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tThe volume data is generally in the form of the large array of numbers. In order torender the obje
t hidden in the volumetri
 data, we need to re
onstru
t or interpolate datavalues between the samples. The novelty presented in this paper is B-spline interpolation inthe volumetri
 spa
e. We show that this approa
h is better then 
urrently used methods.We also present a hybrid approa
h, analyze this approa
h in frequen
y domain and 
ompareit to B-spline interpolation.To enhan
e the quality during the volume visualization pro
ess it is important to enhan
ethe quality of the re
onstru
tion. It is of 
ru
ial importan
e to explore di�erent undesirede�e
ts. If better re
onstru
tion is performed the more a

urate result of volume visualizationpro
ess is a
hieved.Keywords: B-spline, volume rendering, volume re
onstru
tion.1 Introdu
tionThe volume visualization is based on the three-dimensional s
alar or ve
tor �eld. Obje
t thatshould be visualized is represented by the array of dis
rete samples. During rendering of theobje
t it is ne
essary to re
onstru
t the 
ontinuous three-dimensional fun
tion, de�ned by thesamples, for any applied method. Classi�
ation of the methods for the volume visualization 
anbe done regarding to the spa
e where they basi
ally work. Development of the new methodsextent the basi
 
lassi�
ation proposed by Kaufman [5℄. There are three groups of methods: theobje
t spa
e methods, the image spa
e methods and methods that are based on transformedobje
t spa
e.The obje
t spa
e methods mainly 
reates polygons or 
lassi
 geometri
 primitives and proje
tsthem in the proje
tion plane [8℄. Methods that are based on the image spa
e start from the imageplane and 
ast the rays from ea
h pi
ture element into the s
ene [7℄. Methods that are based onthe transformed obje
t spa
e work in transformed spa
e, for example in the frequen
y domain[13℄ or in the wavelet domain [3℄. There are also some hybrid methods that employ 
oheren
y1
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hara
teristi
s from di�erent spa
es. The obje
t spa
e is �rst traversed to reorganize data tobe prepared for traversing in the image spa
e. During traversing the image spa
e, rays are 
astfrom ea
h pi
ture element in the obje
t spa
e [6℄. Organization of the volume elements is veryimportant be
ause signi�
ant performan
e bene�ts 
an be a
hieved if volume elements 
an beeasily fet
hed along 
ast ray.During the volume rendering there are several layers where re
onstru
tion is ne
essary, andthe error 
aused by re
onstru
tion may o

ur. Re
onstru
tion is done in the three-dimensionalspa
e based on the values of the volume elements. We must be able to interpolate the fun
tionat arbitrary lo
ations to obtain the volume densities. Numeri
 integration along the ray pathuses re
onstru
ted values at sample points. To 
al
ulate value assigned to the ray, values in thesample points along the ray are a

umulated. Final re
onstru
tion is done based on ea
h ray inorder to produ
e the �nal image (Fig. 1).It is important to be aware of limitations of the re
onstru
tion be
ause it 
an signi�
antlyin�uen
e the a

ura
y of the result. Investigation of the re
onstru
tion or the interpolationis required to a
hieve 
ompromise between di�erent undesired artifa
ts and a
hieving optimalresult.
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2 Re
onstru
tion in the 
omputer graphi
sDevelopment of new rendering algorithms for visualization of the three-dimensional s
alar �eldsis re
ent area of resear
h. Usually, related papers put the main a

ent on the proposal of newmethods, while to the problem of re
onstru
tion is given less attention.Aliasing is problem present in many areas of 
omputer graphi
s. Obje
ts are usually de-�ned pro
edurally and they are syntheti
. Pre�ltering of su
h representation is not pra
ti
al.Further more, transformation between 
ontinuous and dis
rete representation is often required.Aliasing may o

