
Generating Virtual Guitar Strings Using Scripts
Luka Kunić and Željka Mihajlović

University of Zagreb, Faculty of Electrical Engineering and Computing,
Zagreb, Croatia

luka.kunic@fer.hr, zeljka.mihajlovic@fer.hr

Abstract—Artists who create 3D models usually rely on the
traditional method of direct mesh manipulation using basic
operations such as translation, rotation, scaling, and extrusion. In
some cases, creating a model in this manner requires performing
many repetitive and precise actions, which makes a fully manual
approach suboptimal. This paper explores an alternative concept
of 3D modeling using scripts, which aims to automate parts of
the modeling process.

Existing procedural algorithms use scripts to generate ob-
jects based on mathematical models (e.g. generating realistic
terrains using fractals), or to build complex structures using
simple template models (model synthesis). Unlike those methods,
which rely on stochastic behavior to generate pseudo-randomized
shapes, the goal of this method is to write scripts that generate
parametric objects which would be either difficult or time-
consuming to model by hand. The example described in this
paper is a script that generates animated strings for musical
instruments. Although the basic shape of a string is quite simple,
animating string vibrations and bending can be quite a tedious
task, especially because of the various shapes and sizes of string
instruments.

I. INTRODUCTION

With the advancements in computer graphics, 3D modeling
has become a major part of many industries. Artists who
create 3D models most commonly use dedicated software
solutions that include a 3D viewport, which allows them to
directly modify the mesh data using basic operations such
as translation, rotation, scaling and extrusion. While this
traditional method can be used to produce very good results,
those results are often difficult to achieve due to large amounts
of manual work required. This is especially true for large-scale
environments such as terrains or entire cities used in movie
and video game industries, which are practically impossible
to generate manually in a reasonable time frame. However,
many tasks involved in this process can be entirely or at least
partially automated, allowing for a faster and less repetitive
workflow.

Automating a task can be as simple as creating a custom tool
that performs some commonly used or repetitive actions. This
allows users to focus on the creative aspect of modeling instead
of being hindered by the lack of software features. On the other
hand, scripts can be used to generate complex objects based
on a set of parameters and constraints, which can be given by
the user or determined by the choice of the algorithm being
used. Obviously, these scripts must be tailored to each specific
problem, which brings into question whether the gains of using
a script justify the time spent on development. However, if
a task can be generalized or parametrized, writing a script
to perform that task can greatly reduce time spent working
on different areas of the model. Furthermore, variations of
algorithms developed for such generic tasks can be used for
solving various modeling problems in different domains.

This paper describes a method for automatically generating
and animating 3D models of musical strings, which will be
used for creating interactive virtual string instruments. Existing
procedural modeling techniques, briefly covered in Section II,
mostly rely on some form of stochastic behavior in order to
achieve the final shape of the generated model. We present
a more deterministic approach, in a sense that running the
algorithm repeatedly with the same set of parameters will
always result in the same model. The primary gain of this
method is not in the model creation, since the actual mesh
is quite simple, but rather in automatically adding complex
behavior to the model through morphing and animations.
Another significant advantage over a manual process is the
ability to easily generate arrays of objects using various
parameters. This is quite important for rapid prototyping,
where the user iteratively creates variations of the model until
they are satisfied with the result. Further discussion about the
motivation for this method can be found in Section III.

The string generation process, described in detail in Sec-
tion IV, includes: creating the string mesh based on a set
of input parameters, adding vertex animations to the mesh
in order to simulate string bending, adding and attaching an
armature to the mesh, and animating the string vibrations. The
results are presented in Section V.

II. RELATED WORK

The following subsections present several valuable methods
for automatically generating 3D content: procedural modeling,
template-based methods and interactive simulations.

