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1. Introduction

Ever since OpenGL 1.0 was released in 1992, the computer hardware industry has

been continuously improving on what GPUs are capable of. Today’s graphics cards

are boasting FP performance of over 10 TFLOPS, making them more than 10
12 times

faster than the ones initially released with OpenGL 1.0. While OpenGL has changed

over the last 20 years (current version 4.6), it can no longer extract the full potential

of the graphics cards built with modern architectures. This is why Vulkan was created,

a new API designed from the ground up for the modern GPU architectures. It is a

more advanced API, leaving more control in the hands of the application, whereas in

OpenGL a lot of operations were handled by the GPU drivers.

Modern graphics cards have reached another important milestone within the last

few years. While realtime rendering has been done almost exclusively using rasteri-

zation, it has now become possible to render significant parts of the scene using ray

tracing, such as shadow, reflection and global illumination. There are implementations

today that even render the whole scene solely using ray tracing. A whole new pipeline

has been created for modern graphic APIs (including Vulkan) that can utilize hardware

to accelerate certain aspects of ray tracing, most notably ray triangle intersections. This

paper will first explore how to efficiently represent voxelized space on the GPU and

then render it using the new ray tracing pipeline.
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2. Used tools and technologies

2.1. C++

C++ is a primarily object-oriented programming language. It was developed by Bjarne

Stroustrup as an extension of the C language and was initially standardized by ISO in

1998, the current standard being C++17. Due to its speed and low-level memory man-

agement capabilities, it became the first choice for the development of 3D applications.

2.2. Vulkan

Vulkan [6] is a graphics API released on 26th February 2016 by the Khronos con-

sortium, an open industry consortium consisting of over 150 software and hardware

companies. It is a cross-platform graphics and compute API which is constantly be-

ing worked and expanded upon. The current version, and the one used in this paper,

is 1.2. While it is capable of better utilizing the GPU resources, it is not meant as a

replacement for OpenGL which still works very well for most use cases. In Vulkan

however, the application has a lot more control (and by extent, responsibility) over the

application. A lot of features and functions that were handled and synchronized by the

driver are now up to the application to deal with and control.

Vulkan is released as a C99 header file. Since its initial release, more than several

different bindings for various languages have been created, including the ones for C++,

C#, Python, Java, Haskell and many others. There is a binding that even allows for

Direct3D 9 applications to run over Vulkan.

Along with Vulkan, a new standard for programmable shaders was developed,

SPIR-V. It can be compiled from GLSL (and recently HLSL) source code ensuring a

more precise interpretation of the specification, addressing many issues that stemmed

from GLSL and HLSL shaders behaving differently on different vendor hardware.

Throughout this paper, Vulkan 1.2.141 is used via C++ bindings.
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2.3. LunarG SDK

LunarG SDK is a Windows and Linux compatible Vulkan SDK which provides the

various components needed to develop a Vulkan application, including Vulkan loader,

Vulkan layers, debugging tools, SPIR-V tools, Vulkan runtime installer, documenta-

tion, samples and demos.

2.4. GLFW

GLFW is a Graphics Library FrameWork originally developed for OpenGL. It a simple

API that supports Vulkan today and is used for creating windows and surfaces, as well

as receiving inputs and events.

2.5. Optix denoiser

Optix denoiser [2] is a part of the Nvidia Optix SDK that can be used standalone. It

takes noisy images produced by ray tracing and outputs a denoised image. While a

more advanced variant that takes two additional images - one representing the albedo

colour of each fragment and the other with the normal of each fragment exists, it is not

used in this paper.
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3. Representation of voxelized space

using greedy meshing

Voxelized space is represented by discrete elements at regular intervals, called vox-

els. Each voxel contains a single value, denoting whether it is opaque or transparent.

Opaque voxels will be drawn, while transparent voxels will be treated as empty. To

manage them more easily, groups of 32x32x32 voxels are grouped into chunks. Both

raster and ray tracing pipelines used in this paper require an input in form of primi-

tives. Since most hardware works fastest with triangle primitives, chunks need to be

transformed into a 3D mesh of triangles.

