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Abstract—Automated grading of multiple-choice exams is
of great interest in university courses with a large number
of students. We consider an existing system in which exams
are automatically graded using simple answer sheets that are
annotated by the student. A sheet consists of a series of circles
representing possible answers. As annotation errors are possible,
a student is permitted to alter the annotated answer by annotating
the“error” circle and handwriting the letter of the correct answer
next to the appropriate row. During the scanning process, if an
annotated“error” circle is detected, the system raises an alarm
and requires intervention from a human operator to determine
which answer to consider valid. We propose rather simple and
effecive computer vision algorithm which enables automated
reading of a limited set of handwritten answers and minimizes
the need for a human intervention in the scanning process. We
test our algorithm on a large dataset of real scanned answer
sheets, and report encouraging performance rates.

I. INTRODUCTION

Automated grading of multiple choice exams is a necessity
in modern university courses taken by a large number of
students (e.g. a few hundreds). Although in recent years there
has been a notable shift towards taking multiple choice exams
on computers [1], [2], written exams are still inevitable when
the number of students taking the exam surpasses the number
of computers the university can provide at a given point in
time. Manually grading hundreds of multiple choice exams
is tedious work prone to errors, and a task more suitable
for a machine than for a human. Using automated grading
saves time, enables faster processing of exams and reduces
the probability for grading errors. If exams are graded by a
machine, the results of an exam can be known in as little as a
few hours after the exam has finished, with very little human
effort, hence offering a considerable benefit both for students
and for course staff.

In this paper, we consider an existing system for automated
exam grading [3], [4] currently in use at the Faculty of Electri-
cal Engineering and Computing, University of Zagreb, Croatia.
The system operates by scanning and recognizing answer
sheets of a predefined format on which the desired answers are
annotated by the student. Although offering a fair amount of
automation, the system is not yet fully automated, as it requires
operator input in cases when the student makes an annotation
error, i.e. decides to change an already annotated answer. In
these cases, the student is expected to annotate a special error
column (or annotate more than one answer where only a single
answer is expected) and handwrite the letter corresponding
to the appropriate answer in a dedicated rectangle. When the
system detects that more than one answer or the error column

had been annotated, a prompt is raised to the human operator,
who is required to read the handwritten letter and input it
back into the system. Hence, a certain amount of supervision
is required during the automated grading process. We address
this problem by proposing a computer vision technique for
handwritten letter recognition suitable for use in the context of
automated exam grading. The recognition task is constrained,
as a limited number of letters need to be supported, given
that multiple choice exams rarely offer more than six choices.
Still, the relative simplicity of the task balances itself with
high performance requirements: the recognition should be as
fast as possible and as reliable as possible, and generalize
well over a large number of different handwritings. Errors are
highly undesirable, so the recognition module should be able to
assess its own certainty in the recognition result. For uncertain
recognitions, human input should be requested.

II. RELATED WORK

Character recognition has been a subject of intensive re-
search for a long period of time. While recognition of printed
text is today mostly considered a solved problem, recognition
of handwritten text remains a challenging task, primarily due to
high variability in handwriting among different people. A large
number of methods have been proposed for handwritten text
recognition. These methods can generally be categorized either
as online or offline. Online recognition involves the automatic
and real-time conversion of a text as it is written on a special
digitizing device, where a sensor tracks the movements of
the pen and an algorithm processes this information, while
offline methods start from a static image usually obtained
by scanning a document. An overview focused on offline
handwritten character recognition methods can be found in
[5].

The task of character recognition generally involves the
following processing steps [5], [6]:

(i) Preprocessing (for instance including size normalization,
image binarization, etc.),

(ii) Feature extraction,
(iii) Classification.

It is presumed that an adequate method for character localiza-
tion has been previously applied, in order to find parts of the
image containing each of the characters.

The key step in the process is the selection of an appropri-
ate feature extraction method (or representation), since features
must at the same time be sufficiently discriminative among the



character classes, but also invariant to the expected variations
inside the class. Furthermore, the size of feature vectors should
be relatively small in order to reduce computational complexity
and therefore the time needed to perform the classification. A
variety of different feature representations have been proposed
in the literature. A standard survey can be found in [7].
Commonly used feature representations can be classified in
three broad classes [5], [7]:

(i) Statistical representations, that represent a character im-
age by a statistical distibution of points. This class
includes methods such as analyzing densities of points or
other features in different regions of an image (zoning),
projection histograms, counting the number of crossings
of an image contour with line segments in specified
directions, and distances of line segments from given
boundaries.

