
SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 3902

Procedural Skeletal Animation

Proceduralna animacija skeletnog
modela
Bojan Lovrović

Zagreb, lipanj 2015.

iii

CONTENTS

List of Figures v

1. Introduction 1

2. Modeling constraints 2
2.1. Hinge joint . 3

2.2. Universal joint . 5

3. Skeletal animation 7
3.1. Loading the animation data . 7

3.2. Rendering the animation . 9

4. Skeletal simulation 11
4.1. Saving the ragdoll . 11

4.2. Binding rigid bodies to bones . 11

4.3. Binding bones to rigid bodies . 12

4.4. Further improvements . 13

5. Conclusion 15

Bibliography 16

iv

LIST OF FIGURES

2.1. Hinge joint between two rigid bodies 4

2.2. Universal joint between two rigid bodies 6

3.1. The order in which each vertex is multiplied to be transformed into

final (animated) position. 9

3.2. Image of the Khnum monster in it’s bind space (left) and while ani-

mating (right) . 10

4.1. Binding rigid bodies to bones . 12

4.2. Transition from animation to simulation (left to right) 13

v

LIST OF ALGORITHMS

1. Resolve constraint violation . 3

2. Compute Final Bone Transform . 10

vi

1. Introduction

As demand for skeletal animation rises, alternatives to slow and tedious process of cre-

ating animation key frames manually have shown great results. One of the alternatives

that produces realistic results faster is motion capture. Downside of this approach is

that we end up having animation data like before. This is irrelevant if it is displayed

just once in the content (e.g. video), but for applications in interactive content such as

video games, where it can be displayed multiple times, it becomes very noticeable.

Procedural animation fixes this problem because it is different every time it is dis-

played and also, since it is computed automatically, removes the need for animator’s

time and effort. Application of procedural animation vary, but are mostly used to rep-

resent some physical behavior like particle systems (smoke, fire, water), cloth, rigid

body dynamics, hair and fur, as well as skeletal animation. There are also other uses

like turning video game character’s head in the direction of the player when he/she is

near.

Procedural skeletal animation can be viewed as an extension of rigid body dynam-

ics and such approach of building one is presented in this paper. It is assumed there

already exists a rigid body dynamics simulating engine and from there it will be ex-

plained what approaches were used ranging from modeling joint-like constraints, all

the way to transforming from bone’s local space to rigid body’s and the other way

around.

1

2. Modeling constraints

A few words should be said about the underlying physics engine. It is an impulse-based

engine with micro collisions for collision resolution. What impulse based means is that

when two bodies have a physical contact and closing velocity, an impulse is applied

(as opposed to force) to remove it and perhaps add a certain amount of velocity in

opposite direction based on the coefficient of restitution1. Micro collisions is a way

the collision detection system works. It can only detect interpenetration once it has

occurred. This is often called a discrete, static or a posteriori collision detection. The

other way to implement such system is more expensive but provides extra precision.

Such systems are called continuous, dynamic or a priori collision detectors and they

take into account whole range of motion body will traverse in a time step. This results

in no interpenetrations at all. Basic implementation of such system is shown in [2],

as for implementation used here [5] is the best source of information. Uniform grid

has been used for broad phase and separating axis theorem for narrow phase collision

detection. Both of those algorithms can be found in [3].

There are two types of constraints used in presented implementation, hinge and uni-

versal joint. They both use the same constraint violation resolution system as shown in

algorithm 1. It was done in such way to be compatible with existing collision detection

resolver and since it uses depth of interpenetration as a value on which it bases it’s

search for most severe collision, an analogous value was required for joints. This is

where joint severity value is calculated. Both joints have their own implementation for

calculating this value, but it is fairly similar, as it will be shown in sections 2.1 and 2.2.

The algorithm 1 is based of the one described in [5]. Everything from the line 6.

down is updating the severity of all the joints that share a rigid body with the currently

updated joint. Each joint has pointers to rigid body instances whereas one body is a

child and the second one is a parent. Other joint data varies on concrete implementa-

1A coefficient that affects the amount of separating velocity two objects will have after they collide.

2

Algorithm 1 Resolve constraint violation
1: procedure RESOLVEALL(joints, iterationsNum)

2: calculateSeverity(joints)

3: for i← 0 ... iterationsNum do
4: joint = findMostSevere(joints)

5: resolve(joint)

6: parent← getParent(joint)

7: child← getChild(joint)

8: updateJoints← ∅
9: for j in joints do

10: if j == parent or j == child then
11: updateJoints← updateJoints ∪ j

12: calculateSeverity(updateJoints)

tion.