A. Procedural modeling

Procedural techniques are algorithms that are used to deter-
mine the characteristics of an object or effect [3]. An algorithm
is implemented as a procedure which contains an abstract
representation of the desired features for the output model.
Executing the procedure calculates the features based on input
parameters and constraints set by the user and generates a
finished model which satisfies those constraints. This allows
a high level of control and flexibility. The procedures often
incorporate a form of stochastic behavior in order to introduce
a level of randomization into the output models. This is useful
when modeling objects which are represented in nature, so that
the finished product appears more organic and realistic.

Procedural modeling techniques have been used in computer
graphics since the early beginnings of the field. At first, pro-
cedures were used to generate images and textures resembling
materials found in nature, as it was found that many natural
shapes follow distinct patterns which could be described by
mathematical models. A prominent example of such textures
are fractals, introduced by Mandelbrot in 1982 [7]. Fractals can
be used to create very natural looking objects and structures

264 MIPRO 2017/DC VIS



because of their self-similarity property, which is why they are
widely used in computer graphics.

A different approach to procedural modeling uses formal
languages and grammars to describe the output model. One
such model was introduced by Lindenmayer who used his
L-systems [6] to formally describe the growth of plants.
The system consists of an alphabet of symbols and set of
production rules, which are used to generate strings of symbols
that define a plant. This technique is often used in computer
graphics because of its high versatility, and because it can be
easily extended with additional functionality [8], [13], [14].

Procedural techniques are also commonly used to create and
animate natural volumetric phenomena that cannot realistically
be modeled with mesh geometry, such as gasses, clouds or
fire [3], [5]. Attributes like color and transparency can be
controlled using procedures that simulate air turbulence and
noise in the space occupied by the model volume. Similar
techniques can also be applied to particle systems which
are also guided algorithmically and can be affected by some
external influence.

B. Model synthesis and template-based modeling

Certain objects cannot entirely be described using math-
ematical models. This applies to most man-made structures
such as buildings or machines that are often found in 3D
environments. For example, when creating a large virtual city,
it is important to include enough diversity so that the city
does not seem artificial, but at the same time most buildings
should have similar features so that they visually fit together.
One of the solutions would be template-based modeling, a set
of techniques that take simple objects as input and use the
objects’ distinct features to generate various other objects that
incorporate those features.

One such algorithm named model synthesis is presented
by Merell and Manocha [10]. Their algorithm takes an ob-
ject and uses it as a template to create complex structures.
For a given point in space for the model being generated,
their algorithm looks at the surrounding area of the point
and calculates the possible geometry samples which can be
generated at that point. Their algorithm also takes into account
various constraints: predetermined dimensions of an object,
ratios between dimensions, connectivity constraints, and the
general macroscopic shape and scale of the output model.
Furthermore, this algorithm can take multiple objects as input,
which results in output models with a high degree of variety.

A template-based approach has also been used by Zhou et
al. for generating terrain using their terrain synthesis algorithm
[18]. As input for their algorithm, they used height maps
of real-world terrains and mountain ranges, combined with
user-made sketches. The algorithm would identify important
features from the terrain height map and the sketch. It would
use the sketch to determine the general shape for the output
model and would apply the extracted terrain features from
the height map to that general shape. The result, as shown in
Fig. 1, would be a terrain that resembles the real terrain used
for the height map, but has the shape of the user-made sketch.

C. Interactive simulations

Simulating how virtual objects would behave in the physical
world is a common task. Typical examples include cloth sim-
ulations [1], [17], simulating collisions between objects, sim-
ulating fluids [12] and force fields, determining how objects

Fig. 1. The result of the terrain synthesis algorithm. On the right is the
finished terrain which was generated based on the height map of Mount
Jackson in Colorado, USA (center left) and a user defined sketch (upper left).
The combined height map generated by the algorithm is shown in the lower
left corner.

interact with natural forces like wind, etc. These types of simu-
lations are often used for animating objects in video games and
other virtual environments. Simulations used for animating the
objects typically have many parameters and obey certain laws
of physics which require performing complex calculations.
These calculations can either be done in real-time, which often
sacrifices accuracy for computation performance, or they can
be precomputed, in which case the calculated simulation will
not be able to adapt to the surrounding objects in the virtual
environment during execution.

