
Freeform spatial modelling using depth-sensing

camera

Mario Volarević, Petar Mrazović, Željka Mihajlović

Faculty of Electrical Engineering and Computing, Zagreb, Croatia

mario.volarevic@gmail.com, petar.mrazovic@gmail.com, zeljka.mihajlovic@fer.hr

Abstract - This paper proposes a novel 3D direct interaction

modelling system for manipulating voxel based objects using

currently available 3D motion sensing input devices such as

Microsoft Kinect. The guiding principle while developing

the system was to imitate natural human modelling

behaviour and provide a real life experience of 3D object

manipulation, inspired by the techniques used in modelling

clay. Properties of a functional prototype application are

presented and software architecture of the created tool is

analysed. Descriptions of newly developed algorithms are

included, grouped into several categories. Visualization

algorithms are used for defining properties and creating

usable modelling mass from volumetric models. On the

other hand, algorithms related to object recognition and

human computer interaction include various techniques for

depth segmentation, contour detection, finger recognition

and virtual control with gestures.

I. INTRODUCTION

Computers of various sizes and forms surround us in
everyday life and it is hard to imagine life without them,
but in some cases interaction is still somewhat unintuitive
because methods of indirect control are used. Usually, we
first have to learn how to use the controller and only then
can we perform the desired task. Notable examples
include using a mouse to control a pointer and activate
onscreen actions or using gamepads or joysticks to control
the environment with different buttons and sticks. Rapid
development of new and interesting technologies related
to human-computer interactions encouraged us to research
and develop a novel interaction model which could
improve our experience when interacting with 3D objects
in a computer generated world. The key motivation behind
technologies which use direct manipulation is not only to
naturally represent human actions, but also to promote the
notion of people performing tasks themselves, and not
through some intermediary, like a computer. Problem with
unnatural controls is especially apparent when doing 3D
modelling since usually 2D controllers are used for
manipulating objects in 3D world. One of the possible
solutions for performing these tasks in a more natural way
will be presented in this paper. Final goal is to have a
functional prototype which would be more like a real life
experience, for instance, as you would do clay modelling.
Therefore, suitable hardware for direct 3D control has to
be found and accompanying software support has to be
developed.

In the last couple of years situation with direct control
in consumer devices is getting better because smartphones

and tablets became widely available and the main method
of interaction is via touchscreen surfaces. Touch interfaces
allowed users to use movements from real life (like
translations) to be directly mapped to corresponding
actions for onscreen elements. There are some programs
like Autodesk 123D Sculpt on iOS which use this kind of
interaction but unfortunately, with current technology,
there is no depth information so operations like extruding
or making holes in the model feel unnatural and don’t
provide good feedback. Reconstruction of depth
information can be somewhat alleviated by adding
gyroscopes and accelerometers which provide limited 3D
movement recognition. One of the best examples of such
controller is Nintendo Wiimote because of its high
precision, wide availability, user friendliness and
popularity. Drawback is that the controller has to be held
in a user’s hand which means that fingers can’t be used for
modelling with a fine level of detail [1, 2]. Also, our goal
is to provide a truly natural user interface without any
additional devices that would be a burden to a user.

An alternative approach is offered by Microsoft with
Kinect where a user’s own body acts as a controller. The
advantage in this case is the ability to use the full 3D
range of movement “without” constraints1 and have free
hands to interact with the virtual world in a natural way,
and that was one of the initial prerequisites. Another
device with similar characteristics, which could be also
suited for the 3D modelling methods described here, is
Leap Motion Controller. Since the mode of operation and
detection is similar compared to Kinect, it should be
relatively easy to adapt the developed prototype for use
with Leap.

This paper is divided into six sections. Section 2
investigates related work where relationship with our
prototype is based on similar ideas or a similar controller
was used. Section 3 consists of several subsections where
technical implementation details of used algorithms are
described. In section 4, both performance and functional
results are presented and discussed. Section 5 provides
insight into possible future development of the prototype
and finally, section 6 concludes the paper.

II. RELATED WORK

During the development of our prototype, we focused
our research on a combination of computer modelling and

1 There are still some constraints like usable sensor range or speed with

which the user moves the hands.

