
Application of augmented reality for supporting
instrument service tasks

Abstract
This paper describes a system for object
detection and tracking implemented as an
iPad application, which has been tested and
successfully accomplishes its task. The sys-
tem is based on finding the initial position
of the object by matching features between a
template and the device’s picture. Tracking is
achieved by using a pyramidal implementa-
tion of the iterative Lucas-Kanade algorithm.
The implemented system was tested on two
different instruments used for testing internal
combustion engines. The paper discusses the
possibilities offered by mobile devices, like
the iPad, for the development of applications
with computer vision and augmented reality
elements and also describes the major problems
that have been encountered on such platforms.

Keywords: computer vision, augmented
reality, mobile devices, iPad, feature detection,
tracking

1 Introduction

In the last few years the processing power of
mobile phones and other hand-held devices,
like tablets, have increased dramatically which
allows more and more complex tasks to be
achieved using such devices. One of the new
possibilities is the use of mobile devices for
real time processing of images and video se-
quences. The motivation for the research de-
scribed in this paper was the desire to improve
the installation and maintenance procedures of
automated testbeds used for internal combustion
engine testing. In this paper we tried to use a
tablet device (iPad3) to detect and track known

objects, specifically two peripheral devices of
the automated testbed, using already established
techniques which have been adapted and care-
fully parameterized to achieve real-time perfor-
mances on a tablet. The goal is to overlap the
important parts of the tracked object with use-
ful information regarding such parts like tech-
nical documentation extracts, maintenance in-
structions and measured data.

The following section 2 shortly reviews the
related work on this subject and after that the
implemented algorithm is described, separately
the initialization procedure and the tracking pro-
cedure. The results are presented in section 6
together with the encountered limitations and
challenges present on mobile systems. The con-
clusion is given in section 7 along with potential
future research directions.

2 Related work

An implementation of parallel tracking and
mapping on camera phones is described in [1].
The goal in that paper is to create a map of the
3D environment from a series of images based
on tracking of natural features. They track FAST
[2] features while also simultaneously updating
the feature map with new features from newly
acquired images. Tracking is accomplished by
predicting the most likely location of the fea-
tures based on previous movement speed and di-
rection and the results are refined by local search
around the predicted location.

In [3] a feature tracking method is imple-
mented. The method is based on SIFT de-
scriptors proposed in [4], but substitutes the
Difference-of-Gaussians (DoG) feature detector
with the much faster corner detector from [2].

Zeljkam
Typewritten Text
 Toni Benussi, Zoran Kalafatic, Zeljka Mihajlovic
 University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia

To match SIFT descriptors between the current
image and the reference model the authors used
Spill Trees described in [5]. To calculate the
pose of the camera in relation to the tracked ob-
ject they used Gauss-Newton iterative scheme
to minimize the reprojection error to the im-
age plane while taking into account the camera
model with radial deformations.

3 Initialization

The goal of the initialization procedure of the al-
gorithm described in this paper is to detect the
instrument that will be tracked and determine
it’s position and orientation in the first frame
from the iPad’s embedded camera. The image
acquired from the camera is first transformed
into a grayscale image and the same is done for
each subsequent frame. The iPad’s camera suf-
fers from high levels of noise, which is typical
for embedded cameras. To mitigate this problem
the grayscale image is processed with a Gaus-
sian filter. The majority of the basic components
and algorithms we used are implemented in the
OpenCV library and written in C++, while the
GUI was written in Objective C.

The next step is feature detection. Different
algorithms were tested (FAST [2], SURF [6],
SIFT [4]), but for the final implementation we
used the detector Good features to track (GFTT)
[7]. The available implementation of the SIFT
detector was too slow and was immediately dis-
carded, while the other detectors were tested
and the results can be seen in table 1. The

Table 1: Comparison of feature detectors
Duration
iPad [ms]

Duration PC
[ms]

Num. of
features

FAST 36 7.5 1258
SURF 3413 670 632
GFTT 382 83 361

SURF detector was too slow for real time appli-
cation. FAST has great performance and detects
a lot of features compared to the other detec-
tors, but even while using non-maxima suppres-
sion the detected features are tightly grouped to-
gether which can cause inaccurate computations
of the homography later on. The GFTT detec-
tor has acceptable computation speed and a lot

of parameters to refine the criteria for feature
detection which was the primary reason for our
choice.

