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Abstract – Main goal of this paper is to explore in which 

situations should some procedural algorithm be used to 

generate a tree model. Each algorithm is modified so as to be 

able to generate a tree model whose shape resembles the 

required model. Space colonization algorithm, algorithm 

using particle flows and algorithm simulating a Lindenmayer 

system are compared depending on a time needed to generate 

a tree with similar complexity. The voxelization procedure of 

the model and its application in this context is explained. 

Method for generating a tree mesh on a graphics card using 

Bézier's curves is presented. 

Keywords – tree; procedural generation; space 
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I. INTRODUCTION 

Modelling and animating trees for movies, computer 
games and simulations are labour intensive work. Trees are 
most commonly represented as static objects with minimal 
interaction with its surroundings. Main reason is the sheer 
complexity of organic trees. Fully grown common oak can 
exceed the height of 40m and have more than 100,000 
branches. 

There are many commercially available tools which can 
help with modelling the tree, but the process is still time-
consuming. Procedural algorithms can mitigate the time 
needed to create a desired tree model. 

In this paper we have compared 3 algorithms. Every 
algorithm as an input gets voxelized model and as an output 
produces same abstract tree data structure. This data 
structure is further passed to graphics card which creates a 
mesh for every branch.  

Procedural algorithms to some extent try to simulate the 
real growth of a tree, but as there are many unknown 
variables, it is hard to capture the real world. We have 
chosen to compare space colonisation algorithm, algorithm 
using particle flow and algorithm simulating a 
Lindenmayer system. Each one takes a different approach 
to the same problem. Space colonisation simulates a 
competition for space. Particle flow algorithm exploits 
similarities between branching structures in trees and 
trajectories of particle simulations. L-system focuses 
mainly on rules at which branching happens.  

II. METHOD 

In this section we will present the process of 
constructing a procedurally grown tree. Every algorithm is 
parametrized with a desired tree-crown size and voxelized 
model which we want to imitate. 

Most common operation while generating a tree model 
with a desired shape is a test if some point is inside the 
model. While polygonal models for that operation have 
linear time complexity proportional to the size of a model, 
voxelized models have a constant time complexity. Main 
disadvantage of using voxelized models is a loss of 
precision, but with using 2563 voxels and trees having 
irregular form there was no noticeable difference in a 
generated tree. 

Models are voxelized with a variation of an algorithm 
using ray casting presented in a [1] and is described in the 
next section. Since the process of voxelization didn’t take 
longer than a few seconds at the start of a program, there 
was no need for using a faster voxelization algorithm, like 
one presented in [2]. 

Every tree generator produces a tree data structure as 
demonstrated on a figure (1). From the perspective of a red 
branch, blue branch is its child, yellow branch is its parent, 
and green branch is its grandparent. Each node in a tree data 
structure stores its length and relative rotation to its parent 
branch. Main advantage with using abstract representation 
is that it reduces data that needs to be transferred to graphics 
card.  

Abstract tree structure is converted on a graphics card 
to a mesh which is further rendered in a OpenGL graphics 
pipeline. This process is described in section VIII. 

  

Figure 1. Rendered tree and its abstract tree structure 
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III. VOXELIZATION 

To generate a voxelized model, we test if a centre point 
of each voxel is inside a model. Point is inside a model if 
the ray casted from the point intersects odd number of 
polygons, or in our case triangles. The ray we cast is always 
parallel to the Z-axis. That way, in the same time, we can 
test multiple voxels in the same column if they are inside a 
model. To speed up the algorithm, we project all polygons 
on a XY-plane and test which polygons affect which 
columns.  

 

Barycentric coordinates 𝑎1, 𝑎2, 𝑎3 are defined by the 
linear equations (1) described in a [3] where 𝑋𝑖 are vertices 
of a triangle and 𝑋  is a position of a point. Column of 
voxels is intersecting a triangle if its barycentric 
coordinates satisfy 0 ≤ 𝑎𝑖 ≤ 1, 𝑖 = 1,… ,3 condition. List 
of all affecting polygons is created for each column. Those 
lists are sorted by the height at which polygons intersect the 
column. That way, it is faster to count the number of 
intersected polygons for each voxel in a column.  

