
Algorithms for procedural generation

 and display of trees

H. Nuić*, Ž. Mihajlović*

*University of Zagreb/ Faculty of Electrical Engineering and Computing, Zagreb, Croatia

hrvoje.nuic@fer.hr, zeljka.mihajlovic@fer.hr

Abstract – Main goal of this paper is to explore in which

situations should some procedural algorithm be used to

generate a tree model. Each algorithm is modified so as to be

able to generate a tree model whose shape resembles the

required model. Space colonization algorithm, algorithm

using particle flows and algorithm simulating a Lindenmayer

system are compared depending on a time needed to generate

a tree with similar complexity. The voxelization procedure of

the model and its application in this context is explained.

Method for generating a tree mesh on a graphics card using

Bézier's curves is presented.

Keywords – tree; procedural generation; space

colonization; L-system; particle flow; voxelization; Bézier

curve

I. INTRODUCTION

Modelling and animating trees for movies, computer
games and simulations are labour intensive work. Trees are
most commonly represented as static objects with minimal
interaction with its surroundings. Main reason is the sheer
complexity of organic trees. Fully grown common oak can
exceed the height of 40m and have more than 100,000
branches.

There are many commercially available tools which can
help with modelling the tree, but the process is still time-
consuming. Procedural algorithms can mitigate the time
needed to create a desired tree model.

In this paper we have compared 3 algorithms. Every
algorithm as an input gets voxelized model and as an output
produces same abstract tree data structure. This data
structure is further passed to graphics card which creates a
mesh for every branch.

Procedural algorithms to some extent try to simulate the
real growth of a tree, but as there are many unknown
variables, it is hard to capture the real world. We have
chosen to compare space colonisation algorithm, algorithm
using particle flow and algorithm simulating a
Lindenmayer system. Each one takes a different approach
to the same problem. Space colonisation simulates a
competition for space. Particle flow algorithm exploits
similarities between branching structures in trees and
trajectories of particle simulations. L-system focuses
mainly on rules at which branching happens.

II. METHOD

In this section we will present the process of
constructing a procedurally grown tree. Every algorithm is
parametrized with a desired tree-crown size and voxelized
model which we want to imitate.

Most common operation while generating a tree model
with a desired shape is a test if some point is inside the
model. While polygonal models for that operation have
linear time complexity proportional to the size of a model,
voxelized models have a constant time complexity. Main
disadvantage of using voxelized models is a loss of
precision, but with using 2563 voxels and trees having
irregular form there was no noticeable difference in a
generated tree.

Models are voxelized with a variation of an algorithm
using ray casting presented in a [1] and is described in the
next section. Since the process of voxelization didn’t take
longer than a few seconds at the start of a program, there
was no need for using a faster voxelization algorithm, like
one presented in [2].

Every tree generator produces a tree data structure as
demonstrated on a figure (1). From the perspective of a red
branch, blue branch is its child, yellow branch is its parent,
and green branch is its grandparent. Each node in a tree data
structure stores its length and relative rotation to its parent
branch. Main advantage with using abstract representation
is that it reduces data that needs to be transferred to graphics
card.

Abstract tree structure is converted on a graphics card
to a mesh which is further rendered in a OpenGL graphics
pipeline. This process is described in section VIII.

Figure 1. Rendered tree and its abstract tree structure

MIPRO 2019/DC 247

III. VOXELIZATION

To generate a voxelized model, we test if a centre point
of each voxel is inside a model. Point is inside a model if
the ray casted from the point intersects odd number of
polygons, or in our case triangles. The ray we cast is always
parallel to the Z-axis. That way, in the same time, we can
test multiple voxels in the same column if they are inside a
model. To speed up the algorithm, we project all polygons
on a XY-plane and test which polygons affect which
columns.

Barycentric coordinates 𝑎1, 𝑎2, 𝑎3 are defined by the
linear equations (1) described in a [3] where 𝑋𝑖 are vertices
of a triangle and 𝑋 is a position of a point. Column of
voxels is intersecting a triangle if its barycentric
coordinates satisfy 0 ≤ 𝑎𝑖 ≤ 1, 𝑖 = 1,… ,3 condition. List
of all affecting polygons is created for each column. Those
lists are sorted by the height at which polygons intersect the
column. That way, it is faster to count the number of
intersected polygons for each voxel in a column.