Feature descriptors are generated using the
technique proposed in [6]. The specific objects
we were trying to detect have many similar fea-
tures on their surfaces, so to distinguish the fea-
tures it was necessary to expand the obtained de-
scriptors with scaled information about the posi-
tion of the features on the object.

The same process of feature detection and de-
scription is performed offline on a set of tem-
plate pictures of the object we want to track.
The templates differ from each other by the an-
gle and distance from which the object is ob-
served. The position of the object on the tem-
plates is known beforehand. The descriptors of
the features detected in the image from the live
camera are matched to the features of each tem-
plate using the FLANN [8] algorithm. The best
matching template is chosen and 40 best feature
matches between the image and the template are
used to compute the homography matrix using
the RANSAC [9] method. The homography ma-
trix contains the information about the position
of the object on the image in relation to its po-
sition on the template which is enough to start
tracking the object and add virtual objects on top
of it.

4 Tracking

For tracking we used an iterative implementa-
tion of the Lucas-Kanade algorithm [10] that
uses a pyramidal representation. We track 20
most prominent features obtained with [7]. Note
that these features are not necessarily a subset of
the 40 features used in the initialization as they
are not chosen by the criteria of similarity with a
template, but exclusively because they are very
suitable for tracking.

The positions of the features on the current
image and their counterparts on the previous im-
age are used to compute the homography matrix
between the two images. This solution to com-
pute the homography between two close images
has proven to be much more precise in compar-
ison to computing the homography between the
current image in the video sequence and the ini-
tial template, as it’s easier to compute the ho-

mography for smaller changes of the viewpoint.
Sometimes during the tracking procedure fea-
tures are lost between to frames. Those fea-
tures are excluded from the set used to com-
pute the homography. To restore the lost fea-
tures we use the homography computed from the
successfully tracked features. Assuming that the
homography is correct the lost features are re-
stored to their actual position in the current im-
age. This procedure allows us to maintain a con-
stant number of features and to track the object
for longer sessions.

5 Virtual objects

By successfully tracking the object’s position in
the scene we are given the means to overlap
parts of the objects with virtual objects contain-
ing useful information about them and create an
augmented reality environment. The idea is to
allow the user to interact with the components
of the tracked device, in this case the MicroSoot
smoke meter and the F-FEM-CON signal pro-
cessor. The virtual elements allow the user to
instantly get useful extracts from the manual or
technical documentation specific to each com-
ponent of the device or get real-time measure-
ments and readings on the device from the cen-
tral workstation which is connected to the iPad
by a wireless network.

By knowing the position of the tracked device
in the current image we can determine the exact
position of each of the device’s components and
add the required information to the appropriate
position in the image. Examples can be seen in
figure 1.

6 Results

”The two algorithm components, initialization
and tracking, were separately tested. The ini-
tialization was tested on 90 pictures for each de-
vice and the result are shown in table 2. The
results for the F-FEM-CON device are signifi-
cantly worse then the Microsoot results because
the F-FEM-CON has a large number of very
similar features which causes mistakes during
the matching procedure which yields a poorer
homography.