3.1. The naive method

The simplest way to generate a mesh from a chunk is to iterate through every voxel and

check whether it is opaque or not. If the voxel is opaque, two triangles are generated

per voxel side, for a total of 12 triangles per voxel. The worst-case scenario is a chunk

filled with opaque voxels and in that case, the algorithm creates 393,216 triangles.

Despite this, the method is fast and each voxel relies only on its value.

3.2. Optimizing the naive method

Simple optimization can greatly reduce the number of triangles created by the naive

method. Each neighbouring voxel is checked and a pair of triangles is created only if

the neighbour is transparent. The worst-case scenario from the previous example gen-

erates only 12,288 triangles. However, unlike for the previous algorithm, the worst-

case scenario for this algorithm is a chunk filled 50% with voxels spaced in a checker-

board pattern. In this case, the number of triangles created is 196,608, exactly one half

produced by the naive method. This will be the worst case for every other algorithm
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explored.

3.3. Greedy meshing

Unlike previous methods that analyse the chunk voxel by voxel, greedy meshing works

by dividing the chunk into slices parallel to each of the orthogonal planes. Since each

slice has two faces (horizontal slice has the top and the bottom face), the actual number

of slices is six. For each slice, the algorithm looks for adjacent voxels and merges them

into bigger rectangles. The algorithm creates only 12 triangles for a chunk that is 100%

filled with opaque voxels. One of the most important benefits of this algorithm which

may not be apparent right away is the fact that the triangle mesh is divided into slices.

When a voxel is updated, instead of re-meshing the whole chunk, only six slices that

lie on the surfaces of the updated voxel need to be re-meshed.

There are two optimizations made for this algorithm:

– Chunks are padded with a single transparent block on each side, which removes

the literal edge case.

– Meshes are often stored as a pair: a list of (unique) vertices and a list of indices.

Since in most models a single vertex is shared between multiple triangles, this

reduces the mesh memory footprint anywhere from 50% to more than 90%.

– This implementation assumes there will be a lot of chunks created. This is why

only a single vertex array is created. This array store every possible vertex in a

chunk. A chunk can still be uniquely identified by its index array.

On the following page the algorithm that processes slices parallel to the YZ plane

can be found. The inputs are a three-dimensional array representing a chunk (padded

with the air around it) and an integer which denotes which side of the slice is being

processed, while the output is the index array. There are several things to note:

– meshed is a temporary array that keeps track of already processed voxels,

updateMeshed updates it every time a new quad is added to the list

– pushRectangels adds six new indices to the index array

– getVertexIndex gets the index of a particular vertex in the vertex array

– P_SIZE is the padded size of a chunk (34 for a 32x32x32 chunk) while

CHUNK_SIZE is the actual size of the chunk (32 for a 32x32x32 chunk)
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1 std::vector<uint32_t> ChunkGenerator::generateXSlice(const bool

blocks[CHUNK_PADDED_SIZE][CHUNK_PADDED_SIZE][CHUNK_PADDED_SIZE], int32_t side)

const {

2 std::vector<uint32_t> slices;

3 for (uint32_t i = 1; i < CHUNK_SIZE + 1; ++i) {

4 bool meshed[CHUNK_SIZE][CHUNK_SIZE] = {};

5 for (uint32_t j = 1; j < CHUNK_SIZE + 1; ++j) {

6 for (uint32_t k = 1; k < CHUNK_SIZE + 1; ++k) {

7 if (meshed[j - 1][k - 1] == false

8 && blocks[i][j][k] == true

9 && blocks[i + side][j][k] == false) {

10

11 uint32_t dim1 = k - 1;

12 do {

13 ++dim1;

14 } while (meshed[j - 1][dim1 - 1] == false

15 && blocks[i][j][dim1] == true

16 && blocks[i + side][j][dim1] == false

17 && dim1 < CHUNK_SIZE + 1);

18

19 uint32_t dim2 = j + 1;

