Frequency Domain Analysis of B-Spline Interpolation

Abstract

This paper describes B-spline interpolation and compares it with other reconstruction methods, es-
pecially in three-dimensional space. We first consider the B-spline bases in the terms of convolution in
signal processing. Presented analysis requires careful usage of continuous and discrete representation of
B-splines. Emphasis is given to important difference between B-spline interpolation and approximation.
The difference is shown through frequency domain analysis, so we derive frequency responses of the B-
spline interpolation and approximation. We conclude by demonstrating the use of several reconstruction
filters and appropriate gradient estimators in the volume rendering. Exact reconstruction in the volume
visualization is very important in many industrial applications, such as material cavity control.
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1 Introduction

The volume data is generally in the form of large, uniformly spaced three-dimensional scalar or vector field
samples. One of the fundamental operations in visualization algorithms is the reconstruction of a continuous
function from a set of such samples using interpolation. The simplest approaches are, for example, the nearest
neighbor or trilinear interpolation. But the interpolation scheme can have a dramatic effect on the final
result. For the better interpolation Mitchell and Netravali [1] introduced class of cubic splines (BC-splines)
and classified the parameter space into different regions of dominant reconstruction artifacts.

Further investigations of the BC-splines are made by Marschner and Lobb [2]. In order to verify the
reconstruction they proposed error metrics for each of the reconstruction artifacts. For the Catmull-Rom
spline and its derivative, Moller, Machiraju, Mueller and Yagel [4] found the most accurate reconstruction
among the class of the BC-spline filters. In order to analyze, classify and estimate error of the applied filters,
they have used Taylor Series expansion of the convolution sum [3], [4].

The correct application of the B-spline interpolation is of the crucial importance. For image representation
and interpolation Unser, Aldroubi and Eden [5] introduce direct and indirect spline transform to achieve
efficient scaling mechanisms and resampling of the image. Unlike existing methods for the three-dimensional
reconstruction required in volume rendering, we propose interpolation B-spline. This concept will be illustrated
by deriving frequency response of the B-spline.

Reconstruction errors may produce incorrect information in the reconstructed volume, which as a conse-
quence produces invalid valuations and classifications in industrial applications.

2 B-splines

B-splines of order n are piecewise polynomial functions of degree n. These functions are differentiable n-1
times, or have derivations up to order n-1. Any continuous n-th degree polynomial piecewise function which
is also differentiable n-1 times can be represented using B-spline functions of the same order. In the case of

uniform spacing between knot points, such function can be represented in the form [5]:
o ]

Qn(m) = Z cn(k)ﬁn(m - k): (1)

k=—oc0

were B, (z) is n-th order B-spline function. Sequence ¢, (k) denotes B-spline coefficients. B-spline functions of
order n are determined by the equation:

n+1
B =g S0 (T ) @i B e - ),

where H (z) is Heaviside step-function. This equation is not suitable for analysis in frequency domain, because
it defines B-gpline function of n-th order on n-+1 consecutive segments. Moreover, equation is piecewise
polynomial of degree n which leads to repeated partial integration when calculating corresponding frequency
response. This is a very tedious process which can be avoided using convolution property of B-splines. If we
define By (z) with:

1, l<e<t

Bo(z) :{ 0: otherwise '’ (2)

then B-spline functions of any order can be defined with recursive relation:
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Figure 1: B-spline functions of order n from 2 to 5

Bn(@) = (Bn-1 * Bo)(2), (3)

where operator * denotes convolution. In other words, B-spline function of order m can be obtained by
convolving B-spline function of order 0 with itself n times. This is the well-known convolution property of
B-splines which will be used to perform B-spline analysis and interpolation in frequency (Fourier) domain.
Few B-splines are shown in Figure 1.

It is important to notice that ®, (x) approximates the values of ¢(k) (except for n=0 and n=1). Coefficients
¢(k) in the interpolation case must have specific values so their approximation leads to interpolation of f(k).