(a) MicroSoot with measurement values

(b) F-FEM-CON with manual extract

Figure 1: Images of the devices with augmented
reality elements

Table 2: Initialization evaluation
Device Successful Unsuccessful
MicroSoot 92.8% 7.2%
F-FEM-CON 87.75% 12.25%
Total 90.275% 9.725%

Testing of the tracking procedure was per-
formed on 3 video sequences of the Microsoot
device with the total length of 172 seconds and
on 4 video sequences of the F-FEM-CON device
lasting a total of 176 seconds. We recorded the
amount of time the devices were successfully
tracked and also counted the events of tracker
loosing the object and required to be reinitial-
ized. The main reasons for the loss of the ob-
ject are the high levels of motion blur present
during camera movements and the narrow field-
of-view of the camera which causes the object
to leave the scene if larger movements are per-
formed. The tracking evaluation results are pre-
sented in table 3. During the tracking procedure
the system achieves 9 to 10 frames per second
on average.

Table 3: Tracking testing results
No. device
lost

Tracking
successfull

MicroSoot 6 80.8%
F-FEM-CON 5 84.1%
Total 11 82.5%

7 Conclusions and further work

In this paper we described a system for detecting
and tracking objects with a handheld tablet de-
vice and added augmented reality components
to the tracked object. The implemented sys-
tem was tested and achieves a success rate of
90.275% in object detection and registration and
the tracking procedure was successful in 82.5%
of the total frames in the video sequences used
for testing. The results are encouraging, how-
ever there are many issues still left to solve. The
frame rate should be increased by parallelizing
parts of the procedures, for example the track-
ing algorithm and the homography computation
could be done in separate threads. Also the pos-
sibility to use the GPU of the mobile device for
computation purposes could be worth investigat-
ing. An interesting solution to reduce the track-
ing problems caused by motion blur could be
to use the embedded inertial sensors which are
present in the iPad. Its measurements could be
used to predict the camera movement in scenar-
ios where the camera moves too fast for visual
tracking to work correctly.

Acknowledgments

We thank the company AVL Graz for acquiring
all the necessary equipment for our research and
their employees for their ideas and suggestions
that contributed to the realization of this paper.

References

[1] G. Klein and D. Murray. Parallel track-
ing and mapping on a camera phone. In
Mixed and Augmented Reality, 2009. IS-
MAR 2009. 8th IEEE International Sym-
posium on, pages 83–86. Ieee, 2009.

[2] E. Rosten and T. Drummond. Machine

learning for high-speed corner detection.
Computer Vision–ECCV 2006, pages 430–
443, 2006.

[3] D. Wagner, G. Reitmayr, A. Mulloni,
T. Drummond, and D. Schmalstieg. Pose
tracking from natural features on mo-
bile phones. In Proceedings of the 7th
IEEE/ACM International Symposium on
Mixed and Augmented Reality, pages 125–
134. IEEE Computer Society, 2008.

[4] D.G. Lowe. Object recognition from lo-
cal scale-invariant features. In Computer
Vision, 1999. The Proceedings of the Sev-
enth IEEE International Conference on,
volume 2, pages 1150–1157. Ieee, 1999.

[5] T. Liu, A.W. Moore, A. Gray, and K. Yang.
An investigation of practical approximate
nearest neighbor algorithms. Advances
in neural information processing systems,
17:825–832, 2004.

[6] H. Bay, A. Ess, T. Tuytelaars, and
L. Van Gool. Speeded-up robust features
(surf). Computer Vision and Image Under-
standing, 110(3):346–359, 2008.

[7] J. Shi and C. Tomasi. Good fea-
tures to track. In Computer Vision and
Pattern Recognition, 1994. Proceedings
CVPR’94., 1994 IEEE Computer Soci-
ety Conference on, pages 593–600. IEEE,
1994.

[8] M. Muja and D.G. Lowe. Fast approximate
nearest neighbors with automatic algo-
rithm configuration. In International Con-
ference on Computer Vision Theory and
Applications (VISSAPP09), pages 331–
340, 2009.

[9] Random sample consensus: A paradigm
for model fitting with applications to im-
age analysis and automated cartography.
Communications of the ACM, 24(6):381–
395, 1981.

[10] J.Y. Bouguet. Pyramidal implementation
of the affine lucas kanade feature tracker
description of the algorithm. Intel Corpo-
ration, 2001.