 

 

 

 

 

IV. SPACE COLONISATION ALGORITHM 

Space colonisation algorithm has been introduced in a 
[4]. It was further expanded to 3D in [5] and used to 
construct a model of a tree. Algorithm has potential for 
other applications in different fields as presented in the [6] 
for creating a road network of a town and in the [7] for 
simulation of crowd dynamics. Algorithm is separated in 
two stages. Firstly, the model is filled with attraction points, 
then the algorithm creating branches is iteratively executed. 
Space defined by voxelized model is filled with attraction 
points. We have implemented linear distribution of 
attraction points in a voxelized model, but it is possible for 
example to arrange attraction points so that they are near 
the surface of a desired model. Resulting model would then 
have more branches near the surface. 

We have implemented a variation of the space 
colonization algorithm using octree data structure 
presented in a [8], which has a complexity of an 𝑂(𝑚 ∗ 𝑛 ∗
log(𝑝)), where 𝑛 is number of iterations, 𝑚 is number of 
finished branches and 𝑝 is number of attraction points. 

Every iteration consists of finding all attraction points 
close to every generated branch. Those attraction points are 
then written in a list for that branch. At the end of an 
iteration, new branches are created with the formula (2), 
where 𝑛⃗  is a vector representing a direction of a new 
branch, 𝑠 is position of a current attraction point, 𝑣 is the 
end position of current branch and 𝑆 is a set of all attraction 
points affecting current branch.  

 Length of a branch directly affects the complexity of a 
generated tree, because smaller branches need more 
iterations to cross the same distance. Length of a new 
branch is calculated according to formula (3). 𝑙𝑚𝑎𝑥and 𝑙𝑚𝑖𝑛  
represent maximum and minimum desired length of a 
branch in a tree. Depth of a branch is the number of edges 
between a root branch and current branch in the abstract 
tree structure and is represented by variable 𝑑𝑒𝑝𝑡ℎ.  

𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 = 𝑋 

(1) 
𝑎1 + 𝑎2 + 𝑎3 = 1 

𝑛⃗ =  ∑
𝑠 − 𝑣

||𝑠 − 𝑣||

𝑆

𝑠

 (2) 

𝑙𝑏 = 𝑙𝑚𝑖𝑛 +
𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛

1 + 𝑒𝑑𝑒𝑝𝑡ℎ−10
 (3) 

Figure 3. Stanford dragon created with space 
colonisation algorithm 

Figure 2. Voxelized models of the Stanford 
dragon and the Utah teapot 
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V. ALGORITHM USING PARTICLE FLOW 

We have implemented a variation of algorithm 
presented in [9].  It has been used in a [10] to generate trees 
that are imitating the branching structure from a photograph 
of a tree. By using image recognition and the help of human 
it is possible to generate a vector field which navigates 
particles so that their trajectories imitate a tree. Our 
implementation does not use vector fields and only forces 
that affect particles are global gravitational force and 
attraction forces between particles. 

 Algorithm using particle flow is also separated in two 
stages. Firstly, the space defined by the voxelized model is 
randomly filled with particles, then the positions of 
particles are iteratively calculated based on their last 
positions, masses and forces that affect them. Branches are 
constructed from trajectories that particles have passed 
through. New branch is created when the particle has 
passed minimum distance from the last created branch. 
Particles that are close enough are merged together and 
branches created by their trajectories are also merged. 

Force on each particle is calculated with formula (4). 
Every particle affects every other particle with force 
proportional to their masses (𝑚𝑖 , 𝑚𝑗)  and inversely 

proportional to their distance. Constant 𝑘  is affecting 
overall force between particles. Positions of currently 
observed particles are  𝑥𝑖 and 𝑥𝑗.  

New velocities and positions of particles are calculated 
by the semi-implicit Euler method:  

𝑣𝑖  =  𝑣𝑖−1 + ∆𝑡 ∗
𝐹𝑖
⃗⃗ 

𝑚𝑖

 
(5) 

xi = 𝑥𝑖−1 + ∆𝑡 ∗ 𝑣𝑖  

For simulation, it is necessary to define a ∆𝑡 time step 
so that it is precise and fast enough. We chose 10ms as a 
step for generating a tree model. 

 When merging particles, it is possible to choose 
different combinations of particles which will be merged 
together. Greedy approach for every particle finds all 
particles that are close enough and instantly merges them. 
That approach introduces randomness in constructing a tree 
model, which suits the nature of the algorithm. Formulas 
(6) are used for merging particles in a bigger particle. 
Heavier particles influence more on a final position and 
velocity of a new particle. Variables 𝑥, 𝑣  and 𝑚  define 
position, velocity and mass of a new particle, while 
𝑥𝑖 , 𝑣𝑖⃗⃗⃗   and 𝑚𝑖define position, velocity and mass for merging 
particles. 