(ii) Structural representations, based on geometrical and
topological properties, such as aspect ratio, distances
between characteristic points or strokes, cusps, openings
in different directions, chain codes, graph and tree rep-
resentations, etc. These kinds of features encode some
knowledge of the structure of the character, i.e. what sort
of components it is made of.

(iii) Representations obtained by global transformations, that
describe an image by a linear combination of a series
of simpler well-defined functions. The features are then
formed by coefficients of a such linear combination.
Fourier transforms, Gabor transforms, wavelets, mo-
ments, Karhunen-Loeve expansion, etc., can be counted
in this category.

As already stated, using distances of the image elements
from the predefined boundaries has been used and described
in the literature. Kim et al. [8] used distances of image pixels
from the minimum bounding box of a whole word, along
a certain number of horizontal and vertical scan-lines, in
combination with several other feature types combined in 120-
dimensional feature vector, applied to much harder problem of
recognition of a limited set of handwritten cursive words. By
using a heterogeneous classifier consisting of two multi-layer
perceptrons and a hidden Markov model, they achieved recog-
nition rate of 92.7% for 32 classes of legal words. Similarly,
Mohamed [9] represented cursive handwritten word images
by computing the location and number of transitions from
background to foreground pixels along vertical lines (image
columns). Hidden Markov model was used for classification.
The obtained recognition rate was 83.9% (for the first ranked
class). Surinta et al. [10] use the distance values between the
closest black pixels and predefined hotspots in four or eight
different directions to represent characters. They report the
recognition rate of 90.1%.

In this paper, we adhere to the general idea of using image
distances, and propose an offline character recognition method
particulary suitable for recognizing a limited set of characters
in the context of automated grading. In contrast to previously
described methods, our method is specifically optimized to
the set of supported characters, i.e. it can be said that it
incorporates a degree of prior knowledge. It is designed so as
to maximize separability between supported character classes
by measuring specific properties characteristic to individual
classes (e.g. it assumes that the existence or absence of the

Fig. 1. An example of a standardized answer sheet.

middle dash is an important classification cue).

III. THE EXISTING SYSTEM

The first step in developing any automated grading sys-
tem is to introduce a standardized answer sheet that can be
machine-processed. In this paper, we consider an automated
grading system called FreeFormReader, currently in use at the
Faculty of Electical Enginnering and Computing at University
of Zagreb. An example of a standardized answer sheet that can
be processed by the system is shown in Fig. 1. The answers
are annotated by the student in an answer matrix that consists
of an appropriate number of rows of empty circles. Each
row corresponds to a single question, and each column to a
single answer. To annotate an answer, the student darkens the
appropriate circle. It is often the case that a student annotates
an answer and later changes his mind. If that happens, the
student is expected to annotate the “Error” cell (“Greska”
in Croatian, as shown in Fig. 1) in the appropriate row or
darken the correct answer in the same row, and write the letter
corresponding to the final answer in the rectangle near the
appropriate row, also illustrated in Fig. 1. When the system
detects that the “Error” cell is marked, or that two or more
answers are marked, an alarm is raised and a human operator
must inspect and manually enter the correct answer.

Given that many exams at our university are graded in a
way that wrong choices add negative points to the exam score



(usually -0.25 points), it sometimes happens that a student
wishes to revoke his answer to a particular question, and leave
the question unanswered. In that case, the same procedure is
followed, except that instead of handwriting the letter of the
appropriate answer, the student is expected to write the dash
symbol (“-”). On the other hand, if the student is confident that
for a certain question none of the offered answers are correct,
or that there is more than one correct answer, the student is
allowed to annotate the “Error” column in the corresponding
row and write the letter X in the appropriate rectangle. This
situation can occur when there has been a mistake in forming
the exam. If an X is detected, the human operator should
manually inspect the student’s solution.