In the process of interpolation, we start with discrete sequence f(k). This sequence represents values of a
given function (signal) at the knot points'. The main goal now is to reconstruct the values of that function
at arbitrary position (point) on the real line. B-spline interpolation relies on the function ®,(z). Important
condition is that the values of ®,(x) at knot points must match the values of interpolated function f(z).
In other words, we have relation ®,(k) = f(k), where k denotes knot points. In order to interpolate given
discrete sequence f(k), one must first calculate sequence {c,(k)} of corresponding B-spline coefficients. This
sequence is uniquely determined by f(k). The most convenient way is to use matrix representation of the
problem. This approach reduces to inverting tridiagonal matrix using LU decomposition or Gauss elimination.
An alternative method is to use signal processing approach. In this case, sequence ¢, (k) is derived from f(k)
by discrete filtering.

3 Continuous Representation of Discrete Sequences

Analysis of B-spline interpolation involves both discrete and continuous relations. This may be impractical in
frequency domain analysis because of the requirement to use both discrete and continuous Fourier transform at
the same time. So, before proceeding with analysis of B-splines, it is useful to introduce appropriate mechanism
which will enable us to express discrete sequences in continuous form. In order to do that, we will introduce
impulse-functions and their properties.

First we introduce the term “impulse function” which denotes any function in continuous domain (or more
correctly: distribution) that has a form of the Dirac’s d-distributions train with varying amplitudes. Such
functions are completely determined with discrete sequence of amplitudes of the dé-distributions, and the
distance between two adjacent pulses. Here, only uniform case of spacing between pulses with distance equal
to one will be considered. Impulse functions will be denoted with “~” over the name of the function.

We may define two such (impulse) functions ¢(z) and () with:

B(2) = S o(k)s(z — k)
() =32 o Doz —1).

where (k) and ¢(I) are sequences of d-distribution amplitudes centered at position k. Then their convolution
h(z) is:

(4)

L Although spacing between knot points can be arbitrary, here it is assumed to be unity. This can be done without loss of
generality, because any other constant value of knot-point spacing can be reduced to unity.
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This equation shows that continuous convolution of impulse functions ¢(z) and ¥ (z) is equal to impulse
function h(z) whose amplitudes are formed as discrete convolution between sequences of J-amplitudes from

functions ¢(z) and t(z). Moreover, if we have impulse function ¢(z) and continuous function r(z), their

convolution @, (z) is given with:
o0

pr(@) = (@xr)(@) = D pk)r(z—k). (6)

k=—oc0

4 B-Spline Interpolation

As stated before, the problem of B-spline interpolation consists of two major steps: finding B-spline coeffi-
cients, and then calculating the values of function ®,(z) at the required position (using previously calculated
coefficients).
At knot points, by the definition of interpolation, functions ®,,(z) and f(z) must evaluate to equal values:
o0

Bu(k) = f(k) = D en(D)Bulk 1),
[=—00

which is discrete convolution analogous to parenthesizgd expression in (Equation (5). Nov&i we will apply men-
tioned property of impulse functions by substituting f(z), é,(z) and 8, (z) in place of h(x), $(x) and ¢ (z)
respectively into equation (5), which yields:

f(@) = (% Ba) (). (7)
Functions f(z), é,(z) and 3, (z) are impulse functions built from sequences f(k), cn (k) and 8, (k) respectively,
where we have:

Ba(x) = Y Bu(k)d(x — k). (8)
k=—o00
Equation (7) relates sequence f(k) and B-spline coefficients ¢, (k) in the form of continuous convolution. This
enables further analysis of B-splines using continuous Fourier transform. Transformation of identity (7) gives:
F(w) = Cn(w)Bn(w), (9)
B,,(w) are Fourier domain representations of f(z), é,(z) and f3,(z) respectively?.
) can easily be derived from (9) in the form

where F(w), Cp(w) and
Fourier transform of ¢, (x
~ 1 ~
Ch(w)==——F(w). (10)
B, (w)
This equation is valid only if B, (w) has no zeroes on the frequency axis w. This is satisfied for all B-splines.
Now we may define new impulse function p,(z) whose Fourier transform is