IV. SPACE COLONISATION ALGORITHM

Space colonisation algorithm has been introduced in a
[4]. It was further expanded to 3D in [5] and used to
construct a model of a tree. Algorithm has potential for
other applications in different fields as presented in the [6]
for creating a road network of a town and in the [7] for
simulation of crowd dynamics. Algorithm is separated in
two stages. Firstly, the model is filled with attraction points,
then the algorithm creating branches is iteratively executed.
Space defined by voxelized model is filled with attraction
points. We have implemented linear distribution of
attraction points in a voxelized model, but it is possible for
example to arrange attraction points so that they are near
the surface of a desired model. Resulting model would then
have more branches near the surface.

We have implemented a variation of the space
colonization algorithm using octree data structure
presented in a [8], which has a complexity of an 𝑂(𝑚 ∗ 𝑛 ∗
log(𝑝)), where 𝑛 is number of iterations, 𝑚 is number of
finished branches and 𝑝 is number of attraction points.

Every iteration consists of finding all attraction points
close to every generated branch. Those attraction points are
then written in a list for that branch. At the end of an
iteration, new branches are created with the formula (2),
where 𝑛⃗ is a vector representing a direction of a new
branch, 𝑠 is position of a current attraction point, 𝑣 is the
end position of current branch and 𝑆 is a set of all attraction
points affecting current branch.

 Length of a branch directly affects the complexity of a
generated tree, because smaller branches need more
iterations to cross the same distance. Length of a new
branch is calculated according to formula (3). 𝑙𝑚𝑎𝑥and 𝑙𝑚𝑖𝑛
represent maximum and minimum desired length of a
branch in a tree. Depth of a branch is the number of edges
between a root branch and current branch in the abstract
tree structure and is represented by variable 𝑑𝑒𝑝𝑡ℎ.

𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 = 𝑋

(1)
𝑎1 + 𝑎2 + 𝑎3 = 1

𝑛⃗ = ∑
𝑠 − 𝑣

||𝑠 − 𝑣||

𝑆

𝑠

 (2)

𝑙𝑏 = 𝑙𝑚𝑖𝑛 +
𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛

1 + 𝑒𝑑𝑒𝑝𝑡ℎ−10
 (3)

Figure 3. Stanford dragon created with space
colonisation algorithm

Figure 2. Voxelized models of the Stanford
dragon and the Utah teapot

248 MIPRO 2019/DC

V. ALGORITHM USING PARTICLE FLOW

We have implemented a variation of algorithm
presented in [9]. It has been used in a [10] to generate trees
that are imitating the branching structure from a photograph
of a tree. By using image recognition and the help of human
it is possible to generate a vector field which navigates
particles so that their trajectories imitate a tree. Our
implementation does not use vector fields and only forces
that affect particles are global gravitational force and
attraction forces between particles.

 Algorithm using particle flow is also separated in two
stages. Firstly, the space defined by the voxelized model is
randomly filled with particles, then the positions of
particles are iteratively calculated based on their last
positions, masses and forces that affect them. Branches are
constructed from trajectories that particles have passed
through. New branch is created when the particle has
passed minimum distance from the last created branch.
Particles that are close enough are merged together and
branches created by their trajectories are also merged.

Force on each particle is calculated with formula (4).
Every particle affects every other particle with force
proportional to their masses (𝑚𝑖 , 𝑚𝑗) and inversely

proportional to their distance. Constant 𝑘 is affecting
overall force between particles. Positions of currently
observed particles are 𝑥𝑖 and 𝑥𝑗.

New velocities and positions of particles are calculated
by the semi-implicit Euler method:

𝑣𝑖 = 𝑣𝑖−1 + ∆𝑡 ∗
𝐹𝑖
⃗⃗

𝑚𝑖

(5)

xi = 𝑥𝑖−1 + ∆𝑡 ∗ 𝑣𝑖

For simulation, it is necessary to define a ∆𝑡 time step
so that it is precise and fast enough. We chose 10ms as a
step for generating a tree model.