Currently, the system supports exams with up to 23 answer
choices. However, the most frequent case are questions with
four to six answers and for these cases we are trying to further
automate the recognition process. Our practical experiences
suggest that errors in annotation happen in about 20% of
exams. The process of manually correcting annotation errors
is tedious and it is easy to make a mistake, given the repetitive
nature of the task.

IV. REPRESENTING AND CLASSIFYING THE CHARACTERS

In devising an appropriate representation and classification
method for handwritten characters that could be used within
our exisiting system, we adhere to the following requirements.

(i) The required computations for representation and clas-
sification should be very fast, so that current processing
speed of the system is retained.

(ii) It can be assumed that the set of supported characters
is limited to six answer letters (A, B, C, D, E, F) and
two characters for revoking the answer and signaling a
mistake in the question (dash and X).

(iii) The classification framework should be able to output
confidence level. Predictions with low confidence level
should be presented to the human operator.

In the following section we describe the method that we
propose for the character recognition.

A. The edge distance representation

After scanning the document, an approximate location of
the table containing the handwritten correction answers is
manually annotated by the human operator. This has to be done
only for the first exam sheet, since the approximate position of
the table remains the same for all the other sheets. Then the
precise location of the table and the locations of individual
cells must be found. This can be done either by finding
lines using Hough transform (and finding individual cells by
finding their corners defined by intersections of found lines),
or using a method described in [4], or any other. Currently, for
experimentation purposes, we use (slow) Hough transform.

Once the individual cells have been found, a procedure for
finding a minimal character bounding box is performed. Then
the corresponding part of the image is further preprocessed
by reducing its dimensions to 24× 32 pixels, since we expect
that in this resolution the distinguishing features of characters
are still preserved. We then perform binarization by simple
histogram-based adaptive thresholding. The result is a 24 ×

Fig. 2. The grid of M ×N horizontal and vertical scan-lines
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Fig. 3. The definition of features: (a) horizontal features; (b) vertical features

32 binary image in which the character extends from top to
bottom and from left to right margin of the image. The size
normalization is essential, since the proposed features will only
have low variability in case of size normalized images, thus
lending themselves to character recognition.

To facilitate the recognition, we propose a simple but ef-
fective feature extraction method resulting in an edge distance
representation of characters (Figs. 2 and 3). In the image, M
horizontal and N vertical equidistant scan-lines are defined
(in our experiments, M = N = 8), as shown in Fig. 2. On
each horizontal scan-line i, two features are defined (Fig. 3(a)):
the relative distance of the leftmost black image pixel on that
line from the left margin of the image (hil) and the relative
distance of the righmost black image pixel on the same line
again from the left image margin (hir). On each vertical scan-
line, however, three features are defined (Fig. 3(b)): the relative
distance of the uppermost black pixel on the i − th vertical
scan-line from the upper image border (viu), the relative
distance of the bottom-most black pixel on the same line from
the top of the image (vib), and finally, the third feature (vim)
intended to reflect the position of the “middle stroke” that
exists in some letters (such as B and E), i.e. the relative
distance of the pixels of this “middle stroke” crossing the
i − th vertical line from the top of the image, if the “middle
stroke” exists. More precisely, vim is defined as the relative
distance from the top of the image to the black pixel below
the uppermost pixel that is at the same time disconnected both
from the uppermost and from the bottommost pixels and is
closest to the center of the letter. If it does not exist, i.e. if
there are no pixels on the i−th vertical scan-line disconnected
from uppermost and bottommost black pixels, the feature vim
is set to 0. The described representation results in a feature
vector of dimension 2M +3N (in our case the dimension was
2× 8 + 3× 8 = 40).

Intuitively, the features defined in the described way should
be sufficiently discriminative for characters belonging to dis-



tinct classes, while maintaining a relatively low variability
inside a class, regardless of different handwriting styles. We
emphasize here that our goal is not to define rotation invariant
features, since we do not expect hanadwritten characters to
have any larger degree of rotation. The features (hil), (hil),
(viu) and (vib) describe in a rough way the outer shape of the
letter, while (vim) enables easier distinguishing between letters
that could have similar outer shape in some handwritings
(i.e. C and E; B and D).