20 do {

21 bool holeOrObstructionFound = false;

22 for (uint32_t m = k; m < dim1; ++m) {

23 if (blocks[i][dim2][m] == false

24 || blocks[i + side][dim2][m] == true) {

25 holeOrObstructionFound = true;

26 break;

27 }

28 }

29

30 if (holeOrObstructionFound) {

31 break;

32 }

33

34 ++dim2;

35 } while (dim2 < CHUNK_SIZE + 1);

36

37 updateMeshed(meshed, j, k, dim1, dim2);

38

39 if (side == -1) {

40 uint32_t v1 = getVertexIndex(i - 1, k - 1, j - 1);

41 uint32_t v2 = getVertexIndex(i - 1, k - 1, dim2 - 1);

42 uint32_t v3 = getVertexIndex(i - 1, dim1 - 1, j - 1);

43 uint32_t v4 = getVertexIndex(i - 1, dim1 - 1, dim2 - 1);

44

45 pushRectangle(slices, v1, v2, v3, v4);

46 }

47 else {

48 uint32_t v1 = getVertexIndex(i, k - 1, j - 1);

49 uint32_t v2 = getVertexIndex(i, dim1 - 1, j - 1);

50 uint32_t v3 = getVertexIndex(i, k - 1, dim2 - 1);

51 uint32_t v4 = getVertexIndex(i, dim1 - 1, dim2 - 1);
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52

53 pushRectangle(slices, v1, v2, v3, v4);

54 }

55 }

56 }

57 }

58 }

59 return slices;

60 }

Listing 3.1: Code for handling chunk slices parallel to the YZ plane
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4. What is ray tracing and how it

compares to rasterization

The goal of both rasterization and ray tracing is to take a scene made out of primi-

tives (most often triangles) and transform it into a two-dimensional image that can be

rendered to a screen. How they both go about doing that is vastly different.

4.1. Ray tracing overview

Various light sources in our environment launch photons into their surroundings. Those

photons bounce off different surfaces and some of them land in our eyes. Simulating

every photon that a light source produces is neither viable or very efficient. Instead,

in ray tracing, only the photons that hit the eye of the observer are traced back to

their source. For each pixel of the screen, a ray is traced from the eye of the observer

through the pixel and into the scene. This ray is called the primary ray. From the

closest intersection of the ray with the scene geometry, several new rays can be formed

and traced:

– Reflected ray

– Refracted ray

– Shadow rays

Reflected and refracted rays will be traced through the geometry of the scene, po-

tentially creating new hits. The process will recursively repeat until a certain depth, or

until the contribution of the ray becomes too insignificant. The shadow rays are traced

towards the light sources of the scene. If they do not intersect anything between the

hit and the light source, the ray origin is considered lit by that light source. If the light

source is a point light, a single ray is sufficient, generating hard shadows. For area

lights, several points on the light surface are sampled and a ray is traced to each of

them. This enables the generation of more realistic soft shadows.
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The approach described above will generate an image that will look realistic, but

with a lot of noise, especially if area lights are used. This can be dealt with in two

ways:

– Tracing more rays per pixel - instead of tracing a single ray through the centre

of the pixel, multiple points on the pixel are sampled and a ray is traced through

each. The final colour of the pixel is then the average result of each of the rays.

For the image to converge, ie. for noise to be removed, the required number of

rays per pixel is usually over a hundred, or even over several thousand. This is

not viable for real-time ray tracing on current hardware, but will produce the

results that are closest to the ground truth.

– Using a denoising algorithm on the final image - the final image can be pro-

cessed by an algorithm that removes the noise. The image can often be sup-

plemented with additional data, like the image of the scene that is uniformly

lit (which can be a product of raster pipeline) or an image that instead of the

colour, holds the value of the normal of each pixel of the image. This method

is much faster and the state of the art denoising algorithms today will often

produce results that are almost indistinguishable from the ground truth.

An algorithm called path tracing takes ray tracing a step further. Once a hit is

found, instead of tracing only several specific rays, many rays are generated in random

directions. This method is used for offline rendering, where the quality of the image is

more important than the speed at which it can be produced.