334 MIPRO 2015/DC VIS

mailto:mario.volarevic@gmail.com
mailto:petar.mrazovic@gmail.com
mailto:zeljka.mihajlovic@fer.hr

motion gesture interfaces. Our proposed 3D direct
interaction modelling system was significantly inspired by
the work of Cho et al. [3] presented in the paper under the
title “Turn: A Virtual Pottery by Real Spinning Wheel”
and later expanded journal article [4]. Cho proposes a
digital pottery system that successfully reflects real-world
gestures to their virtual counterparts. The study focuses on
the specific aspect of clay modelling where the freedom of
movement and possible creations are limited by a
spinning-wheel modelling technique. On the other hand,
the interaction model proposed in our paper tries to
implement virtual freeform modelling and object
manipulation without spatial restrictions or any predefined
movements.

In the paper “Gesture Interface for 3D CAD Modelling
using Kinect”, Dave et al. [5] successfully bring the
intuitiveness of motion gestures to a CAD environment
using Kinect in combination with constructive solid
geometry and deformations, which produces results
similar to traditional clay modelling. However, the
restriction of the proposed creative solution is that Kinect
could be only used to control tools which are already
present in standard CAD programs. Using their prototype
as an inspiration, we tried to remove any kind of
restriction that could be a potential obstacle in providing a
real life experience of freeform modelling in its true sense.
Oliver Kreylos [1,2] also created modelling prototypes
with motion input devices, but these prototypes were
using motion controllers like Razer Hydra and Wiimote.
Oliver’s presented work did not try to achieve direct
interaction via natural user interfaces, but instead, it
utilized benefits of motion controllers to develop highly
accurate and usable modelling system. The evaluated
results are very impressive, and therefore present great
challenges to be overcome, compared to our modelling
system with less accurate, object recognition based,
methods, i.e. without motion controllers.

Finger recognition techniques used in this paper were
partially based on the algorithms described by Daniel
James Ryan [6] in his thesis. Although it was possible to
directly use the algorithms as they were described in his
thesis, we decided to adapt and optimize recognition
algorithms to better accommodate our requirements where
main reasons for modifications were strict performance
requirements.

III. PROPOSED SOLUTION

Our solution can be divided into several distinct
components which, when combined, achieve the final goal
of having a real-time system which allows completely
freeform 3D modelling that also imitates real life clay
modelling behaviour. Basic components of the proposed
solution are representation of the virtual clay, the finger
recognition system and the visualization and interaction
framework.

A. Virtual clay

The first component of the proposed solution defines
the properties of the virtual modelling clay compound. An
approach based on voxels was chosen because while
analysing different alternatives for mesh representation

this seemed like the most natural solution when dealing
with multiple simultaneous extrusions and intrusions. The
marching cubes algorithm [7] was used to render the
volumetric model, but in a GPU accelerated variant, to
make the prototype sufficiently fast to be executed in real-
time. GPU acceleration could have been achieved using
some GPGPU APIs, like OpenCL or CUDA, but since our
goal was also to provide support for older computers, a
more compatible approach using shaders was chosen. The
method used for GPU acceleration of marching cubes was
based on the guidelines from the NVidia’s GPU Gems
article [8]. The main idea is to load the model in a 3D
texture and then use GPU shaders to process all cubes
simultaneously. A version with multiple shader passes
was used, which enabled moving as much computations
as possible from the geometry shader to the vertex shader.
Reducing the workload in the geometry shader was
required because that shader is extremely slow compared
to other shaders.

Two passes were used, where coordinates of the
corners of the voxel were the initial input and rendered
polygons were the final output. The first pass in the vertex
shader calculates positions of the voxels and their polygon
configurations. Voxel positions and polygon
configurations are then sent to the geometry shader where
empty voxel configurations are rejected and simple
markers for relative positions of triangle vertices are
generated. Up to five markers are generated since five is
the maximum number of polygons per voxel. Markers are
then used in the vertex shader of the second pass where
real 3D world space polygons coordinates are calculated,
as well as normals. All of these previous steps led to an
optimization which improved performance because it
reduced the workload on geometry shader. The shader just
had to stream out newly generated vertices and did not
have to calculate anything. Finally, pixel shader is used to
calculate lightning and render the model with proper
colours.