III. MOTIVATION

Throughout history, music has been a prevalent source
of entertainment in our society. Professional musicians have
always been praised for their high technical abilities which
they had developed over years of dedication and daily practice.
Some of those musicians were also engineers, so they started
using their expertise in both areas to create robotic instruments
like self-playing pianos, guitars, and other instruments [2],
[15], [16]. In the modern era of technology, with continuous
advancements in the field of computer graphics, it is natural
to explore the possibilities of placing musical instruments into
virtual environments.

In order to create a self-playing virtual instrument, the 3D
model of the instrument must first be created and animated.
In the case of a string instrument like a guitar, this includes
modeling the body of the instrument, creating and animating
the strings, and adding fretting and picking mechanisms which
will be used to press the strings onto the fretboard and to pick
the strings as notes are played.

The most challenging part of this process is modeling and
animating the strings. This task can be approached in several
ways. The animations could be done manually, but that would
require an immense amount of work so it is better to find an
automated alternative. Because the strings obey certain laws
of physics while vibrating, their behavior can be simulated
at runtime. This approach offers most flexibility and most
realistic behavior, but it can be computationally demanding,
which might decrease runtime performance. A good com-
promise would be to precompute a set of animations and
store them, so that they can be played back as required.
This preserves the realism gained by the simulation without

MIPRO 2017/DC VIS 265



sacrificing performance. The main idea is to write a script that
will generate the mesh of the string, attach an armature to the
mesh and automatically compute the animation keyframes and
morphing data that will be used in the final animations.

Reusability and the drastic reduction of time required for
modeling are the primary advantages of using scripts as part
of the modeling process. The main aspect of reusability is the
use of input parameters in order to define the characteristics of
the generated model. In the case of a guitar string, parameters
are used to define string length, diameter, mesh complexity
(number of vertices), and the number of frets.

IV. GENERATING MUSICAL STRINGS

This section describes the StringGenerator script. The script
was developed as a Blender add-on using Blender’s Python
scripting API.

A. Blender scripting API

Blender is a popular open-source 3D software suite that
provides tools for the entire 3D model creation pipeline –
modeling, texturing, animation, rendering, compositing and
sequence editing. Due to its open-source nature and powerful
Python scripting API [19], it is continually being improved
by members of the community, both by revising features of
the core system and by developing add-ons which add new
functionality.

Blender has an integrated Python console that allows users
to write and execute scripts directly in the viewport. This is
useful for testing and debugging, but also for writing short
commands that can easily accelerate the workflow. The API
provides references to all objects in the scene, as well as
functions for performing operations on those objects. This can
be used to perform the same operation on multiple objects in
the scene at once, instead of repeating the operation manually
for each object. Python scripting in Blender can also be used
for generating and modifying meshes, adding textures and
animations, implementing new tools and operations, as well as
automating tasks involved in other steps of the model creation
pipeline, such as rendering or compositing.

Add-ons in Blender are packaged pieces of Python code
that can be loaded into Blender in order to seamlessly include
additional functionality. Of course, while users can achieve
the same functionality by executing the script directly from the
integrated console, add-ons provide the convenience of having
the functions easily accessible from the UI menus, which
greatly increases usability. Also, they can easily be distributed
and shared among users, which facilitates collaboration.

B. Planning and design decisions

The model guitar strings should be animated, which refers
to animating string vibrations when a string is plucked, and
bending the string towards a fret depending on where it is
pressed. It is immediately clear how difficult it would be to
create these animations by hand because of the complexity of
realistic string vibration and the number of frets on the guitar,
so the only viable alternative would be to automate these tasks.
This will be done by implementing a script which (1) generates
a string based on given parameters such as length and diameter,
(2) creates shape keys1 which are used for bending the string,

1Shape keys are used to deform the mesh into a new shape without the need
for an armature. A shape key saves vertex positions for a deformed mesh and
allows interpolation between the initial vertex positions and the deformation.

