to incorporate in the existing 

rendering systems. 

Due to the introduction of the DirectX 9 constraint, 

the general cases for all the light types were 

implemented using multiple planes, as shown in 

Fig. 11. However, we noted that after the 

elimination of wastage, the shadow map used 

should be long and narrow. This is in contradiction 

with the constraint related to shadow map count 

and size, which meant that after planar projection, 

pieces of the shadow map should be rearranged for 

the regular-sized shadow map to appear like a long 

and narrow one (shadow map was split into 

multiple columns). Every special case approach, 

except the standard dueling frustum, required the 

rearrangement of projections within the shadow 

map, and some form of clip biasing so that errors in 

the region where different projections meet would 

not be visible. The placement and clipping of 

projection planes for all considered approaches is 

shown in Fig. 11. The API implementation consists 

of a single function stored in a dynamic linked 

library (CSSM.dll), and it is available in Kolic 

(2010). Figure 12 depicts a large scene with and 

without shadows. 
 

7 Conclusion 

Shadow mapping has evolved greatly over the last 

few decades and can be considered to have reached 

its peak. Simply stated, no linear transformation 

will ever be good enough to create better shadow 

mapping; hence, there is a need for an alternative 

solution using non-linear transformations or 

multiple plane projections. 

A new perspective shadow map warping approach 

has been presented, which is simple and flexible 

enough to handle most of the special cases 

(compared to TSM and LiSPSM, which are 

designed only for the general case). 

A new non-linear transformation system based on 

the idea of generating quads that are large enough 

to contain the distorted triangles and performing 

checks in pixel shader has been presented. 

The generic shadow mapping API solution was 

implemented in a single pass in order to minimize 

the expensive render call and changes to render 

targets. In rare situations requiring multiple 

instances of geometry, the fastest available 

methods such as geometry shader and instancing 

were used. The API satisfied the four main 

constraints: single-pass, single shadow map 

(without z-buffer), highest quality (in the form of 

complete shadow map utilization), and arbitrary 

distance distribution. All these qualities make the 

API suitable for implementation in standard 

graphic libraries such as DirectX and OpenGL and 

for presentation of virtual worlds in real-time. 
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CSSM works well in situations where objects are 

evenly distributed around the camera (typical for 

FPS games). However, in some situations, such as 

flight, where terrain is observed from a great 

height, CSSM will not perform very well because 

most of the shadow map will be used for the empty 

space between the camera and the ground. Varying 

the focus range based on distance from the ground 

would greatly improve quality; however, in this 

case, the ideal solution would be to use the plane of 

the ground for shadow projection, which is similar 

to the ideas presented by Chong and Gortler 

(2004). Therefore, future work could involve 

extending the API to accept information about 

dominant surface in the scene, and deciding 

whether to reserve parts of the shadow map for this 

type of projection. Further optimization would 

involve implementation of scene analysis, which is 

similar to the work by Lauritzen et al. (2011) and 

which would automatically detect dominant 

surfaces. Further investigation could be pursued if 

this analysis and plane construction is done on 

GPU and combined with the ideas presented by 

Lefohn et al. (2007). Also, instead of just having 

fixed focus range, optimal focus range and camera 

clipping could be determined dynamically by 

sampling minimal, maximal and average scene 

depth (in spite of having a few frames delay) which 

is very easy to achieve if multi-resolution rendering 

is used.  

Like every other perspective warping approach, 

CSSM suffers from shadow flickering; however, 

the effect is significantly less due to wastage 

elimination. This is not a major problem since 

shadow map filtering and smoothing is common 

today. In addition, scenes are becoming 

increasingly dynamic today; therefore, even stable 

shadow mapping approaches are not immune to 

flickering. In fact, in a dynamic scene with 

considerable vegetation influenced by the wind, 

using stable cascaded shadow maps will actually 

produce the worst flickering because the shadow 

map utilization is not as high as with CSSM. Future 

work could also include further investigation of 

shadow flickering. 

By using the shadow mapping API presented in this 

paper, computer-generated shadows that were once 

considered very difficult and slow have become 

trivial, fast, and appropriate for large virtual 

environments. 
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