ur on every transformation of representations, and this problem also appearswhen resampling is required. Multilayer resampling is often required and ea
h layer may 
auseadditional error. This problem is well re
ognized in the 
omputer graphi
s, and investigated bymany authors.Display of the 
omputer generated image is input obje
t to our visual system, and it is not
ompletely understood how our visual system works. Sensitivity of the human eye is spe
i�
, sominimal deviation in mathemati
s sense di�ers from the most pleasant result for our per
eptualsystem. Even a little distortion in gray levels 
an 
ause unpleasant psy
hovisual result, espe
iallyin the areas with smooth 
hanges.In the analysis based on the per
eptual approa
h, rather than mathemati
s, some authorsprefer little aliasing in order to avoid other visual defe
ts, that results from trying to remove alias
ompletely. The appearan
e of aliasing is investigated when family of pie
e-wise 
ubi
 �lters isapplied to image re
onstru
tion [10℄. Mit
hell also presents [11℄ how strati�ed sampling redu
esvarian
e of the mean value of the image pi
ture elements.The problem is to numeri
ally express the result that depends on our visual system. Mars
hnerand Lobb [9℄ propose metri
 that 
an be used to measure the �lter 
hara
teristi
s, in terms ofsmoothing and postaliasing. On the three-dimensional test signal they show the results whendi�erent re
onstru
tions are used. The proposed test fun
tion is highly sensitive to the aliasing,and di�erent undesired e�e
ts are visible on the results. Disadvantage is that the proposed testfun
tion is 
ontinuous, so drawba
k 
aused by dis
ontinuity usual in real data will not appear.In volume rendering, gradient information is used for shading and 
lassi�
ation of the data setin 
ombination with the voxel intensities. Bentum presents the analysis of gradient estimatorsin frequen
y domain, and proposes taking the derivative of the interpolation fun
tion itself [1℄.Ma
hiraju and Yagel 
hara
terize and measure error by applying Taylor series expansion.They 
hara
terize error as trun
ation error and non-sin
 error. The methods for error measure-ments are based on the spatial domain analyses. The Taylor series expansion of the 
onvolutionsum [12℄ lead to the quantitative and qualitative 
ompression of the re
onstru
tion and derivative�lters. The analysis is based on the BC-splines de�ned by Mit
hell.It is important to distinguish approximation and interpolation approa
h. The approximation
urves are used to approximate 
ontrol polygon, and interpolation 
urves must pass through thede�ned verti
es. Torai
hi used interpolation quadrati
 B-spline for image re
onstru
tion [14℄,and Unser presented B-spline transforms for the image interpolation [15℄.
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3 Prealiasing and postaliasingVolumetri
 spa
e 
onsists of volume elements. Ea
h volume element may represent result fromreal world obje
t sample, from numeri
 simulations, or may represent some pure mathemati
alvalue. The samples are taken from 
ontinuous spa
e, but obje
t with sharp edges in that spa
e
reates dis
ontinuity. A

ording to Shannon theory, signal 
an be re
onstru
ted from its samplesif two 
onditions are valid. First, spe
trum of the signal must be bandlimited, and samplingfrequen
y must be twi
e higher than the largest frequen
y present in the signal. The alias thato

urs during sampling stage is 
alled prealiasing and postaliasing is 
aused by the re
onstru
tion.Natural forms often 
ontain dis
ontinuity, so their spe
trum is not bandlimited. Beforesampling, lowpass �ltering must be applied. If ideal (box) lowpass �ltering is performed, Gibssphenomena will appear on ea
h dis
ontinuity. So, dis
ontinuity 
reates unbandlimited spe
trum.Therefore, ideal lowpass �lter, used to eliminate higher frequen
ies, 
ause ringing e�e
t neardis
ontinuity. When dis
ontinuity exists on pie
ewise linear fun
tion, Fourier series of fun
tionovershoots the fun
tion value near that dis
ontinuity. Limes limn!1 Sn (f; xn) of the n-th partialsum Sn (f; xn) of the Fourier series on the �rst lo
al maximum (minimum) xn near dis
ontinuity
onverges to higher (lower) value then the value of the fun
tion. Wilbraham-Gibbs 
onstantquanti�es the degree of overshoot. On the ea
h side of dis
ontinuity the limiting 
rest of highestwave 
onverges to 8,949% of the dis
ontinuity height. This is inherited property that should betaken into the further 
onsideration.In the two-dimensions ringing exhibits on every dis
ontinuity in gray levels of the image. Inthe three-dimension, volume elements es
ape over the edge of the obje
t and 
reate visual artifa
tsthat manifest as 
louds around the obje
t. Some volume elements dive into the obje
t 
reating
aves in the obje
t surfa
e. To avoid ringing, 
ontinuous impulse response of the lowpass �lteris required. Instead of box lowpass �ltering, �lters that have smooth impulse response shouldbe used. For lowpass �ltering in two or three dimensions Gaussian �lter will be used, althoughfurther detailed investigation is required.Data a
quisition 
an be a
hieved by di�erent s
anners: CT (Computer Tomography) orMR (Magneti
 Resonan
e), for example. During the sampling pro
ess some lowpass �lteringis performed, but information about it for sequen
es of sli
es available on Internet, is usuallyunknown. If the sampling is not done 
orre
tly, information 
an be irre
overable lost.The resolution of s
anned sli
es is usually high, but number of sli
es is often insu�
ientbe
ause of radiation risks for patient. To enlarge the number of sli
es, interpolation between thesli
es is required. Compression of the volume data is also desired be
ause the size of datasetis large. Thus the re
onstru
tion of the 
ompressed volume, interpolation between sli
es, orinterpolation of the volume elements be
omes important step.The re
onstru
tion is term that is usually used in signal pro
essing, and interpolation isterm used in mathemati
s or 
omputer graphi
s. In this paper those two terms will be usedinter
hangeably. Both approa
hes: one from the interpolation of 
urves and the other fromsignal re
onstru
tion, will be 
onfronted in order to analyze the problem.
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4 The B-spline interpolationWhen designing the 
urves and surfa
es for CAD appli
ations some 
hara
teristi
 demands onthe behavior of the 
urves and surfa
es are required [2℄, [4℄. The B-spline was 
reated to ful�ll
ertain requirements that will re�e
t very well in solving of our problem.4.1 The approximation B-splineThe approximation B-spline 
urve with degree k of ea
h polynomial segment is de�ned withp (u) = nXi=0 ri Ni;k(u) ; (1)where ri are points of the 
ontrol polygon, and Ni;k(u) are 
alled B-spline weight fun
tions, orB-splines. The 
ontrol polygon has n+1 
ontrol points. The Ni;k(u)are de�ned based on knotsequen
e: Uknot = fu0; u1; :::umg ; (2)with re
ursion formula: Ni;0(u) = ( 1; ui � u � ui�10; otherwise ; (3)Ni;k(u) = (u� ui) Ni;k�1(u)ui+k � ui + (ui+k+1 � u) Ni+1;k�1(u)ui+k+1 � ui+1 : (4)When denominator is equal to zero, fra
tion is assumed to have value of zero. In our 
on-sideration we restri
t on the uniform 
ase, where parametri
 intervals between su

