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Abstract 
 In this paper several methods for reconstruction of 3D images are presented. Some of 
these methods use the geometric primitives, and other render the object directly. Methods that 
visualize data without fitting geometric primitives are named volume rendering methods. They 
made superior results, but they are time consuming and have great memory requirements. 
Methods that fit geometric primitives first are the cuberille method and the marching cube 
method. 
 Julia set is used as data for different volume visualization methods. These methods do not 
depend on scaling factor, so any sampled data or vector fields of three spatial dimensions can be 
visualized. 
 
 
 
1 INTRODUCTION1 
 
 Three dimensional volume visualization 
is the emerging and rapidly growing field of 
computer graphics and imaging. It is concerned 
with representation, manipulation, and 
understanding of the volume data [4]. Many 
objects and natural phenomena in our 
surroundings, and results of complex 
computational simulations in many fields, are 
3D volume of data. The problem is to display 
clearly as much information as possible. 
 The need for volume visualization 
appears in many scientific fields, for many 
purposes such as medical imaging, 
                                                           
1This work has been carried out within the project 2-06-
278 "Distributed Real -Time Computer Systems" 
founded by the Ministry for Science, Tehnology and 
Informatic of the Republic of Croatia. 

visualization of molecular structures, flight 
simulations trough terrain, simulations of the 
fluid flow, simulations of thunderstorm, and 
many other. To understand, discover or 
communicate phenomena, scientists want to 
compute the phenomena, interactively explore 
it, and visualize hidden or inner details. For 
some purposes it is important to render the 
object realistically as the surfaces, for some it is 
important to emphasize existence of high 
values or 'hot spots', and for some purposes 
spatial correlation in the data is not important, 
but for perception and understanding it is 
important to render cloud-like objects. 
 In this paper on the same object, different 
methods are applied. Two of these methods 
make binary classification, fit geometric 
primitives, and then using traditional way of 
rendering geometric primitives, render the 
object. The third method renders the object 
directly according to data, using ray tracing 
[5,6]. The drawback of this third method is in 



time and space requirements, and alliasing 
effect that occurs when it is applied. 
 The problem of alliasing is concerned in 
this paper. When high resolution of data is 
applied, the resulting image is very time and 
space consuming, and when low resolution of 
data is used, aliasing effect in image space 
appears. When low resolution is applied, three 
linear interpolations in sample points on ray 
that is traced are applied. The resulting  image, 
despite the low resolution of data is much better 
then when just one value of data is calculated 
per sample point. 
 
2 DATA FOR VOLUME VISUALIZATION 
 
 The data for volume visualization is 
typically a set of scalar or vector values defined 
on a grid in three space. The grid is, in most 
cases, rectilinear and the data is assigned to the 

point values representing constant values for 
the volume elements. So, unit volume element 
or voxel, has a numeric value (or values) 
associated with it, which represents some 
measurable properties of a small cube of real 
objects, mathematics model of some object, or 
some other simulated values.  

    

    

    

    

Figure 1. Eight slices from sequence of 64 slices of 
fractal Julia set. 

 A typical example, in medical imaging, 
for data acquisition is computed tomography 
(CT) scanner, that estimate the radiological 
density (x-ray attenuation) for each voxel 
within a three-dimensional region, and 
magnetic resonance (MR) scanner, that 
measures the density of protons in tissue [2]. 
Being noninvasive, these methods become 
increasingly attractive in medical and some 
other imaging. 
 The data used in this article is 
mathematically generated. This data presents 
the convergence of some nonlinear iterative 
function in the complex plane [9, 10]. Julia sets 
are generated from iteration of function 
zn+1=zn2+c, where c is constant complex 
value. In Figure 1 sequence of the Julia fractal 
sets is presented. The range in complex plane 
for this sequence is for zre from -1.0 to 1.0, and 
for zim from -1.15 to 1.15. Eight pictures from 
sequence of 64 slices are presented. This 
sequence is generated linearly changing the 
value of z0 from  (0.31,0.04) to (0.4,0.04). The 
resolution of each picture in sequence is 128 x 
128 , and the stopping criteria is 20 iterations or 
|z| < 10.000. 
 
 
3 RENDERING MODELS  FOR 3D  
IMAGES 
 
 There are two common technics for 
rendering 3D images, one is more traditional 
and it uses the geometrical model, and the other 
is termed as volume rendering, where both the 
viewing and the shading stage are involved. 