B. Finger recognition

The second component in the developed system is
related to finger recognition and it is based on Microsoft
Kinect combined with algorithms for detecting and
tracking body and various joints. The official Kinect API
provides support for obtaining 3D coordinates of major
joints so hand positions could be easily found, but for
coordinates of individual fingers custom segmentation and
recognition algorithms had to be developed and this
process can be divided into several stages. In the first
stage Kinect API is used to roughly detect the centre of
the hand, and then, we propose algorithm based on the
coordinates of the detected centre hand points. The image
around the detected points is segmented by depth and
hand contours are extracted. Segmentation was based on
the assumption that hands are always in front of the body
so it could be performed more easily.

Since the obtained contour is saved in a 2D field, it has
to be converted to a 1D aligned array so it could be used
with a k-curvature algorithm that is used to detect
fingertips. Conversion was done with a custom algorithm
which collects neighbouring contour points using circular
search pattern where starting search position for the next

MIPRO 2015/DC VIS 335

Figure 1. Execution of the contour detecting algorithm. Arrows show

how the algorithm advanced while searching for the contour. Black
arrows point to rejected background pixels and red arrows show the

direction of contour pixels.

Figure 2. Simplified representation of the k-curvature algorithm. Fingertips are detected based on the angle between three points separated by factor k.

Valleys as false positives are ignored because their centroid isn't located inside a finger

point depends on the positions of the current and
previously found points. Figure 1 shows a simplified
example of the contour-finding algorithm. In the extracted
contour, k-curvature calculates the fingertip positions by
taking three points from the array separated by factor k.
Curvature and centroid calculations performed on the
selected three points are used as features for detection of
fingertips, as seen on Figure 2. The proposed algorithm
works with the assumption that hands are mostly curved
smoothly compared to the fingers, and centroid
calculation is used to distinguish fingertips from valleys
between fingers because these are the only places with
sharp angles.

After finger positions are calculated, they have to be
converted to Kinect’s projection space coordinates so they
are comparable with real world dimensions. Coordinate
conversion was done using methods from Kinect API.
After the final feature positions have been obtained, they
were transferred to the interaction system where they were
processed and converted into gestures.

C. Interaction system

Finally, there is a visualization step and interaction
system that connects the other two, previously described,
components and provides an input/output interface for the
user. It is implemented using SharpDX Toolkit API,
which is based on DirectX 11 and can be considered as an
unofficial successor to Microsoft XNA Framework.
SharpDX is currently the fastest managed DirectX APIs
and is just 1.5x times slower than native code. It also
forms a basis for many graphics engines, of which
MonoGame is the most famous one.

Primary output is visual and is represented by a
window where volumetric model with its bounding box is
displayed. In the main window, there is also an abstract
model which uses simple spheres to represent hands and
fingers. Also, to ease the positioning in front of Kinect,
because of the limited range and viewport, an additional
sub-window is displayed, which shows depth and finger
recognition data.

Hand gestures are used as primary input and were
designed to be as intuitive as possible, but it still takes
some time to get used to controls since there is no force
feedback. Gestures are defined in the following way: if
hands are not touching the model, it is possible to adjust
the view by closing them (like grabbing an object) and
then move, rotate and zoom it, and if they are inside the
model or touching it, virtual clay is either added or
removed on coordinates calculated based on the position
of the fingertips. Some possible manipulations while using
the program can be seen in the images in Figure 3.
Additionally, keyboard controls can also be used for view
manipulation, as a backup for cases when Kinect isn’t
connected or stops functioning properly due to bad
lighting.

336 MIPRO 2015/DC VIS

Figure 3. Several images of a working program where various intrusions, extrusions and view manipulations on a model can be observed

IV. RESULTS

The developed prototype application showed that
results are promising, both considering performance and
functionality. Even on relatively underpowered hardware,
represented by Configuration 1, compared to other listed
configurations, it is possible to track the fingers and render
the model with reasonable quality in real-time with all,
initially planned, features enabled. There were several
hardware configurations on which this program was tested
to show its scalability and also good compatibility,
considering the variety of the used components. Table 1
lists relevant parts of the specifications for each of the
configurations. Since the host part of the program is
single-threaded and the main computation, which is multi-
threaded, is executed on the graphics card, turbo
frequencies will be listed for the CPUs, and the number of
cores with their frequencies for the GPUs, so scaling can
be more easily evaluated.