essive knotvalues are equal to one, and with no multiple knot values.Uknot = f1; 2; 3; :::; mg : (5)In that uniform 
ase, periodi
 segment 
an also be determined by the equation:�k(x) = 1k! k+1Xi=0 (�1)i  k + 1i ! x� i + k + 12 !kH(x� i + k + 12 ) ; (6)where k is degree of ea
h polynomial segment and H (x) is Heaviside step fun
tion. For furtheranalyze the equation (6) 
an be rewritten with re
ursive relation:�k (x) = (�k�1 � �0) (x) ; (7)where operator � denotes 
onvolution. If �k (x) is used for weight fun
tion, the approximationB-spline 
urve is: p (x) = 1Xi=�1 ri �k (x� i) ; (8)5



where ri is in�nite sequen
e of 
ontrol points. For the uniform 
ase, when k = 3 (
ubi
 
ase),formulation of the i-th B-spline segment is:pi (u) = h u3 u2 u 1 i 16 : 26664 �1 3 �3 13 �6 3 0�3 0 3 01 4 1 0 37775 26664 ri�1riri+1ri+2 37775 ; (9)where u 2 [0; 1). For the uniform 
ubi
 
ase derived from (1) and (4), or from the equation(6), four points 
ontrol ea
h segment. The segment of 
urve pi (u) will approximate the 
ontrolpolygon.Boundary 
onditions 
an be handled by using 
losed 
urves or 
ir
ular repetition of the 
ontrolpoints, by zero padding, or by setting some end 
onditions. For the sake of the simpli
ity 
ir
ularrepetition of the 
ontrol points will be applied. The derived form (9) is identi
al to the 
ubi
BC-spline derived by Mit
hell [10℄, by setting B = 1; C = 0:k(x) = 16 8><>: 3 jxj3 � 6 jxj2 + 4� jxj3 + 6 jxj2 � 12 jxj+ 80 jxj < 11 � jxj < 2otherwise : (10)With few arithmeti
 manipulations and reparameterization we 
an prove that (9) and (10) rep-resents the same re
onstru
tion form. It is obvious that for the re
onstru
tion in two dimensions(e.g. images) approximation spline 
auses blur, be
ause smaller or greater values only approx-imate gray levels of the image. In spite of that fa
t, many authors use BC-spline de�ned byMit
hell [6℄, [1℄, [12℄. In the three dimensions �ne details are lost, and surfa
e is smooth. Theinterpolation, as opposite to approximation of the 
ontrol points, will signi�
antly improve theresulting image.The properties of the B-spline 
urves or surfa
es extend in the image or volume re
onstru
tionvery well. These properties are 
ontinuity, 
onvex hull, lo
al 
ontrol, variation diminishing andrepresentation of the multiple values.The 
onvex hull property ensures that ea
h point in the 
urve lies in the 
onvex hull of nomore than k+1 nearby 
ontrol points. Thus, sample points bound the spa
e of the re
onstru
ted
urve, surfa
e or volume, so re
onstru
ted values will not es
ape outside the 
onvex hull. Thelo
al 
ontrol property makes far points less in�uential on the segment of 
onsideration. In theterms of signal pro
essing the lo
al 
ontrol property implies narrow impulse response of there
onstru
tion �lter. The impulse response of ideal re
onstru
tion �lter is sin
 fun
tion, whi
his very wide. The points far from the point of re
onstru
tion 
an have undesired in�uen
e.Variation diminishing property prevents variations of the 
urve, or variations in the graylevels of the re
onstru
ted image. The 
urve is not interse
ted by any straight line (or plane)more often than the 
ontrol polygon. For a 
ubi
 