B. Selecting the classifier

Given the desired performance requirements, we opted
to use the random forest classifier proposed by Breiman
[11]. The random forest classifier is reasonably fast to train,
the classification results are fast to compute, and it offers
performance comparable [12] to other popular classifiers such
as support vector machines [13]. The main idea of the random
forest approach is combining randomized decision trees into
ensembles. When building a decision tree within a random
forest, for each split at inner tree nodes, the algorithm ran-
domly selects a subset of m attributes and then performs the
split by the best attribute from the selected subset, based on
the Gini impurity index. In contrast to SVM, which is posed
as a binary classification algorithm, random forests inherently
support multiple classes. Given a sample, each of the trees of
the classifier casts a vote for one of the classes, and the final
class of the sample is determined by the majority of votes.
Tunable parameters of the random forest algorithm are the
number of trees, the number of top candidates to consider (m),
and the allowed depth of individual decision tree.

V. EXPERIMENTS

For experimental validation of the proposed procedure, we
collected two datasets. The training dataset contains handwrit-
ing samples from 289 individuals, and the test-dataset contains
samples from 15 individuals. Each individual was asked to
write all the considered characters (A, B, C, D, E, F, X, -) 32
times, using a specialized sheet as illustrated in Fig. 4. Hence,
for each individual we collected a total of 264 samples plus the
eight printed samples from the table header, resulting in the
training dataset size of 76296 samples and the test set size of
3960 samples. There is no mixing of samples from the training
and the test set, i.e. individuals contributing to the training set
were not a part of the second group that contributed to the
test set. Multiple samples per person were collected with the
goal of improved learning, given the inevitable variations that
occur within different instances of the same handwriting.

The edge distance representation was implemented in Java
in a straightforward way, according to the described algorithm.
For each scanned image, the table containing the handwritten
letters was located using Hough transform; then the cells were
located using intersections of appropriate border lines. The
procedure for the minimum letter bounding box described in
[4] was then applied, and the character image was extracted
and further binarized. On the binarized image, the edge dis-
tance features were extracted.

For testing classification performance of the random forest
classifier, we used the open source data mining tool Weka
[14]. Weka offers a graphical user interface for experimenting

Fig. 4. An example of an annotation sheet used to collect handwritten
character samples.

with various classifiers, but it is also available as a standalone
Java library. Given that the existing automated grading system
is written in Java, we expect that using Weka will ensure a
seamless integration of the final classifier with the existing
code.

A. Classification results

We experimented with several parameter settings, and
found that the best performance is obtained by using a forest
of 100 trees, considering m = 6 random attributes in each
split, and not limiting the tree depth. Using this setup, the
random forest classifier was able to correctly classify 96.5% of
samples from the test set (3821 of 3960). The confusion matrix
is shown in Table I. It can be seen that, as expected, most
confusion occurs between visually similar letters. For example,
20 instances of the letter E were classified as C, although only
four C’s were classified as E’s. It seems more common for the
letter E to lack a middle dash, making it similar to C, than for
the letter C to contain an additional dash that would make it
similar to E. Other notable confusions include 18 instances of
the letter B being classified as E, 16 instances of the letter E
being classified as B, etc.

In order to better illustrate the amount of confusion among
different classes, a visualization of the confusion matrix is



TABLE I. THE CONFUSION TABLE FOR THE TESTING SET. ROWS
CORRESPOND TO CORRECT LABELS, AND COLUMNS TO THE NUMBER OF

CLASSIFICATIONS AS A GIVEN SYMBOL OUTPUT BY THE RANDOM FOREST.

A B C D E F - X
A 483 2 1 5 0 1 3 0
B 5 454 0 14 18 3 0 1
C 0 1 487 0 4 1 2 0
D 1 9 3 479 1 0 2 0
E 1 16 20 0 454 3 0 1
F 2 2 0 0 2 489 0 0
- 0 0 0 0 0 1 493 1
X 11 0 1 0 0 0 1 482

Fig. 5. Visualization of the confusion matrix without diagonal elements
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Fig. 6. Examples of misclassifications. From left to right: A classified as B,
B classified as D, C classified as E, D classified as B, E classified as B, F
classified as E and X classified as A.

shown in Fig. 5. In order to emphasize misclassifications,
we removed the bars corresponding to correctly classified
examples so that only misclassifications are left. The height of
each bar corresponds to the number of misclassified examples
at the corresponding location of the confusion matrix.