Fig. 2. The custom operation for generating animated strings incorporated
into the Blender’s Add mesh menu. Clicking the menu item calls the custom
animated string add function which generates and animates a string with the
given parameters.

and (3) animates the string vibration by calculating vertex
positions for each keyframe. The script will be packaged as a
Blender add-on.

The fretboard for the guitar can also be generated using
a script because exact fret positions depend on string length
and are determined using a mathematical formula. The same
formula is already used for calculating the string bending
shape keys, so a part of the code can be reused.

C. Generating the string mesh

The StringGenerator add-on provides a new tool for
generating models of strings for musical instruments. Each
generated string consists of two components: the string mesh
that defines the visible geometry of the string, and the armature
which is used for animating string vibration.

As shown in Fig. 2, the tool allows users to modify several
properties of the generated string: length, gauge, fret count,
vertex count and segment count. String length and gauge are
both given in inches, and fret count is used for generating the
shape keys required for bending the string. If the fret count is
set to zero, only string vibration is animated and no shape keys
are created. Vertex count determines the number of vertices in
the cross-section of the string and segment count determines
the number of segments along the length of the string. These
two properties are used to control the complexity of the model.
Higher values give better quality and smoother animation
which is suited for high-detail offline rendering, but cause
slower rendering times due to the increased polygon count.
On the other hand, lower values give fast rendering times
required for real-time execution, at the expense of reduced
quality. However, the reduction in mesh quality is not very
noticable, even when the model is being viewed from close
distance, because the string shape itself is very simple and
proper shading can provide the necessary detail required for a
more realistic appearance.

The mesh for the string is generated in three phases. The
first phase creates string segments based on the given param-
eters. Each segment is a closed loop of vertices connected to
the neighboring segments by 4-sided faces, forming a cylinder.
The segment count and string length properties are used to
determine the distance between neighboring segments. The
second phase is used to create vertex groups for each of
the segments. Vertex groups are simple collections of vertex
indices that will be used to easily map vertices to their
corresponding bones in the armature.

266 MIPRO 2017/DC VIS



Fig. 3. Repositioning the segments si using shape keys. Figure (a) shows
the initial setup where the segments are equally distributed along the length
of the string. When a fret needs to be pressed, the segments are translated
along the string so that s0 lines up with the fret (b), and when the string is
pressed the segments are translated towards the fretboard (c).

The third phase of mesh creation is creating the shape
keys. The goal is to have a robust system for animating string
bending on each fret. In order to achieve this goal, shape keys
are used to reposition the segments based on the fret at which
the string is bent. The idea is illustrated in Fig. 3. Segments ss
and se indicate the fixed endpoints of the string and will not
be affected by the shape keys. The other segments will be used
for animating the string bending and vibration and therefore
need to be repositioned for each fret. A shape key for each
fret translates the segments along the length of the string so
that the initial segment s0 lines up with the corresponding
fret. All other segments are equally distributed between s0
and se. Bending the string towards a fret is controlled by one
additional shape key which can be used in combination with
any of the other shape keys. It bends the string by placing s0
directly on top of the fret and distributing the other segments
to form a straight line from s0 to se.

D. Determining fret positions

A guitar string produces a note of a certain frequency
depending on the length of the string and the string tension.
Tension is used to set the root note of a string, which is the note
produced by playing an open string without pressing down on
any fret. This means that the only way to play a different note
on the same string is to shorten the string. The chromatic scale
consists of 12 notes, so the string pressed down on the 12th
fret should produce the note that is an octave higher than the
root, which means that the string should be shortened to half
of its original length. Similar logic applies to the positions of
other frets. The exact position for the fret i is given by

di = l − l

2i/12
(1)

where di is the distance from the nut to the fret and l is the
length of the string.