ase, 
ontrol polygon 
onsists of the four 
ontrolpoints and there are at most three interse
tions between straight line and 
urve. This propertyis very important in the image re
onstru
tion, be
ause the human eye is very sensitive on small
hanges of the intensity, espe
ially in the areas where gray levels are 
hanging smoothly.
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4.2 The B-spline interpolationTo build the interpolation B-spline it is 
ru
ial to �nd the 
ontrol polygon of the approximationB-spline, su
h that the resultant 
urve passes through the requested points. For the 
ubi
 uniform
losed 
urve, the matrix form de�nes points of the 
ontrol polygon:26666664 p0p1:::pn�2pn�1
37777775 = 16 26666664 4 1 0 ::: 0 0 11 4 1 ::: 0 0 0::: ::: :::0 0 0 ::: 1 4 11 0 0 ::: 0 1 4

37777775 26666664 r0r1:::rn�2rn�1
37777775 ; (11)where pi is the known sequen
e of points that must be interpolated, and ri is unknown sequen
e ofpoints of the 
ontrol polygon. This expression also des
ribes a 
ir
ular 
onvolution. Evaluationof the inverse threediagonal matrix or the LU-de
omposition 
an be applied to �nd ri. Theresulting points ri are used in equation (1) to �nd the interpolating fun
tion. To fa
ilitate theanalysis it is 
onvenient to 
onsider the 
onvolution form (8) in the frequen
y domain. From thisequation in the frequen
y domain we 
an show that:P (!) = R(!)Bk(!) ; (12)where P (!) ; R (!) and Bk (!) are Fourier transforms of p (x) ; r and � (x) respe
tively. Thissuggests that spline 
oe�
ients 
an be determined by the inverse �ltering:R (!) = Sk (!)P (!) = 1Bk (!)P (!) : (13)Using equation (13) we 
an also determine frequen
y response of the B-spline interpolation (17).4.3 Hybrid re
onstru
tionIn the volume visualization re
onstru
tion is usually done with trilinear interpolation in thesample point. Trilinear interpolation is simple and it is not time 
onsuming be
ause it uses onlyeight neighbor elements for the 
omputation of the re
onstru
ted value. In further analysis were
onstru
t a fun
tion from sample points in two ways. First approa
h is hybrid and the ideais to magnify the volume element spa
e two times in ea
h 
oordinate dire
tion, using B-splineinterpolation. After magni�
ation, trilinear interpolation is used during the volume rendering.The se
ond approa
h is based on dire
t implementation of the B-spline interpolation in thevolume visualization algorithm. In se
ond approa
h 64 neighbor elements are required for the
omputation of ea
h re
onstru
ted value, but the volume element spa
e is eight times smallerthan in previous 
ase. Frequen
y responses of these two approa
hes will be derived to emphasizethe di�eren
e, whi
h us usually negle
ted.In order to 
ompare these two approa
hes we derive the frequen
y response for one-dimensional
ase. Frequen
y response of the �0 (x) is:B0 (!) = sin �!2 �!2 = sin
� !2�� : (14)7