 Methods that fit geometric primitives, 
may use information from slices to find 
contours and dispaly them, or to find 
connection between neighbour slices, and 
render the object using geometric primitives 
based on interconnection of contours. The other 
way is to find the border of object using 
volumetric data insted of concerning individual 
slices. Cuberille and marching cube method use 
the volumetric data to render the border of 
object. All of these methods make binear 
classification in data to define border. Volume 
rendering method use the inner informathion, 
without binary threeshold classifications, so 
better visualization may be achived. 

 

Figure 2. Wire frame for cuberille model. 
3.1 Connection of contours 
 One of  the first attempts to form 
geometric model is based on displaying of 
contours from slices or on displaying of 
connections of contours with some surfaces. 
From individual slices two-dimensional 
contours can be manually traced or 
automatically extracted. Points from extracted 
contours can be connected in adjacent slices to 
form triangle mesh or higher order surface 
patches. The problem is in branching structures 
when the number and the shape of contours in 
several sections are not the same. In that case 
the interactive work of users is needed to define 
the shape of branching structures, which may 
slow down the rendering. 

3.2 Cuberille model 
 In cuberille approach each solid voxel is 
treated as a small cube [1]. Depending on 
threshold value, the border between two 
materials is set. In this approach binary 
classification is made indicating  where 
particular material is present. The faces of the 
small cubes that indicate the border of the final 
object are extracted and presented. In the 
Figure 2 mesh of cubes that is generated from 
slices of sequence in Figure 1, but in lower 
resolution, is shown. 
 A major problem in the cuberille model is 
surface shading. In the cuberille environment, a 
boundary surface is used as an approximation 
to an object surface. In rendering the boundary 

surface, one desires to make it appear as similar 
as possible to the unknown object surface. The 
appearance of the surface depends on the angle 
between the normal on the surface and the 
direction of the light. 
 A major problem with constant shading is 
that only six orientations of surface are 
possible, and only three are visible from a 
single point of view. So, the boundary surface 
will have sharp edges at points where  

 

Figure 3. Constant shading with  z-buffer. 



 

Figure 4. Gouraud shading on cuberille model. 
 

corresponding object surface is quite smooth. 
Figure 3 presents the constant shading on the 
same mash as in Figure 2. 

3.3 Marching cubes 
  The marching cubes algorithm [7] 
determines how the surface intersects each cube 
and then marches to the next cube. These 
algorithms also apply binary classification, 
using threshold value to determine for each 
cube which cube's vertices exceed the value of 
threshold. These vertices are inside the surface. 
As there are eight vertices, and each of them 
may be in or out the surface there are 256 ways 
a surface can intersect the cube. For each  of 
the 256 cases the topology of the triangulated 
surface is determined in look-up table. As the 
surfaces are created by connecting lineary 
interpolated points on the edges, for each cube, 
the normals of surfaces are not discretized like 
in the cuberille model. In Figure 5 there is an 
example of triangulated mesh on the same data 
as in Figures 2, 3, and 4. 

 To overcome the problem of artificial 
edges, some other methods to estimate the 
normal, and other methods for shading may be 
used. The idea is to estimate the object normal 
at the peaks of cube based on the volumetric 
data. That normal then may be used in Gouraud 
shading of cubes [8]. The resulting image is 
presented in Figure 4. The components of local 
gradient at the point x, y, z are Nx, Ny, Nz 
given by equations (1), (2) and (3). D(i, j, k) is 
value of the data at the point i, j, k, and ∆x, ∆y, 
∆z, are lengths of each cube. 

 

Figure 5. Triangular mesh for marching 
cube method. 
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 The inherent problem in this method is 
that it inherently introduces artifacts. The 
marching cube method creates a polygonal 
representation of constant density surfaces, 
using interpolation in each cube instead of 
representing small cubes, and thereby avoid the 
problem of artificial edges. 



 In this approach shading is also important 
stage. If the constant shading is used, the result 
is shown in Figure 6, and the result is better 
when estimation of normals as local gradient is 
applied, using the expressions (1), (2), (3). The 
problem in classic calculation of normals, 
where all polygon normals incidents with one 

pick are used to estimate the normal in that 
pick, is that the number of polygons is very 
large. In that case all polygons of three 
neighbor slices must be stored, and that 
requires a large amount of memory. When local 
gradient is used as estimation for normals, the 
calculated polygons may be rendered directly, 
so storage  is needed only for four input slices 
of data. 

 

Figure 7. Gouraud shadeng on the marching 
cube model with z-buffer. 