Math behind resolve function is overly complex to be fully covered here and has

books and papers based on this subject alone. There are, however, a few things worth

mentioning here for better understanding of the given results. The translation that

needs to be done to correct the position error is applied to each body in the amount

reciprocal to their mass. In other words, a body with greater mass than the other

member of the pair will move less to resolve the error. A similar approach is made for

rotation, but with inertia tensor used instead of mass.

2.1. Hinge joint

Hinge joint is used to simulate behavior of a knee or elbow amongst other parts of

skeletal system. It has just one degree of freedom which allows it to preform only two

types of movement: flexion and extension. It can be said that this movement can define

a circle. There are four values that describe given implementation. Two vectors: axis

and anchor and two scalars: back and front angle. Axis represents the direction in

which the rigid bodies will be able to rotate one relative to another. Anchor is a point

about which rotation will occur. Both axis and anchor are saved in parent’s and child’s

local space. Back and front angle are limits for rotation in both directions.

3

Figure 2.1: Hinge joint between two rigid bodies

Estimating hinge joint severity comes down to adding up four separately calculated

values. Position error tells how much has a child body moved it’s anchor point from

it’s parent’s anchor point. Therefore it is also the amount of translation needed to cor-

rect this error.

Sideways bend error is a value representing the amount of transformation needed

to return the bodies back on the circle previously defined. Equation 2.1 shows how

to get an angle between current direction and the one on the circle. All values are in

world space:

p = d · a (2.1)

d′ =
d− p · a
‖d− p · a‖

(2.2)

s = acos(d′ · d) (2.3)

Where d is normalized direction of a child rigid body and a is normalized joint axis.

Since severity is actually estimated position error, angle can’t be added to that sum.

When working with small angles, radius can be multiplied with it to get the translation

of the body, but whose radius, parent’s or child’s. The solution used here multiplies

only a fraction of total angle with the radius of a body and the rest with the radius of

the other one. How much rotation each body will get depends on their moments of

inertia. The resulting value represents translation and can be added to severity sum.

4

As there can’t be any rotation in the child’s direction2, orientation error gives the

amount of rotation needed to apply to both bodies to correct this error if it exists. This

value is computed easily as it comes down to working out an angle between axis from

parent’s and the one from child’s local space when they are both transformed into world

space. Angle is then used to get translation in a way analogous to that of the sideways

bend error.

Lastly the bend error is used to determine how much did bodes violate the con-

straint put by previously defined back and front angle values.

Listing 2.1: Severity in hinge joint consists of four separately calculated values.

float HingeJoint::GetPosErrorSeverity()

{

return mPosErrorSeverity + mSidewaysBendErrorSeverity +

mOriErrorSeverity + mFEBendErrorSeverity;

}

2.2. Universal joint

Actually the model used here is something between universal joint (with its constraints)

and ball-and-socket joint (with its additional degree of freedom). This results in a joint

that has three degrees of freedom and therefore allows its rigid body pair to rotate in any

arbitrary direction (up to a certain limit). Purpose for such constraint is application in

skeletal systems that require joints such as shoulder and hip. Three values are required

to define it. The anchor vector like in 2.1, the rotational freedom which sets boundary

on rotation in the body’s direction and bend freedom that limits rotation in the direction

perpendicular to both bodies direction.

2Body’s direction is defined as a vector going from it’s anchor towards its center.

5

Figure 2.2: Universal joint between two rigid bodies

Method for estimating severity is almost the same as it is for hinge joint. This time

only three values are taken into account. Position error, orientation and bend error are

the ones left and they have the same meaning as they did in 2.1.

6

3. Skeletal animation

This chapter will move away from physics and simulations a bit as it covers imple-

mentation of the animation handling system. Used file format will be introduced first,

following with the algorithm implemented for keyframe1 selection. Methods presented

here are based on [4].

3.1. Loading the animation data

File format that was used in this implementation was required to have exporters, in

widely used 3D modeling programs such as 3DS Max. It also needed to have some

sort of publicly accessible reference information, so that it is possible to write a parser

for it. Both of those requirements were satisfied by choosing DirectX (.x) file format

[1].

Listing 3.1: Data structure made to save vertex information.

struct SkinnedVertexFull {

XMFLOAT3 Position;

XMFLOAT3 Normal;

XMFLOAT3 TangentU;

XMFLOAT2 TexC;

XMFLOAT3 Weights;

BYTE BoneIndices[4];

};

Each vertex on animating mesh (usually called the skinned mesh) has values shown

in listing 3.1. BoneIndices represents four indices of four bones that influence the

vertex. As of how much exactly do they influence it, that information is stored in

Weights. Note that it only has three floating point values. This is due to fact that all

1A typical data structure used for animation. Each keyframe is defined with time and some position-

ing value (e.g. position and orientation).