4.2. Rasterization overview

The scene is divided into multiple models which are represented by a list of vertices

and their attributes, such as position or normal. These are given to the vertex shader

as an input. The vertex shader can also take constant data as another type of input.

These are often camera and light positions. Vertex shaders are fully programmable

and are most often used to manipulate the position, orientation and scale of the models

being drawn. Vertex shader outputs a vertex for each vertex it receives. The GPU

then performs primitive assembly, creating triangles out of three vertices. Triangles

that are completely or partially out of the screen are clipped. It is then that the actual

rasterization happens. Each of the triangles is discretized into fragments, which are

then sent to the fragment shader. The fragment shader is where most of the light

calculations happen. The shaded fragments are then displayed on the screen as pixels.
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While this method is a lot faster than ray tracing, it is incapable of simulating

shadows, reflections and other physical effects without using specialized structures and

algorithms. Even then, the results are often noticeably inferior to ray traced images.

Image 4.1 demonstrates the visual difference between rasterization and ray tracing

in Minecraft.

Figure 4.1: Ray tracing (left) vs. rasterization (right) [3]
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5. Overview of Vulkan and its ray

tracing extension

While OpenGL is still continuously being updated, there is only so much that can be

done for an API that is almost three decades old. This is why Vulkan was created,

designed from scratch with the architecture of modern graphics cards in mind. It is

a cross-platform graphics and compute API that can run on a variety of operating

systems and devices. Due to all of this, Vulkan is a complex and extremely verbose

API. While on the surface it might look like it is a lot more complex than OpenGL, the

difference is much smaller than it appears to be. A lot of complexity (and verbosity)

comes from the fact that a lot of responsibility (and by extension, control) has been

shifted from the driver to the application. As a result, a hello triangle program that

might have taken 20 or so lines in OpenGL 1.0 now takes over 900 lines of code in

Vulkan [1].

Several key points make Vulkan more performant and suitable for modern systems

than OpenGL:

– Low API overhead. Instead of issuing commands to the device one by one,

multiple commands are recorded to command buffers which are then submitted

to the GPU.

– API makes no guarantees about the order of execution of commands recorded

to the submitted command buffer. The application needs to use pipeline and

memory barriers to create dependencies between commands. In a well-written

application, this means that commands will only be blocked by the commands

they depend on. This extends to other mechanisms as well, often needing ex-

plicit dependencies to be stated, giving the driver the freedom to arrange the

workload in the most optimal way.

– API has been written with multicore CPUs in mind. While it is not possible

to concurrently record commands to the same command buffer from multiple
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threads, it is possible to create and (concurrently) record commands to sec-

ondary command buffers which can then be tied together in a primary command

buffer.

– Application controls memory allocations. In OpenGL, all device memory allo-

cations are managed by the driver, whereas in Vulkan all memory allocations

need to be explicitly managed by the application.

– Most objects in API are immutable. While this makes the API a bit more cum-

bersome to use, the driver can use this guarantee to make optimizations that

were not possible with OpenGL.

– Better debugging support. Vulkan introduces the concept of validation layers -

layers that can be placed between the application and the driver to ensure that

calls to the API are valid and well-formed.

5.1. Vulkan model overview

5.1.1. Instance and device

The first object to be created when using Vulkan is an instance (vk::Instance).

The application can use this object to specify which version of the API is used, enable

various validation layers and define other aspects of the instance. The instance is the

closest thing in Vulkan to OpenGLs global state. Once the instance has been created,

physical devices can be enumerated (vk::PhysicalDevice), each representing

specific Vulkan-compatible devices connected to the system. They can be queried for

their capabilities and extension support. The next step is to create a logical device

(vk::Device) derived out of one of the physical devices. From this point on, the

logical device facilitates most of the applications communication with the API.