 When merging particles, it is possible to choose
different combinations of particles which will be merged
together. Greedy approach for every particle finds all
particles that are close enough and instantly merges them.
That approach introduces randomness in constructing a tree
model, which suits the nature of the algorithm. Formulas
(6) are used for merging particles in a bigger particle.
Heavier particles influence more on a final position and
velocity of a new particle. Variables 𝑥, 𝑣 and 𝑚 define
position, velocity and mass of a new particle, while
𝑥𝑖 , 𝑣𝑖⃗⃗⃗ and 𝑚𝑖define position, velocity and mass for merging
particles.

𝑥 =
∑𝑚𝑖 ∗ 𝑥𝑖

∑𝑚𝑖

(6) 𝑣 =
∑𝑚𝑖 ∗ 𝑣𝑖⃗⃗⃗

∑𝑚𝑖

𝑚 = ∑𝑚𝑖 ∗ 𝑣𝑖⃗⃗⃗

VI. ALGORITHM SIMULATING A LINDENMAYER SYSTEM

 Lindenmayer system is a type of a formal grammar
which is suitable for describing fractal patterns in plants. It
has been in use from 1968 and has been thoroughly studied
and described in [11]. Visualized results obtained by L-
systems convincingly simulate plants.

 Like all formal grammars, L-system has a list of
symbols 𝑉, starting symbol ω and production rules 𝑃. List
of symbols can contain final symbols which cannot be
further expanded. L-system is executed iteratively, and in
every iteration, all active symbols are replaced with new
symbols, with the help of a production rules. Result of
executing a L-system is a list of symbols.

 We have simulated the process of generating a tree by
L-system. Algorithm can be executed until desired number
of branches or iterations has been reached. Every symbol
represents a branch in an abstract tree structure.

 Every branch that doesn’t have children are considered
as an active branch. In every iteration one active branch is
chosen which will produce its children. Number of children
are calculated by the exponential distribution:

𝑝(𝑥|𝜆) = 𝜆𝑒−𝜆𝑥 (7)

Direction of growth for a new branch is calculated by
addition of a random vector to the direction of growth of a
parent branch. That way new branches are created without
unnatural twists. If the direction of growth of a parent
branch is parallel to the y-axis then figure (4) represents
probability distribution of a new direction of a growth. Red
colour represents most probable direction, and blue colour
represents least probable direction. Newly created child
branch is accepted to be active branch if it is inside the
voxelized model.

Variations can be made to the algorithm by using
different distributions for number of children, different
distributions for direction of growth and different order in
which active branches are selected for producing children.

𝐹𝑖
⃗⃗ = ∑𝑘 ∗ 𝑚𝑖 ∗ 𝑚𝑗 ∗

𝑁

𝑗

𝑥𝑗 − 𝑥𝑖

‖𝑥𝑗 − 𝑥𝑖‖
2 (4)

Figure 4. Probability distribution of a new
branch direction

MIPRO 2019/DC 249

VII. COMPARISON OF ALGORITHMS AND RESULTS

All three algorithms are successfully filling desired
shapes and producing satisfying branching structures. Both
space colonisation and particle flow algorithms can
generate a tree structure that is not necessarily fully inside
a desired model, but that problem can be solved by pruning
the undesired branches.

Figure (6) compares algorithms based on a speed at
which they can create branches in a single tree. Both axes
are on a logarithmic scale. Algorithms were tested on a
single core of an AMD Ryzen 5 2400G with a clock rate of
3,6GHz.

Main advantage of using the L-system algorithm is its
speed. It is possible to create many trees and branches in a
short period of time, which is very useful for programs like
flight simulator, where trees may need to be created in a
real time. Algorithm is fast mainly because it doesn’t care
about already created branches. It has been recently used in
a [12] with combination of adaptive level of detail
algorithm to generate a forest in a short period of time.
Another advantage is that it is easy to implement new rules
which trees or other plants follow. L-system does not
follow as good as other two algorithms a model we want to
imitate with a tree, so it is not suitable for that task.