Frequen
y response of the approximation B-spline 
an easily be determined from (7):Bk (!) = sin
k+1 � !2�� : (15)In order to �nd frequen
y response for the B-spline interpolation we have to determine Sk (!) in(13). For the B-spline interpolation, pre�ltering is required in order to �nd appropriate 
ontrolpolygon for the approximation B-spline. Frequen
y response of the pre�ltering is:Sk (!) = 1Bk (!) = 1�k(0) + 2 b k2
Pi=1 �k(i) 
os(i!) : (16)Frequen
y response of B-spline interpolation is de�ned by frequen
y response of pre�lteringSk (!) and with frequen
y response of B-spline approximation (15). For the 
ubi
 
ase, whenk = 3 frequen
y response of the B-spline interpolation is:S3 (!)B3 (!) = 3 sin
4( !2� )2 + 
os(!) : (17)For the hybrid approa
h the volumetri
 spa
e is �rst enlarged eight times (two times in ea
hdire
tion) and than the rendering with trilinear interpolation is applied. Frequen
y response ofthis hybrid re
onstru
tion is:H3 (!) = sin
2 � !4�� 
os4 �!4� 2 + 
os �!2 �2 + 
os (!) : (18)Figure 2 illustrates frequen
y responses of these two approa
hes. It is obvious that dire
tB-spline has better passband and stopband 
hara
teristi
s. Although the dire
t implementationof B-spline interpolation is better, overall 
hara
teristi
s of the hybrid re
onstru
tion when 
om-pared to other re
onstru
tion methods imply that the hybrid re
onstru
tion is also a

eptable.Figure 3.a illustrates a three-dimensional obje
t re
onstru
ted with the hybrid method, while�gure 3.b shows the result of dire
t implementation of the B-spline interpolation.5 ResultsSix di�erent re
onstru
tion �lters in the two and three-dimensional spa
e are used. Appliedre
onstru
tions are: sin
 fun
tion, nearest neighbor, approximation B-spline, three-linear in-terpolation, Mit
hell re
onstru
tion with BC-spline B = C = 1=3 and interpolation B-spline.Re
onstru
tion error is measured between initial and re
onstru
ted obje
t as mean square error(Fig. 4).Re
onstru
tion with sin
 fun
tion exhibits strong ringing artifa
t, although mean square erroris minimal. Nearest neighbor interpolation (Fig. 5.b 6.b) exhibits strong artifa
ts. Third orderB-spline approximation is very blurred (Fig. 5.
). In three dimensions the re
onstru
ted wavesget shallower (Fig. 6.
). Trilinear interpolation 
auses variations in the height of the 
ir
ular
rests (Fig. 6.d). Re
onstru
tion kernel proposed by Mit
hell is of the same size as the B-splineinterpolation. In the 2D images re
onstru
ted with B-spline interpolation the result is sharper8
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Figure 2: Frequen
y responses of hybrid re
onstru
tion (18) and dire
t implementation of B-spline interpolation (17).

Figure 3: Three-dimensional example of a) hybrid approa
h and b) dire
t implementation ofB-spline interpolation.
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Figure 4: Six di�erent re
onstru
tions: re
onstru
tion with sin
, nearest neighbor, 3-rd orderB-spline approximation, linear interpolation, Mit
hell re
onstru
tion with B = C = 1=3 and 3-rdorder B-spline interpolation.than image re
onstru
ted using Mit
hell kernel. In the three-dimensional spa
e the di�eren
eis in sharper and darker shadows on the waves. The best result is a
hieved for the B-splineinterpolation.Further illustrations are made for the hybrid approa
h. In visualization programs trilinearinterpolation is usually used, and optimization are often done for this interpolation. If we wantto enhan
e quality of the result, volume 
an be enlarged and than rendered with trilinear inter-polation. Dire
t implementation of the B-spline interpolation yields better result, but it 
an bealso used to enlarge volume and enhan
e the quality, when visualization programs with trilinearinterpolation are used.The two-dimensional examples (Fig. 5) and the three-dimensional examples (Fig. 6) of thesix re
onstru
tion methods are presented. For the three-dimensional example the test fun
tionproposed by Marshner and Lobb [9℄ is used.A
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Figure 5: Six di�erent re
onstru
tion methods in 2D. a) re
onstru
tion with sin
 fun
tion, b)nearest neighbor, 
) 3-rd order B-spline approximation, d) linear interpolation, e) Mit
hell re-
onstru
tion with B = C = 1=3 and f) 3-rd order B-spline interpolation.
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Figure 6: Six di�erent re
onstru
tion methods in 3D. a) re
onstru
tion with sin
 fun
tion, b)nearest neighbor, 
) 3-rd order B-spline approximation, d) linear interpolation, e) Mit
hell re-
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tion with B = C = 1=3 and f) 3-rd order B-spline interpolation.
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