Pnle) =5 1(w) /

and write C,(w) = P, (w)F(w). In the spatial domain this equation has the form of convolution between f(z)
and p,(z), i.e.:

en(x) = (b * f)(@) . (11)
Property (6) implies that function @, (z) from (1) can be represented as continuous convolution:
D, (x) = (én x Bn)(x) - (12)

Function p,(z) represents discrete B-spline inverse filter. It enables computation of B-spline coefficients in
frequency domain. Substitution of ¢,(x) from (11) into (12) and using commutation property of convolution
gives:

P (z) = (f * P * Bn) (@) . (13)
In frequency domain, equation has the following form:
- Bp(w)
Fld, = F(w)= . 14
#ne)] = F) 5 (19)

This equation pair forms the basis for frequency domain analysis B-spline interpolation.

21t is well known property of Fourier transform which states that the frequency domain of impulse-function is always periodic.
Tilde character over the functions symbolizes their periodicity.



5 Frequency Domain Analysis

The properties shown in the previous section can simplify analysis of B-splines in frequency domain. To find
frequency response, we must first determine impulse response of the B-spline interpolation.

Its impulse response can be obtained by interpolation of single d-impulse centered at zero. The first step
is substitution of §-distribution as input impulse train function f(z) and calculation of corresponding B-spline
coefficients. This leads to: R

f(l‘) = (5(1’) = (15)

Polynomial function that corresponds to B-spline interpolation of §(z) as input function (impulse response) is

denoted as 7,,(z). As p,(x) is impulse function, it is clear that it may be expressed as:
oo

Pu(@) = ) pa(k)d(z — k).

k=—oc0

Equation (15) can be simplified using property expressed in (6):

oo

M (x) = (Pn * Bn) () = Z pu(k)Bn(z — k). (16)

k=—o0
Using impulse response, polynomial function ®,(z) from (13) can be expressed in the following form:
®n(z) = (f *mn)(x) .

Frequency response H,,(w) is given with

Hy(w) = B (w) By (w) = ?EZ;

; (17)

which follows from (14). It is evident that numerator B, (w) and denominator B, (w) must be known in order

to calculate frequency response of B-spline interpolation. As stated before, denominator B, (w) has no zeroes

on the frequency axis. There are certain problems with non-centered B-splines, where B,, (w) can have zeroes

for even values of n. In that case Bn(x) has non-stable inverse filter, but impulse response of such B-spline

interpolation is still stable if Fourier transform of continuous B-spline B,,(w) has zeroes at the same points as

B, (w). At such points there is additional condition on B, (w); it must approach zero “faster” than B,,(w).
Fourier transform of () can be easily found to be:

sin(¥) w
By(w) = w2 = sinc(=—), (18)
5 27T
where usual definition for sinc function is used:
. sin(mz)
sinc(z) = .
T

Frequency response of B-spline function of any order n can be derived from its definition (3), using the
convolution theorem for Fourier transform. Hence, By (w) is given with

Bn(w) = BM 1 (w) = sinc"“(%) . (19)

Numerator of (17) is frequency representation of sampled (impulse train modulated) B-spline function
Bn(x). As shown in (8) this function is completely determined by its samples (3, (k). Its Fourier transform is
given with:

Baw) = [ (55 Bu(k)S(z — k) e 7dx =

— 00

— 2202700 ﬂn(k)e_ikw .