𝑥 =  
∑𝑚𝑖 ∗ 𝑥𝑖

∑𝑚𝑖

 

(6) 𝑣 =  
∑𝑚𝑖 ∗ 𝑣𝑖⃗⃗⃗  

∑𝑚𝑖

 

𝑚 = ∑𝑚𝑖 ∗ 𝑣𝑖⃗⃗⃗   

VI. ALGORITHM SIMULATING A LINDENMAYER SYSTEM 

 Lindenmayer system is a type of a formal grammar 
which is suitable for describing fractal patterns in plants. It 
has been in use from 1968 and has been thoroughly studied 
and described in [11]. Visualized results obtained by L-
systems convincingly simulate plants. 

 Like all formal grammars, L-system has a list of 
symbols 𝑉, starting symbol ω and production rules 𝑃. List 
of symbols can contain final symbols which cannot be 
further expanded. L-system is executed iteratively, and in 
every iteration, all active symbols are replaced with new 
symbols, with the help of a production rules. Result of 
executing a L-system is a list of symbols. 

 We have simulated the process of generating a tree by 
L-system. Algorithm can be executed until desired number 
of branches or iterations has been reached. Every symbol 
represents a branch in an abstract tree structure.  

 Every branch that doesn’t have children are considered 
as an active branch. In every iteration one active branch is 
chosen which will produce its children. Number of children 
are calculated by the exponential distribution: 

𝑝(𝑥|𝜆) =  𝜆𝑒−𝜆𝑥  (7) 

 

Direction of growth for a new branch is calculated by 
addition of a random vector to the direction of growth of a 
parent branch. That way new branches are created without 
unnatural twists. If the direction of growth of a parent 
branch is parallel to the y-axis then figure (4) represents 
probability distribution of a new direction of a growth. Red 
colour represents most probable direction, and blue colour 
represents least probable direction. Newly created child 
branch is accepted to be active branch if it is inside the 
voxelized model.  

Variations can be made to the algorithm by using 
different distributions for number of children, different 
distributions for direction of growth and different order in 
which active branches are selected for producing children. 

  

𝐹𝑖
⃗⃗ = ∑𝑘 ∗ 𝑚𝑖 ∗ 𝑚𝑗 ∗

𝑁

𝑗

𝑥𝑗 − 𝑥𝑖

‖𝑥𝑗 − 𝑥𝑖‖
2 (4) 

Figure 4. Probability distribution of a new 
branch direction 
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VII. COMPARISON OF ALGORITHMS AND RESULTS 

All three algorithms are successfully filling desired 
shapes and producing satisfying branching structures. Both 
space colonisation and particle flow algorithms can 
generate a tree structure that is not necessarily fully inside 
a desired model, but that problem can be solved by pruning 
the undesired branches. 

Figure (6) compares algorithms based on a speed at 
which they can create branches in a single tree. Both axes 
are on a logarithmic scale. Algorithms were tested on a 
single core of an AMD Ryzen 5 2400G with a clock rate of 
3,6GHz. 

Main advantage of using the L-system algorithm is its 
speed. It is possible to create many trees and branches in a 
short period of time, which is very useful for programs like 
flight simulator, where trees may need to be created in a 
real time. Algorithm is fast mainly because it doesn’t care 
about already created branches. It has been recently used in 
a [12] with combination of adaptive level of detail 
algorithm to generate a forest in a short period of time. 
Another advantage is that it is easy to implement new rules 
which trees or other plants follow. L-system does not 
follow as good as other two algorithms a model we want to 
imitate with a tree, so it is not suitable for that task. 

Main reason that particle flow is slower than other two 
algorithms is that it needs more iterations to generate a 
single branch. If time step in iteration is increased, then the 
simulation would not be precise enough and branches 
would pass more often one through another not detecting 
each other’s presence. In comparison to space generation it 
can produce less intersections of branches. 