Main reason that particle flow is slower than other two
algorithms is that it needs more iterations to generate a
single branch. If time step in iteration is increased, then the
simulation would not be precise enough and branches
would pass more often one through another not detecting
each other’s presence. In comparison to space generation it
can produce less intersections of branches.

Negative aspect of using particle flow is that it is hard
to implement a new set of rules that would produce
different types of trees. It has many parameters that need to
be fine-tuned to get a satisfying result. Furthermore, as
branches are created from leaves to the trunk, it is hard to
predict on what depth will the branch be. That information
would be useful to produce branches of different lengths
depending on the position to other branches. Branches can
be created after the simulation is over by storing data about
every trajectory, but that way algorithm uses much more
memory then needed. It is also possible to get too many
branches connected to the same parent branch. For these
reasons it is inferior in comparison to the other methods of
generating tree models. Useful application of this algorithm
would be for filling a tree model with leaves.

1

10

100

1,000

10,000

100,000

100 1000 10000 100000

ti
m

e/
m

s

Number of branches
space colonisation L-system particle flow

Figure 6. Time needed to create a desired number of
branches

Figure 5. Resulting trees created with algorithms: space colonisation, particle flow and L-systems

Figure 7. Space colonisation algorithm with
the model of Utah teapot

250 MIPRO 2019/DC

VIII. RENDERING THE TREE

 Main goal of an algorithm for rendering a tree is to take
an abstract tree data structure and convert it into a tree
mesh. Algorithm can be executed on a CPU (central
processing unit) or on a GPU (graphics processing unit).
Advantage of running algorithm on a GPU is that we can
dynamically change a shape and positions of branches in a
tree while still maintaining a real time rendering. For
average generated tree there was 0.5MB of data stored as a
tree data structure. For that example, full mesh had 17MB
of data. Main disadvantage of using GPU is that it is hard
to do post processing of a tree mesh, like joining
overlapping vertices of a branches which have the same
parent branch.

Formula (8) from [13] is used to calculate radiuses of
every branch, where x is exponent in a range of [1.8, 2.3]
and it is dependent of a tree species we are trying to
simulate. In our simulation, we used exponent of a 2.

𝑟𝑝𝑎𝑟𝑒𝑛𝑡
𝑥 = ∑ 𝑟𝑐ℎ𝑖𝑙𝑑

𝑥

𝑒𝑣𝑒𝑟𝑦 𝑐ℎ𝑖𝑙𝑑

 (8)

 To create a mesh of a branch, we need to know a
radius of current and parent branches, furthermore we need
to know positions of current, parent and grandparent
branches. In total that is 11 floating point numbers.
Creation of a tree mesh is done in a geometry shader in the
OpenGL graphics pipeline.

Main idea is to create a mesh that follows the Bézier's
curve defined by the branches end points. Bézier's curve is
defined by four points. First point is the end point of a
parent branch. Second point is translated end point of a
parent branch in direction of its growth. Third point is
created by translation of a current branch end point in a
negative direction of the current branch growth. Fourth
point is the end point of a current branch. By choosing those
points we get first derivation continuity between
connecting branches.

 To create a mesh around a branch we define vertices on
a Bézier's curve in equal distances. Each vertex is the centre
of a circle whose normal is parallel to the tangent of the
Bézier's curve in that vertex. Radius of a circles is linearly
interpolated between radius of a parent branch and a current
branch. Newly created vertices are connected via triangle
strip and passed further down the graphics pipeline.

Tree can be rendered statically and dynamically. Static
rendering means that the data about positions of branches
is not changed. Static rendering is fastest method of
rendering a tree, because all data can be stored on a graphics
card and it doesn’t need to be changed. Dynamic rendering
means that the tree structure and/or branch positions are
changing in response to external stimuli. Dynamically

0.15

1.5

15

1000 10000 100000 1000000

Ti
m

e
to

 r
en

d
er

/m
s

Number of branches

static dynamic force propagation

Figure 12. Comparison of different types of rendering Figure 10. Cubic Bézier’s curve used for rendering
branches

Figure 9. L-system algorithm
with the model of a teddy bear

Figure 11. Particle flow algorithm with
 the model of a bird

MIPRO 2019/DC 251

changing data about each branch, independently of other
branches, costs us more processing power as seen on Figure
(12). It would take even more processing power if we
would like to simulate real world bending of branches in
the presence of wind, with force propagation algorithm as
presented in [14]. These rendering speeds are obtained on
setup with a Titan V GPU.