Performance results were measured on a cubic model
with Kinect connected and finger recognition turned on.
An example of the model and the pose used for evaluation
are shown in Figure 4. Samples were taken for several
resolutions to show which cases are usable in practice for
different configurations and how the algorithm scales
depending on the complexity. A numerical representation
of the results and used resolutions can be seen in Table 2.
In Figure 5, which shows graphical representation of the
results, it can be seen that drawing speed, measured in
frames per second, scales as expected depending on the

GPU architecture and considering the small differences
between CPU performances it can be concluded that this
prototype is GPU bound.

While measuring performance results where Kinect
was active were not much different than results with
Kinect inactive. There was a slight performance hit, but it
was observable only on smaller resolutions, which means
that image processing for Kinect took at most 5-10 ms of
GPU time. Memory usage was also observed in both cases
and results showed that when Kinect is not connected,
each time when model resolution is changed, it steadily
increases from 50 MB to 320 MB, but when garbage
collection activates, after all assets have been loaded,
transferred to GPU and not needed on CPU side anymore,
it drops to around 60 MB. With Kinect connected,
memory usage is constant and floats around 200 MB, even
after garbage collection has activated.

Functionality-wise, gestures and model manipulations
are working well while Kinect detects user joints
correctly, but quite often it does not. One of the cases
when Kinect does not detect joints at all is when users
leave the Kinect detection range. The detection range is
limited to distances between 0.8–3.5 m. This usually
happens when moving hands closer to Kinect to change
farther parts of the model and it could be avoided if users
would not stand too close to Kinect, but in that case
another problem arises because Kinect’s resolution is not
high enough and the algorithm which detects fingers does
not work well anymore. In our case, experiments showed

TABLE I. HARDWARE CONFIGURATIONS USED FOR TESTING

 Configuration 1 Configuration 2 Configuration 3

CPU Core2Duo T7500, 2.4 GHz Core i5-430M, 2.53 GHz Core i7-3630QM, 3.4 GHz

GPU Radeon HD 3650m, 120x600 MHz Radeon HD 5650m, 400x550 MHz Quadro K2000M, 384x750 MHz

RAM 4 GB DDR2, 800 MHz 4 GB DDR3, 1066 MHz 8 GB DDR3, 1600 MHz

OS Win8.1 x64 Win8.1 x64 Win7 x64

MIPRO 2015/DC VIS 337

Figure 4. Example of the used benchmark scenario where simple cube

was loaded while finger recognition was active

0

100

200

300

400

500

600

700

50 100 150 200 250

R
e

n
d

e
ri

n
g

sp
e

e
d

 (
FP

S)

Cube length (N vertices)

Configuration 1 Configuration 2 Configuration 3

Figure 5. Graphical representation of the benchmark results

that the best distance is if the user is positioned at around
1.2m. Another case is when Kinect confuses other parts of
environment or other joints as hands (usually when a user
moves too fast) in which case wrong image fragment is
used when trying to detect fingers. In general, most
problems happen because Kinect does not have high
enough temporal and spatial resolution and all of these
problems should disappear in future implementations
since use of other controllers is already planned.

Since there are no directly comparable products on the
market which offer gesture based modelling, we
subjectively evaluated the usability and satisfaction of
users after using our prototype application. Although our
proposed solution, in its current state, lacks the precision
of the professional 3D modelling tools, feedback collected
from the users proves that the concept of intuitive,
computer based, 3D modelling is feasible. Simplicity and
ease of use of the developed prototype application became
apparent when users without any modelling experience
managed to quickly figure out the gestures and started
modifying the preloaded model.

V. FUTURE WORK

As an interesting future research topic and potential
improvement, we consider changing the controller. Since
Kinect was designed to recognize larger body parts,
competitive devices with finer recognition capabilities
would be a better choice for this application, such as Leap
Motion Controller or the new Kinect v2. Another
interesting feature, which would improve immersion and
usability, would be an interactive perspective projection
transformation based on the user’s head position which is
easily obtainable through Kinect API. The idea is that the
virtual view responds to the user’s head movement, and
we believe this feature would positively affect the
experience of the virtual 3D world. There is also high
probability that the mentioned feature would be also
implemented with a virtual headset, such as Oculus Rift,
since it has higher availability compared to other similar
devices.