 The local gradient is calculated in cube's 
vertices, and then bilinear interpolated to 
achieve normals in polygon vertices which lie 
on the cube edges. The estimated normals are 
then used to calculate the intensity for each 
vertice, so Gouraud shading may be applied. 
The result is shown in Figure 7. 
 The problem in this method is that for 
some cases missing of polygons, or ill defined 
polygons  may appear, so additional testing of 
neighbors is required [13]. As this method uses 

the polygonal representation, it is not 
appropriate for representation of some objects 
as clouds, dust, fog or smoke. The problem is 
also in binary classification, so in the resulting 
picture only sharp edges may appear. 

 

Figure 6. Constant shading    for the 
model on figure 5.  For some purposes the rendering of 

transparent surfaces is important, like rendering 
electron density clouds in molecular structures, 
or rendering soft tissues in medical 
applications, while bone structure is opaque. 
That approach needs inside information, and 
models that use binary classification are not 
appropriate.  

3.4 Volume rendering 

 To avoid the problem of binary 
classification, researchers have begun exploring 
ray tracing methods [5, 6, 12], wherein the 
intermediate geometric representation is 
omitted. Images are formed by tracing all data 
samples and projecting contributions of visible 
samples onto the picture plane. As all data 
samples are included, the improvement is that 
volume rendering creates a mechanism for 
displaying weak or fuzzy surfaces. It also 
allows us to separate shading and classification 
operations. This separation implies that surface 
shading does not depend on the success or 



failure of classification. In this approach, to 

each data sample the opacity α(xi) is 
associated, so binary classification is avoided. 
This approach is summarized in Figure 8. 

 
were α and C ere contributions of instant 
position, αin, Cin are input values, and  αout, 
Cout are output values. The final C is obtained 
from expression  C= Cout / αout.  

 

Figure 8. Separation of shading and 
classification operations. 

 If the sample points omit the important 
voxel, black points may appear in the final 
image. The sample points are on K evenly 
spaced locations, along the ray. If only the 

closest location of eight voxels is used, in the 
resulting image artificial edges of voxels may 
appear. The Figure 9  presents this problem. 

 

 Figure 9. Volume rendering without 
interpolation in the sample points. 

 Components of color C cr(xi), cg(xi), 
cb(xi), for each data sample (voxel) are 
calculated independently using local gradient in 
the voxel peaks and the value of data. Rays are 
then cast into these two arrays. For each ray, 
components of color and opacities are 
composted to get the color in image space. 
 This approach is achieved by 
simplifications made on transport theory model 
where extracting the essential content of a 3D 
data field by "virtual" particles passing the field 
is made [3, 11]. The concept of "virtual" 
particles generalize the models for tracing light 
rays in complex environments in computer 
graphic, where the interaction of the light with 
the object is governed by optical laws, and 
another simplification in this transport theory 
concept is appropriate in volume rendering 
model. 

 When higher resolution in voxel space 
is used artificial edges disappear only when 
resolution in voxel space is higher than 
resolution in pixel space. To avoid artificial 
edges, there-linear interpolation in the sample 
points, among eight vertices of cube in which 
sample points occur, must be calculated. This 
step requires additional calculations which may 
slow down the rendering. 

 The problem is that the transport theory 
model proposes line integral during the path on 
the ray, and simplification uses the sample 
points to accumulate the contributions of colors 
and opacities on the ray. The expressions for 
calculating contributions of opacity α(xi) and 
color c is given by (4) and (5) 

 ( ininout )αααα −+= 1                        (4) 

 )1( ininout CCC α−+=                           (5) 



 

Figure 10. In the final image strips may 
appear if the distance between sample points 

is too large. 

 

Figure 11. Three times shorter distances 
between sample points then in figure 10 make 

better result. 

 Another problem is if the distance 
between sample points is too large. In that case 
the stripes in the final image may appear. 
Namely, the evenly spaced sample locations, 
and rectilinear voxel space interfere, so, 
depending on the view position, the strips in the 
final image may appear. The Figure 10 presents 
the strips in the final image if the distance 
between two sample points is too large and if 
the distance is 3 times shorter result is as in 
Figure 11. In these pictures view position is 
zoom in the center of the picture, so details can 
be considered. 
 
 
4 CONCLUSION 
 
 The volume visualization is new and 
rapidly growing field in computer graphic. 
There are several different approaches to that 
problem. Methods that make binary 
classification may be used in medical imaging 
but there are not appropriate for representations 
of fuzzy objects. The volume rendering method 
makes superior results, but it is time and space 
consuming. The required time rising if the final 

image should be better, when interpolations and 
thickening of the sample points is used. 
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