7

four bone weights must sum up to 1, thus making it easy for fourth component to be

calculated in the vertex shader. Reason for this complication is that data in listing 3.1

must be sent to the graphics device and since this transition is a bottleneck of the whole

system, the amount of data should be minimized.

Listing 3.2: Structures used for loading and rendering animation data.

struct Bone {

// Name of the bone

std::string mName;

// Index of the bone’s parent (root has -1)

int mParent;

// Transforms from world to bind space of a bone

XMFLOAT4X4 mBind;

};

struct AnimationKey {

// Animation time in time stamps

UINT mT;

// Transformation matrix

XMFLOAT4X4 mW;

};

struct Animation {

// Index of a bone this animation is for

UINT mBone;

// All animation keys for this bone and this animation

std::vector<AnimationKey> mAnimKeys;

};

// All the data for one animation

struct AnimationSet {

// name of the animation

std::string mName;

// Animations for specific bones in the skeleton that,

// when combined, create animation set.

std::vector<Animation> mAnim;

// Length (in in time stamps) of the longest animation.

UINT mTotalTime;

};

8

Listing 3.2 should be pretty much self explanatory with just one exception that

should be elaborated. Variable named mBind is said to represent a transformation from

world to bind space. Reason for this is the fact that the vertices influenced by a bone are

not relative to the coordinate system of the bone (they are relative to the bind space2,

which is in the coordinate system the mesh is modeled in). So before transforming

certain vertices from bone’s local space to world space, we first need to transform the

vertices from bind space to the space of the bone. This is often called offset transfor-

mation and those matrices must be provided in the file. Described method can be seen

on figure 3.1.

Figure 3.1: The order in which each vertex is multiplied to be transformed into final (animated)

position.

3.2. Rendering the animation

In order to get the transformation from bone system to the world equation 3.1 is used

recursively.

toRooti = toParenti · toRootp (3.1)

Combined with method shown in section 3.1 and in equation 3.2

finali = offseti · toRooti (3.2)

results in algorithm 2.

The only matrix in algorithm 2 that is updated before every frame is the toParent[].

Linear interpolation is used to acquire translations in between keyframes and spherical

linear interpolation is used on quaternions. If any scaling data is contained within the

2Bind space of a bone is a matrix created when the mesh was binded to a skeletal system.

9

Algorithm 2 Compute Final Bone Transform
1: procedure SETFINALTRANSFORM(boneIndex, parentToRoot)

2: toRoot = matrixMul(toParent[boneIndex], parentToRoot)

3: final = matrixMul(offset[boneIndex], toRoot)

4: for i← 0 ... (numBones− 1) do
5: if isChild(i, boneIndex) then
6: SETFINALTRANSFORM(i, toRoot)

7: procedure COMPUTEBONETRANSFORMS

8: I = matrixIdentity()

9: rootIndex = getRootBoneIndex()

10: SETFINALTRANSFORM(rootIndex, I)

animation keyframe transformations it will be discarded, since it would only compli-

cate the solution and bring very little in terms of features.

After all the bone final transform matrices have been calculated on the CPU, they

are sent in an array-type structure to the graphics card. Vertex shader then takes only

four of those matrices from the array for each vertex, multiplies them with the world

transform of the mesh, and obtains four positions for said vertex. Then they are simply

multiplied with the four weights, each representing the influence of its bone and added

together to form a final position of the vertex.

Figure 3.2: Image of the Khnum monster in it’s bind space (left) and while animating (right)

10

4. Skeletal simulation

The final part of this paper merges sections 2 and 3 to create a popular procedural

skeletal animation called a ragdoll. It also explains some additional methods used to

achieve a more convincing physically based behavior.

4.1. Saving the ragdoll

Although majority of ragdoll setup could be determined by the program (e.g. bone

length, anchor position), there is a lot of detail that requires human input (e.g. bone

thickness, joint type). Said input therefore needs to be saved. If there is no file describ-

ing the ragdoll setup, the program will then use its assessment of possible values and

create one, which can be later tweaked by the user.

4.2. Binding rigid bodies to bones

In order to achieve realistic transition from animation to simulation, rigid bodies need

to be transformed to the positions and rotations of their respective bones. Before that

can be done, ragdoll needs to be initialized in bind position for joints to be created

correctly and symmetrically. What follows is disabling collision detection between

bodies in parent-child and siblings relations, so that joints have a complete control

over motion of rigid body pairs. Lastly, rigid bodies are transformed to final positions

using the same final matrices from section 3.2.

11

Figure 4.1: Binding rigid bodies to bones

The process can bee seen in figure 4.1. In the beginning of the simulation skinned

mesh is transformed into bind position, where the rigid bodies and joints are being

created (image on the left). Right after that (without rendering) whole mesh and all

the rigid bodies are transformed back to the position in which the animation was in-

terrupted (image on the right). Note that image (frame) on the left is never actually

displayed.