There is also some room for improvement regarding
the application’s performance. One of the optimizations is
related to eliminating the redundant vertices created by the
marching cubes algorithm since the edges on the
neighbouring cubes share the same vertices. The idea
would be to create only a single instance of each vertex
and then use indexing to describe where each vertex is
located. Another useful optimization would be partial
dynamic model loading, especially when dealing with
high resolution volume models. Since the complexity of
the algorithm is high, this feature could considerably

TABLE II. PERFORMANCE DEPENDING ON THE MODEL SIZE

Cube length Configuration 1 Configuration 2 Configuration 3

(N vertices) (FPS)

50 127 358 670

100 24 57 124

150 7 20 42

200 4 8 18

250 2 4 10

338 MIPRO 2015/DC VIS

affect the performance of the program when used on large
models. An implementation would probably be similar to
the culling technique where a model could be divided into
smaller regions and when comparing depths those that are
further from the camera would not be processed.

VI. CONCLUSION

Natural user interface technologies can be more than
just a platform for gaming and entertainment because they
possess a great potential in revolutionizing human-
machine interactions. In these types of interface designs
3D motion sensing input devices like Microsoft Kinect
have proven to be a suitable and valuable hardware
choice. However, the effectiveness of the hardware
heavily depends on the accompanying software which still
does not follow any generally accepted interaction model.
This article proposes a solution to this problem in the form
of a functional prototype that tries to imitate a real life
experience of traditional human skills such as clay
modelling.

A functional prototype presented here forms the basis
for the future versions with an improved interaction
system, which could provide tremendous opportunities for
addressing various problems, and also opens new frontiers
and new challenges in user interaction with virtual objects.

REFERENCES

All web links have been tested and functional on
February 8, 2015.

[1] Oliver Kreylos' Homepage, Wiimote Hacking.

http://idav.ucdavis.edu/~okreylos/ResDev/Wiimote/index.html
(posted October 2007)

[2] A developer's perspective on immersive 3D computer graphics.
Virtual clay modeling with 3D input devices. http://doc-
ok.org/?p=493 (posted March 2013)

[3] Cho, S., Heo, Y., & Bang, H. (2012, August). Turn: a virtual
pottery by real spinning wheel. In ACM SIGGRAPH 2012 Posters
(p. 11). ACM.

[4] Cho, S., Baek, D., Baek, S. Y., Lee, K., & Bang, H. (2014). Three-
dimensional Volume Drawing on a Potter’s Wheel. IEEE
Computer Graphics and Applications, (1), 1.

[5] Dave, D., Chowriappa, A., & Kesavadas, T. (2013). Gesture
interface for 3d cad modeling using kinect. Computer-Aided
Design and Applications, 10(4), 663-669.

[6] Ryan, D. J. (2012). Finger and gesture recognition with microsoft
kinect.
http://brage.bibsys.no/xmlui/bitstream/handle/11250/181783/Ryan
%2c%20Daniel%20James.pdf?sequence=1

[7] Lorensen, W. E., & Cline, H. E. (1987, August). Marching cubes:
A high resolution 3D surface construction algorithm. In ACM
siggraph computer graphics (Vol. 21, No. 4, pp. 163-169). ACM.

[8] Geiss, R. Generating Complex Procedural Terrains Using the
GPU. In GPU Gems 3; Nguyuen, H., Ed.; Addison Wesley
Professional, USA, 2008; pp 7-39.

MIPRO 2015/DC VIS 339

http://idav.ucdavis.edu/~okreylos/ResDev/Wiimote/index.html
http://doc-ok.org/?p=493
http://doc-ok.org/?p=493
http://brage.bibsys.no/xmlui/bitstream/handle/11250/181783/Ryan%2c%20Daniel%20James.pdf?sequence=1
http://brage.bibsys.no/xmlui/bitstream/handle/11250/181783/Ryan%2c%20Daniel%20James.pdf?sequence=1