5.1.2. Queues and command buffers

Most of the communication between the application and the device is done via com-

mand pools (vk::CommandPool), command buffers (vk::CommandBuffer) and

queues (vk::Queue). First, a command pool is created, connected to one of the

queues available from the physical device. One or more command buffers can then be

allocated from this pool. Once the commands are recorded to the command buffer, the

buffer can be submitted to the queue for the device to execute.
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5.1.3. Synchronization

Synchronization within buffers

All of the commands in a command buffer are executed asynchronously. Pipeline bar-

riers act as execution barriers between various commands, ensuring that the commands

are executed after the designated pipeline stages. Each pipeline barrier can reference

one or more image and buffer memory barriers (vk::ImageMemoryBarrier and

vk::BufferMemoryBarrier), determining the order of the operations over those

resources (eg. preventing reads on a buffer or an image before all writes have been

completed).

Synchronization between buffers

Submitting one command buffer before the other does not guarantee it will be ex-

ecuted first. On each command buffer submission, one or more binary semaphores

(vk::Semaphore) can be supplied. The supplied semaphores are either the

semaphores that the buffer needs to wait on before executing or the semaphores that

the buffer will signal once its execution is completed. Fences (vk::Fence) are used

similarly, but they enable command buffer synchronization with the application (they

are signalled by the GPU but unlike semaphores, they block CPU threads. For exam-

ple, they are used to prevent the CPU from presenting the image to screen before its

render is completed on the GPU. The VK_KHR_TIMELINE_SEMAPHORE extension

introduces timeline semaphores. They enable more complex dependencies to be ex-

pressed with a single semaphore holding several points in time instead of being forced

to use a binary semaphore between each of the steps.

5.1.4. Memory management overview

Every Vulkan object created by the application has a handle. Once an object is created,

the application has to keep track of it and destroy it once it is no longer needed. Most

Vulkan objects do not need additional GPU memory other than their metadata which

is handled by the driver. The two exceptions are pooled resources and application

managed resources.

Pooled resources

Two examples of pooled resources are descriptor sets and command buffers. A pool

object (vk::DescriptorPool or vk::CommandPool) is created from which
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the desired objects can then be allocated. The memory of these pools is managed by

the device driver, but its amout is specified by the application.

Application managed resources

The two most notable entries of this category are buffers (vk::Buffer) and images

(vk::Image). Once a handle to one of these resources is created, the application

must query for the memory requirements of the object and then allocate a device mem-

ory (vk::DeviceMemory) with suitable properties. This memory must then be

bound to the object. It is recommended to allocate a single device memory and bind

several objects at various offsets, especially since it is possible to have only 4096 de-

vice memories allocated at one time (on Windows at least, Linux does not suffer from

such limitations). Since most API calls that take buffers as arguments will often take

both offset and size, it is possible to use a single buffer for multiple purposes. This can

also be similarly done with images and image views (vk::ImageView), where the

image view can limit access to only a part of an image.

5.1.5. The swapchain and the framebuffers

The swapchain (vk::SwapchainKHR) represents a set of images that can be pre-

sented to the screen. This is a rare example where the driver handles the mem-

ory allocations for an image resource. These images can be presented to a surface

(vk::SurfaceKHR). vk::SurfaceKHR is an abstraction over several possible

surface types, ranging from Win32 surface, all the way to Android surface. Note that

both of these objects are a part of VK_KHR_SWAPCHAIN extension. Since Vulkan-

capable devices can only support compute, the ability to present to a surface is not a

part of the core specification but is included as an extension. When swapchain is used

with the raster pipeline, each image needs to be bound to a framebuffer

(vk::Framebuffer). It is possible to add more than one image to the framebuffer

- for example and unlike in OpenGL, the image for storing the data for the depth and

stencil tests needs to be explicitly created and bound.