A few misclassified samples from the test dataset are shown
in Fig. 6. The correct labels from left to right are A, B, C, D, E,
F, X. Note that most of these examples are hard to classify even
for a human. For example, the examplified letter B reminds of
a heart symbol and in a certain way to letter D, the letter E
looks like a G, the letter F could easily be confused for an E,
and the character X reminds of the Greek letter λ.

B. Varying the decision threshold

As discussed before, the proposed system should provide
a confidence measure of the predicted label, so that labels
with low confidence can be presented to the human operator.
In order to find the optimal classification certainty threshold
below which manual operator intervention will be required, we
have considered two facts:

(i) The classifier will inevitably produce a certain number
of misclassifications that will be misclassified with a

Fig. 7. The percentage of correct classifications, misclassifications and
uncertain classifications requiring manual input, depending on confidence-level
threshold (for the first method; for the second method the diagram is similar).
X-axis corresponds to confidence-level thresholds, while y-axis represents the
percentage of correct, incorrect and uncertain classifications.

Fig. 8. Performance of penalty function. X-axis corresponds to confidence-
level thresholds, while y-axis represents values of penalty functions for the
two proposed approaches (less is better). Cost 1 corresponds to method (i)
and Cost 2 to method (ii).

certainty greater than the confidence threshold; these will
initially pass undetected and will require later interven-
tion based on student complaints.

(ii) There will be some correctly classified letters for which
the system will ask the operator to manually confirm the
classification, because the classification certainty will be
smaller than the confidence threshold; this scenario costs
operator time.

To tackle these two situations, we observe that it takes
more time for course staff to manually inspect and correct
missclasifications upon receiving a complaint by a student
than at the time of sheet proccesing. Therefore, we define the
following cost function: for each classification with insufficient
confidence level we add a penalty of 1 point; for each un-
detected misclassification (misclassification with a confidence
level greater than the threshold) we add a penalty of 5 points.
Given this penalty function, we define two approaches to
solving the problem of selecting the optimal threshold.

(i) In this approach we require that the absolute value of
confidence for the predicted character class must be
greater than θ. We evaluated the clasification performance
for each distinct θ in [0, 1] which occured as confidence
of prediction for any character. With the change of
threshold, the number of correct classifications, misclas-



sifications and uncertain classifications changes, and is
illustrated in Fig. 7. The performance of penalty function
is presented in Fig. 8. As can be seen, for this case the
optimal certainty-level threshold is 0.59 at which we have
92.8% correct classifications, 1.2% misclassifications and
6.1% manual interventions.

(ii) In this approach we require that the relative value of
confidence for the predicted character class must be
greater than θ. This means that the difference between
the probability of the most probable class and the second
most probable class must be greater than θ. We evaluated
the clasification for each distinct θ in [0, 1] which occured
as confidence of prediction for any character. With the
change of threshold, the number of correct classifications,
misclassifications and uncertain classifications changes,
and is similar to the one illustrated in Fig. 7. The
performance of the penalty function is presented in Fig. 8.
As can be seen, for this case the optimal certainty-
level threshold is 0.37 at which we have 92.6% correct
classifications, 1.0% misclassifications and 6.4% manual
interventions.

VI. CONCLUSION AND OUTLOOK

We have presented a technique based on edge distances and
random forest classifier that can be used to improve an existing
automated grading system by machine-based recognition of
handwritten characters. In the existing setup, these characters
represent answer alterations in case a student annotates an
answer in a predefined answer matrix and then changes his
mind. Extensive experiments were performed on a large dataset
containing samples of eight supported characters. Experiments
indicate that by introducing the proposed technique into the
existing automated grading system, more than 92% of such
answers could be machine-read, hence saving valuable opera-
tor time and further improving the automated grading process.
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[1] M. Čupić and Ž. Mihajlović, “Computer-based knowledge, self-
assessment and training,” International Journal of Engineering Edu-
cation, vol. 26, no. 1, pp. 111–125, 2010.
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