4.3. Binding bones to rigid bodies

Once the simulation has started and rigid bodies have been transformed to their’s re-

spective bone’s space, they are updated each frame and their new position is being

applied to the bone they are bind to. What is meant by that is simply setting the value

of bone’s final transform matrix to that of a rigid body’s current transformation. Be-

fore bone can be transformed by it’s rigid body’s transformation, it first must be trans-

formed into given rigid body’s local coordinates. This matrix will be conveniently

called boneInRigidBodySpace and is given by equation 4.1.

boneBindToWorldi = offset−1i

worldToRigidBodyBindi = rigidBodyTransformBind−1i

boneInRigidBodySpacei = boneBindToWorldi · worldToRigidBodyBindi

(4.1)

Where offset is discussed in section 3.1 and rigidBodyTransformBind is simply a ma-

trix that transforms rigid body to world coordinates in a binding position (left image on

12

figure 4.1). Note that this matrices are being calculated right after the model has been

loaded, since only bind space information is required and those are constants provided

by the model file.

With that out of the way, calculating bone final transform is straightforward and is

given by:

worldToRigidBodyi = rigidBodyTransform−1i

boneF inali = boneInRigidBodySpacei · worldToRigidBodyi · world−1 (4.2)

Where rigidBodyTransform transforms rigid body to world space in current simula-

tion position. The reason behind multiplying everything with inverse world transform

is in that after applying worldToRigidBody vertices are already in world space and as

described in section 3.2, everything is transformed by the world matrix in the shader.

Naturally transforming something from world space to world space doesn’t make sense

and results in errors. Therefore putting the inverse world transform in the end of equa-

tion 4.2 cancels the world transform in the shader.

Figure 4.2: Transition from animation to simulation (left to right)

4.4. Further improvements

One part that is still missing and is really having a negative impact on how realistic

simulation looks is kinetic energy of the bones. When an animation starts, each bone

moves in it’s own direction and therefore has it’s own kinetic energy. This data is saved

each frame using equation:

13

veli =
pi − pi−1

∆t
(4.3)

Where i is a number of the frame, p is position and delta time is time passed from

the last frame to the current one. This results in velocity for each bone in animation

and when those velocities are passed to rigid bodies, kinetic energy is preserved. Note

that only linear kinetic energy is being taken into consideration and rotational is being

discarded. This approach, although not as precise, simplifies code and makes it run

faster than it would if rotational kinetic energy was also calculated.

Method not implemented here but often used is damping. It could easily be one of

the first next features to add to a system described here. Damping allows joints to try

and slow down rigid body pair with excessive relative velocities. This results in a more

realistic physical behavior since there is always friction present, and when simulating

joints in humans and animals, there is an illusion of muscle providing resistance.

14

5. Conclusion

Although it can impact application’s performance, procedural skeletal animation has

proven, during the years, as a great way to decrease workload and improve realism.

Consequently, it is a widespread practice to use it in animation and video game indus-

try.

The results of this implementation were satisfactory, with the only downfall being

the fact that user needs to tweak a text file in order to achieve better simulation, which is

an easily fixable problem. Other than that, the simulation is providing infinite amounts

of "animations" whenever needed, exactly what the purpose was.

15

BIBLIOGRAPHY

[1] https://msdn.microsoft.com/en-us/library/windows/

desktop/bb173015(v=vs.85).aspx.

[2] David H. Eberly. Game Physics (Second Edition). 2010.

[3] Christer Ericson. Real-Time Collision Detection. 2005.

[4] Frank D. Luna. Introduction to 3D Game Programming with Directx 11. 2012.

[5] Ian Millington. Game Physics Engine Development. 2007.

16

Proceduralna animacija skeletnog modela

Sažetak

Ovaj rad objedinjuje sustav animacija sa sustavnom za simulaciju gibanja krutog

tijela u cjelinu koja omogućava proceduranu animaciju skeletnog modela. Obrad̄en

je postupak izrade zglobova koji služe za spajanje krutih tijela, objašnjen je postupak

animacije skeletno modela, te predočene su strukture podataka koje su korištene. Na

kraju je predstavljen način na koji je implementirano konačno riješenje te dodatno

metode za dobivanje na kvaliteti simulacije.

Ključne riječi: skeletalni model, fizikalna simulacija, proceduralna animacija

Procedural Skeletal Animation

Abstract

This paper encapsulates animation system with rigid body dynamics in a unity that

enables procedural skeletal animation. Procedure for creating joints that connect rigid

bodies and procedure for skeletal model animation are described. Data structures used

are also described. At the end, the final result is presented as well as the additional

method for improving quality of the simulation.

Keywords: skeletal model, physics simulation, procedural animation, ragdoll