This calculation can also be used to generate the fret models.
The script uses a manually modeled fret as template for
generating the entire fretboard. It calculates the position for
each fret in the fretboard, duplicates the template and places
it in the calculated position. An additional consideration when
generating frets is the neck width. In order to compensate
for the wider frets towards the head of the guitar, the neck
becomes narrower as it goes from the guitar body towards
the head in order to improve playability. This means that the
frets also need to be scaled to the width of the neck at the

Fig. 4. The finished fretboard for the model. A script was used to calculate
the fret positions and to scale the frets to match the width of the neck.

calculated position. The fretboard with the generated frets is
shown in Fig. 4.

E. Animating the string

The second component created by the add-on is the armature
used for animating the string. The armature consists of a set
of bones, each of which is used for controlling a group of
vertices. A bone is created for each segment of the mesh, and
the vertex group containing the vertices of each segment is
attached to the corresponding bone.

String vibration is caused by a stationary wave traversing the
string, which produces a sound based on the frequency of the
wave. In order to simulate a realistic vibration, the wave needs
to be broken down into its base components, which are called
harmonics. Each harmonic of the wave can be represented by

y = A sin (ωx) (2)

where A is the amplitude of the wave, ω is the radial
frequency and x is a longitudinal position on the string. String
vibration for a single harmonic can be simulated by varying
the amplitude over time, using a sine function to control the
oscillation

y(t) = A sin (kπt) sin (ωx) (3)

where k determines the oscillation frequency. The harmonics
can then be summed up to get a more realistic result. Lastly,
dampening needs to be added so that the vibration fades over
time. This is done using the δ factor. The resulting equation
is given by

Y (t) =
N∑
i=1

yi(t) = A
N∑
i=1

sin (kiπt) sin (ωix) (4)

Yd(t) = Y (t)e−t/δ (5)

Frame rate is set to 60 frames per second to allow a more
detailed simulation. Two harmonics are used to calculate the
positions for each bone over 5 seconds (300 frames). Higher
degree harmonics are not used for this simulation because the
frame rate would need to be much higher for them to make
a significant impact on the result. Also, for simplicity, string
vibration is only animated along a single axis, which produces
very good results despite not being entirely realistic2. The final
position of each bone at the time t is given by

y(x, t) = A(sin
tπ

4
sin

x

2
+

1

4
sin

tπ

2
sinx)e−t/δ (6)

2A musitian who plays the guitar would never pick the string perfectly
vertically, so the string would also receive a horizontal vibration component.

MIPRO 2017/DC VIS 267



The second harmonic was multiplied by the factor 1/4 in
order to reduce its maximum amplitude, resulting in a more
believable animation.

Two animations are created, one for the downstroke and
one for the upstroke when picking the string, and both are
added as animation sequences to the armature. One animation
is given directly by the equation (6) and the other contains the
opposite movement, so the equation result is merely negated.
These animations can be used in combination with the shape
keys do simulate vibration when the string is pressed to a fret.
This is enabled by the fact that bones only control the vertical
movement of segments and shape keys translate the segments
along the length of the string.

F. Texturing the strings

Each of the strings was UV-unwrapped and assigned a
simple striped texture in order to mimic the look of wound3

strings. While the texture contributes to the realistic appear-
ance of the string, an issue arises when using the shape keys to
simulate bending of the textured string. Because the base mesh
of the string was UV-unwrapped, each vertex was assigned
a fixed (u, v) coordinate of the texture. When the mesh is
deformed using the shape keys, the vertices move in 3D space,
but not in texture space. This causes stretching in the texture,
which is of course unrealistic.

This issue can be solved by splitting the mesh material into
three slots and assigning the same texture to each of these
slots. One slot would contain all static vertices which form
the string endings that were added manually. The second slot
would contain the the cylinder made by the first two segments
of the string (ss and s0 in Fig. 3), and the final slot would
contain all faces of the vibrating section of the string (s0 to
se in Fig. 3). Splitting the material in this manner allows the
texture to be scaled individually for each of those sections,
in turn enabling the use of a texture even when the string
mesh is deformed by shape keys. When a shape key is used to
press a fret, the texture of the second material would be scaled
down to increase the level of detal, while the third material
would have its texture scaled up. This would preserve the
overall textured appearance of the string mesh and eliminate
undesirable stretching.