Equation follows immediately after interchanging the order of the integration and summation using the ab-
sorption property of d-distributions:

(20)

00
/ 6(z — k)e “2dy = e~ kv
—oo
In order to calculate the second row of (20), which is the discrete Fourier transform of sequence 8, (k), we must
find values (samples) 3, (k) of B-spline functions. From recursive convolution relation (3) it is evident that

all B-splines are even functions, so we may state: 3,(—k) = B,(k). Moreover, B-splines are spatially-limited
functions so their sequence of samples 3, (k) is of finite length. The values of 3, (k) vanish for |k| > |n/2],



Table 1: Discrete B-splines from orders 1 to 5
L k [ o | 1 [ 2 |
B1(k) 1 0 0
B2(k) 3/4 1/8 0
Bs(k) 2/3 1/6 0
Ba (k)
Bs (k)

k) | 230/384 | 76/384 | 1/384
k) | 66/120 | 26/120 | 1/120

Table 2: Frequency responses of B-spline interpolation for n=1 to 5

() e )
Hs(w) Soine’ )
Hy(w) 115+17?52ciisn((5)(-§o)s(2w)
H; (w) 33+220ciisrz(j)(+2igo)s(2w)

were operator |-| denotes the largest integer value not greater than its argument. Table 1 shows positive half
of several discrete B-splines. Using those facts, expression from (20) may be rewritten:

3]
Bp(w) = Ba(0) + 2 Ba(k) cos(kw) .
k=1

Frequency domain of B-spline prefilter p, () is reciprocal of this function. According to (17), frequency
response of B-spline interpolation is a product between frequency domain representations of B-spline prefilter
and corresponding B-spline function. Table 2 shows frequency responses of few B-splines.

The difference between B-spline interpolation and approximation is apparent in frequency domain. Fre-
quency response of n-th order B-spline approximation is given with (19). On the other side, frequency response
of B-spline interpolation of the same order has additional factor: Fourier transform of prefilter. Although the
surface under every B-spline is equal to one, the increasing order of n causes its energy to decrease. When
order n in (19) runs towards infinity, this function has value one at w = 0 and zero otherwise. Such func-
tion would smooth any input impulse function and turn periodic one into a (continuous) constant function, a
non-periodic one into zero function. In other words, it preserves only DC component of interpolated function.
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Figure 2: Frequency responses of B-spline interpolation and approximation of order 5
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Figure 3: Frequency responses of B-spline interpolation (for order n =1, 3, and 5) and 3-rd order Catmull-Rom
spline

Frequency response of B-spline interpolation has previously mentioned additional factor from B-spline
inverse filter. This works as a “correction” to the B-spline, so its frequency response is wider. Increasing order
n leads to frequency response which is getting closer to the ideal lowpass filter. Figure 2 shows frequency
responses of B-spline approximation of order 5 and corresponding B-spline interpolation. The difference in the
interval [—m, 7] is obvious. Frequency responses from Table 2 are shown in Figure 3, where one can see that
increasing order of B-spline interpolation leads to the better approximation of ideal lowpass filter. Also shown
is a frequency response of Catmull-Rom spline, which was recommended by several researchers as a very good
reconstruction filter [1], [6].

6 Results

Presented analysis shows the advantages of the B-spline interpolation over the widely used (and often misused)
B-spline approximation. Various papers show that good numerical features of the reconstruction filter do not
imply acceptable optical features. For complete evaluation of proposed method, we will present obtained
results.

Four images shown in Figure 4 were generated by the same volume ray-casting algorithm applied to standard
“MRbrain” dataset. Before taking the projection, volume dataset has been downsampled from originally 2563
samples to 643 samples using gaussian filter, with apropriate cutoff frequency. Shown images differ in the
reconstruction and derivation filters which were used by ray-caster. As a derivative filter, we have used
derivation of reconstruction filter [6].

Figure 4a) shows image using trilinear interpolation. Strong visual artifacts are visible. Figure 4b) were
generated by the well-known Catmull-Rom spline. Artifacts are suppressed, but still very visible. Using B-
spline approximation of the 3-rd order yields Figure 4c). This image is virtually free of visible artifacts, but has
another disadvantage; B-spline approximation has excessivelly blurred the image. Finally, Figure 4d) shows
the resulting image obtained using B-spline interpolation of the 3-rd order. This image appears to be most
satisfactory.
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Figure 4: Four different reconstruction schemes; a) Trilinear interpolation, b) Catmull-Rom spline interpola-
tion, c) 3-rd order B-spline approximation, and d) 3-rd order B-spline interpolation
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