IX. THE CONCLUSION

This work presents a variation to procedural generation
algorithms so that they can generate trees with desired
model shape. Their speed of generation and their positive
and negative aspects are compared.

If it is necessary to create lots of trees in a short period
of time, then it is best to use L-system algorithm. If we
would like to create a tree with a desired shape, then the
space colonisation and particle flow algorithms are much
better suited. Models created with these algorithms are
suited for simulations, movies and video games.

Voxelization of a model is explained. Results and speed
of it are satisfactory. There are faster and better algorithms
that parallelize voxelization but are more complex to
implement.

Method for creating a tree mesh from an abstract tree
data using Bézier's curve is presented. This method
guarantees a first derivation continuity which produces
meshes without unnatural twists.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan V GPU used for
this research.

REFERENCES

[1] J. Huang, R. Yagel, V. Filippov, and Y. Kurzion “An accurate
method for voxelizing polygon meshes” In Proceedings of the 1998
IEEE symposium on Volume visualization, 119-126, 1998.

[2] M. Schwarz, and H. P. Seidel, “Fast parallel surface and solid
voxelization on GPUs,” ACM Transactions on Graphics (TOG),
29(6), 179, 2010.

[3] V. Skala, “Barycentric coordinates computation in homogeneous
coordinates,” Computers & Graphics, 32(1), 120-127, 2008.

[4] A. Runions, M. Fuhrer, B. Lane, P. Federl, A. G. Rolland-Lagan
and P. Prusinkiewicz, “Modeling and visualization of leaf venation
patterns” ACM Transactions on Graphics (TOG), 24(3), 702-711,
2005.

[5] A. Runions, B. Lane, and P. Prusinkiewicz, “Modeling Trees with
a Space Colonization Algorithm,” Eurographics Workshop on
Natural Phenomena, 7, 63-70, 2007.

[6] G. D. Fernandes, and A. R. Fernandes, “Space Colonisation for
Procedural Road Generation,” In 2018 International Conference on
Graphics and Interaction (ICGI), 1-8, 2018.

[7] A. de Lima Bicho, R. A. Rodrigues, S. R. Musse, C. R. Jung, M.
Paravisi, and L. P. Magalhães, “Simulating crowds based on a
space colonization algorithm,” Computers & Graphics, 36(2), 70-
79, 2012.

[8] D. Meagher, “Geometric modeling using octree encoding,”
Computer graphics and image processing, 19(2), 129-147, 1982.

[9] Y. Rodkaew, P. Chongstitvatana, S. Siripant, and P. Lursinsap,
“Particle systems for plant modeling,” Plant growth modeling and
applications, 210-217, 2003.

[10] B. Neubert, T. Franken, and O. Deussen, “Approximate image-
based tree-modeling using particle flows,” In ACM Transactions on
Graphics (TOG), 26(3), 88, 2007.

[11] P. Prusinkiewicz, and A. Lindenmayer, “The algorithmic beauty of
plants,” Springer Science & Business Media, 2012.

[12] Š. Kohek, and D. Strnad, “Interactive Large‐Scale Procedural
Forest Construction and Visualization Based on Particle Flow
Simulation,” In Computer Graphics Forum, 37(1), 389-402, 2018.

[13] R. Minamino, and M. Tateno, “Tree branching: Leonardo da Vinci's
rule versus biomechanical models,” PloS one, 9(4), e93535, 2014.

[14] S. Pirk, T. Niese, T. Hädrich, B. Benes, and O. Deussen, “Windy
trees: computing stress response for developmental tree models,”
ACM Transactions on Graphics (TOG), 33(6), 204, 2014.

252 MIPRO 2019/DC