V. RESULTS

Fig. 5 shows the finished model of a 5-string bass guitar. The
strings were generated using the StringGenerator add-on, and
the frets were placed using the script described in the previous
section. The remaining components of the model were mostly
created manually in Blender.

The parameter values used for generating the strings were
based on actual values for common bass strings. For this
model, the string diameters were set to values ranging from
.040 to .130 inches, and the string length was set to 34 inches.
Since the script only generates the vibrating portion of the
string, the missing geometry on both ends – the start of the
string at the bridge of the guitar, and the string ending which
wraps around the tuning post – were modeled manually for
each string and appended to the generated models. This had no

3Wound strings consist of a round wire wrapped in a tight spiral around
either a round or hexagonal core. This type of construction allows the string
to produce a much lower pitch than regular plain strings, which allows them
to be much thinner and easier to play.

Fig. 5. The finished bass guitar model.

effect on the animation data because the generated geometry
had not been modified.

The fretboard was generated using a manually modeled
fret template, which was duplicated and placed using the
previously described script. The string length was used to
determine the exact fret positions, and each fret was scaled
vertically to match the neck width at the calculated position.

VI. FUTURE WORK

As stated in Section III, the main motivation behind making
this model was building self-playing virtual musical instru-
ments. The idea is to create a 3D model of an instrument, add
specific mechanisms that would be used to visualize playing
the instrument, such as picking and fretting fingers for string
instruments, and finally implement the required functionality
for playing a given set of notes.

The process described in this paper can easily be used to
create various models of string instruments, but in order for
those instruments to become ‘self-playing’, they need to be
programmed. This task can be accomplished using one of the
popular game development engines such as Unreal Engine [21]
or Unity [20]. These powerful tools are primarily designed for
creating 3D and 2D games, but they can also be used for devel-
oping quite complex, realistic, and interactive visualizations.

As a way to feed note data into the self-playing instrument
visualization, one could define a custom data stream that
would be interpreted and used to play the required animations
corresponding to each given note. This method would allow
fast playback and high flexibility for defining the exact way
each note should be played. However, building an entire
song in that manner would be quite time-consuming, mainly
because one would need to manually define how to play each
note. For a string instrument, this would mean defining which
left-hand finger presses which string on which fret, and which
right-hand finger picks the string. An alternative method would
be to use a common data source like a MIDI file to provide
the note data, and then perform an optimization task over the
entire song in order to determine the optimal fingering and
picking sequences to be used during playback.

Fig. 6 shows the bass model imported into Unreal Engine.
The right-hand picking mechanism consists of five mechanical
fingers whose behavior has been programmed using a state
machine. The current state of each finger is used to determine
which finger will be used to pick the next note in the sequence,
with the aim to reduce the cumulative movement of all fingers.
The left-hand fretting mechanism could have been modeled
as a human hand [4], but the note positioning optimization

268 MIPRO 2017/DC VIS



Fig. 6. The bass model with picking and fretting mechanisms imported into
Unreal Engine. The strings are colored red and blue in order to help visualize
the material change when a string is bent to a fret using a shape key.

algorithm would have to be more complex and require many
more contraints related to physical limitations of a human
hand. That is why the left hand was implemented as four
sliding fingers, each of which has five moving pins – one for
each string. The fingers slide across the fretboard and their
pins are used to press the strings, bending them at the fret
where the finger is currently positioned.

VII. CONCLUSION

The introduction of this paper mentioned several interesting
techniques that make use of scripts to generate virtual objects.
It was shown how procedural techniques can be good for gen-
erating complex, organic and natural-looking geometry, which
is not easy to achieve by manual modeling. These techiques
served as inspiration for using scripts to generate parametrized
3D models of guitar strings. A generated string includes shape
keys used for deforming the mesh when bending the string, as
well as an armature with vibration animations. Using a script
for this task provides a fast and repeatable method which can
be used for modeling various musical string instruments.