Negative aspect of using particle flow is that it is hard 
to implement a new set of rules that would produce 
different types of trees. It has many parameters that need to 
be fine-tuned to get a satisfying result. Furthermore, as 
branches are created from leaves to the trunk, it is hard to 
predict on what depth will the branch be. That information 
would be useful to produce branches of different lengths 
depending on the position to other branches. Branches can 
be created after the simulation is over by storing data about 
every trajectory, but that way algorithm uses much more 
memory then needed. It is also possible to get too many 
branches connected to the same parent branch. For these 
reasons it is inferior in comparison to the other methods of 
generating tree models. Useful application of this algorithm 
would be for filling a tree model with leaves.  
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Figure 6. Time needed to create a desired number of 
branches 

Figure 5. Resulting trees created with algorithms: space colonisation, particle flow and L-systems 

Figure 7. Space colonisation algorithm with 
the model of Utah teapot 
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VIII. RENDERING THE TREE 

 Main goal of an algorithm for rendering a tree is to take 
an abstract tree data structure and convert it into a tree 
mesh. Algorithm can be executed on a CPU (central 
processing unit) or on a GPU (graphics processing unit). 
Advantage of running algorithm on a GPU is that we can 
dynamically change a shape and positions of branches in a 
tree while still maintaining a real time rendering. For 
average generated tree there was 0.5MB of data stored as a 
tree data structure. For that example, full mesh had 17MB 
of data. Main disadvantage of using GPU is that it is hard 
to do post processing of a tree mesh, like joining 
overlapping vertices of a branches which have the same 
parent branch. 

Formula (8) from [13] is used to calculate radiuses of 
every branch, where x is exponent in a range of [1.8, 2.3] 
and it is dependent of a tree species we are trying to 
simulate. In our simulation, we used exponent of a 2. 

𝑟𝑝𝑎𝑟𝑒𝑛𝑡
𝑥 = ∑ 𝑟𝑐ℎ𝑖𝑙𝑑

𝑥

𝑒𝑣𝑒𝑟𝑦 𝑐ℎ𝑖𝑙𝑑

 (8) 

 To create a mesh of a branch, we need to know a 
radius of current and parent branches, furthermore we need 
to know positions of current, parent and grandparent 
branches. In total that is 11 floating point numbers. 
Creation of a tree mesh is done in a geometry shader in the 
OpenGL graphics pipeline.  

Main idea is to create a mesh that follows the Bézier's 
curve defined by the branches end points. Bézier's curve is 
defined by four points. First point is the end point of a 
parent branch. Second point is translated end point of a 
parent branch in direction of its growth. Third point is 
created by translation of a current branch end point in a 
negative direction of the current branch growth. Fourth 
point is the end point of a current branch. By choosing those 
points we get first derivation continuity between 
connecting branches.  

 To create a mesh around a branch we define vertices on 
a Bézier's curve in equal distances. Each vertex is the centre 
of a circle whose normal is parallel to the tangent of the 
Bézier's curve in that vertex. Radius of a circles is linearly 
interpolated between radius of a parent branch and a current 
branch. Newly created vertices are connected via triangle 
strip and passed further down the graphics pipeline. 

Tree can be rendered statically and dynamically. Static 
rendering means that the data about positions of branches 
is not changed. Static rendering is fastest method of 
rendering a tree, because all data can be stored on a graphics 
card and it doesn’t need to be changed. Dynamic rendering 
means that the tree structure and/or branch positions are 
changing in response to external stimuli. Dynamically 
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Figure 12. Comparison of different types of rendering  Figure 10. Cubic Bézier’s curve used for rendering 
branches 

Figure 9. L-system algorithm  
with the model of a teddy bear 

Figure 11. Particle flow algorithm with 
 the model of a bird 
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changing data about each branch, independently of other 
branches, costs us more processing power as seen on Figure 
(12). It would take even more processing power if we 
would like to simulate real world bending of branches in 
the presence of wind, with force propagation algorithm as 
presented in [14]. These rendering speeds are obtained on 
setup with a Titan V GPU. 

IX. THE CONCLUSION 

This work presents a variation to procedural generation 
algorithms so that they can generate trees with desired 
model shape. Their speed of generation and their positive 
and negative aspects are compared. 

If it is necessary to create lots of trees in a short period 
of time, then it is best to use L-system algorithm. If we 
would like to create a tree with a desired shape, then the 
space colonisation and particle flow algorithms are much 
better suited. Models created with these algorithms are 
suited for simulations, movies and video games. 

Voxelization of a model is explained. Results and speed 
of it are satisfactory. There are faster and better algorithms 
that parallelize voxelization but are more complex to 
implement.  

Method for creating a tree mesh from an abstract tree 
data using Bézier's curve is presented. This method 
guarantees a first derivation continuity which produces 
meshes without unnatural twists. 
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