It was shown how this method can be used to easily create
strings for a 3D model of a bass guitar, and an idea has been
presented on how that model can be used to implement a self-
playing instrument visualization. These types of visualizations
can be quite useful for educational purposes, especially if the
fretting and picking mechanisms can be modeled as actual hu-
man hands performing the movements. This would open doors
for further investigation regarding visualization of optimized
fretting sequences, and automatic creation of human-playable
tablature from music sheets or structured audio formats such
as MIDI files.

REFERENCES

[1] D. Baraff, A. Witkin, Large steps in cloth simulation, ACM SIGGRAPH,
1998.

[2] R. B. Dannenberg, B. Brown, G. Zeglin, R. Lupish, McBlare: A Robotic
Bagpipe Player, Proceedings of the International Conference on New
Interfaces for Musical Expression, 2005.

[3] D.-S. Elbert, F.-K. Musgrave, D. Peachey, K. Perlin, S. Worley, Texturing
& Modeling: A Procedural Approach, 3rd ed., Morgan Kaufmann
Publishers, 2002.

[4] G. ElKoura, K. Singh, Handrix: Animating the Human Hand, Euro-
graphics/SIGGRAPH Symposium on Computer Animation, 2003.

[5] J. Kniss, S. Premoze, C. Hansen, D. Ebert, Interactive Translucent
Volume Rendering and Procedural Modeling, IEEE Visualization, 2002.

[6] A. Lindenmayer, Mathematical Models for Cellular Interaction in
Development, Journal of Theoretical Biology, 1968.

[7] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman,
1982.

[8] R. Mech, P. Prusinkiewich, Visual Models of Plants Interacting with
Their Environment, ACM SIGGRAPH, 1996.

[9] P. Merrell, Example-Based Model Synthesis, Symposium on Interactive
3D Graphics (i3D), 2007.

[10] P. Merrell, D. Manocha, Model Synthesis: A General Procedural Mod-
eling Algorithm, IEEE Transactions on Visualization and Computer
Graphics, 2010.

[11] F. K. Musgrave, C. E. Kolb, R. S. Mace, The Synthesis and Rendering
of Eroded Fractal Terrains, ACM SIGGRAPH, 1989.

[12] M. Müller, D. Charypar, M. Gross, Particle-Based Fluid Simulation For
Interactive Applications, ACM SIGGRAPH 2003.

[13] P. Müller, P. Wonka, S. Haegler, A. Ulmer, L. Van Gool, Procedural
Modeling of Buildings, ACM SIGGRAPH, 2006.

[14] Y. Parish, P. Müller, Procedural Modeling of Cities, ACM SIGGRAPH,
2001.

[15] F. A. Saunders, The Mechanical Action of Violins, Journal of Acoustic
Society of America, 1937.

[16] E. Singer, K. Larke, D. Bianciardi, LEMUR GuitarBot: MIDI Robotic
String Instrument, Proceedings of the International Conference on New
Interfaces for Musical Expression, 2003.

[17] P. Volino, N. Magnenat Thalmann, Implementing Fast Cloth Simulation
With Collision Response, Computer Graphics International, 2000.

[18] H. Zhou, J. Sun, G. Turk, J. Rehg, Terrain Synthesis from Digital
Elevation Models, IEEE Transactions on Visualization and Computer
Graphics, 2007.

[19] Blender Foundation, API documentation, built October 2nd, 2016, https:
//www.blender.org/apiblender python api 2 78 release, February 12th,
2017.

[20] Unity, About the Unity Editor, https://unity3d.com/unity/editor, February
12th, 2017.

[21] Epic Games, What is Unreal Engine 4, https://www.unrealengine.com/
what-is-unreal-engine-4, February 12th, 2017.

MIPRO 2017/DC VIS 269