5.1.6. The pipeline and shaders

There are three types of pipelines (vk::Pipeline) in Vulkan:

– Compute pipeline

– Graphics pipeline
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– Ray tracing pipeline

Pipelines are objects that define which shaders will participate in rendering and,

depending on their type, can define certain aspects of it. For example, settings on

how and if triangles are culled are set in the raster pipeline. Pipelines in Vulkan

are immutable, so to change almost anything in the pipeline (like swapping out a

shader), a whole new pipeline needs to be constructed. Since pipeline construction

is one of more time-intensive workloads in Vulkan, objects called pipeline caches

(vk::PipelineCache) can store parts of previously constructed pipelines which

are then reused when constructing new, similar pipelines. It is also advised to con-

struct pipelines asynchronously and ahead of time. Shaders are encapsulated in shader

modules (vk::ShaderModule) which take a SPIR-V binary format. GLSL (and

more recently HLSL) source code can be compiled to SPIR-V binary format using

glslangValidator, but can also be compiled at runtime using the shaderc library. Both

glslangValidator and shaderc are distributed with LunarG SDK.

5.1.7. Descriptor sets and push constants

Descriptor sets (vk::DescriptorSet) are the interface between the shaders and

the data that to those shaders need to access. Each descriptor set has one or more bind-

ings. Various resources can be bound to a descriptor set like samplers, images, buffers

and acceleration structures (if the ray tracing extension is used). This is how materials,

textures, lighting and other scene data are passed to the shaders. Push constants are

a small buffer (often only 256 bytes) that can be written directly within the command

buffer (during its execution on the GPU). This is often used for a small amount of data

that is constant over the length of a frame, such as view and projection matrices, or for

data about the following draw call and in that case, it is updated before each new draw

call.

5.2. VK_KHR_ray_tracing extension

On 27th November 2018, Khronos released Vulkan revision 1.1.92.0 which introduced

VK_NV_ray_tracing extension, enabling the utilization of specialized hardware of

Nvidia Turing GPUs for real-time ray tracing. Roughly a year and a half later, on 17th

March 2020, Khronos released VK_KHR_ray_tracing extension that has several

advantages over the NV variant:
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– The extension is vendor-neutral, making it more likely for vendors other than

Nvidia to support it.

– Extension offers more flexibility in building acceleration structures.

At the time of writing this paper, the KHR variant of the extension was still in beta.

The extension itself introduces several new concepts to Vulkan:

– Acceleration structures

– Ray tracing shaders

– Shader binding table

– Ray tracing pipeline

5.2.1. Acceleration structures

Acceleration structures (vk::AccelerationStructure) are objects used to ac-

celerate ray tracing. Instead of testing each ray for intersection with every triangle

in the scene, a BVH that reduces the complexity of the search from O(n) to O(logn).

There are two types of acceleration structures in the API. Bottom level acceleration

structures (BLAS) can hold one or more geometries. Each geometry consists of a list

of vertices which can be indexed. Top level acceleration structures (TLAS) reference

BLASes. Each instance of BLAS is given a unique identifier and transformation (even

if it references the same BLAS) which is later available in the shader. This enables the

ray tracing equvivalent of rasterization model instancing.

Acceleration structures are usually built on the GPU, but with the new extension,

they can now be built on the CPU and uploaded to the GPU later. In cases where GPU

is under a heavy load while the CPU has one or more cores idle, acceleration structure

can be built on those cores instead, balancing the workload between the GPU and the

CPU.

The actual process of building the acceleration structure is handled by the driver.

The driver can be instructed to build the structure with ray tracing speed or speed of

the build itself being prioritized. Acceleration structures, if so specified during their

creation, can also be updated, which is faster than rebuilding them. Not all acceleration

structures are suitable for updates - where a tree with branches swaying in the wind

would be an example of a good acceleration structure to update, while one depicting

an object which is exploding would not.
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5.2.2. Ray tracing shaders

This extension introduces several new shader types:

– Ray generation shader

– Any hit shader

– Closest hit shader

– Miss shader

– Intersection shader

– Callable shader

Since the shaders themselves are not a part of Vulkan API, but SPIR-V specifica-

tion, they are introduced through a SPIR-V extension SPV_KHR_ray_tracing.

Ray generation shader

Ray tracing pipeline is entered similarly to a compute pipeline. A workload is sub-

mitted in three dimensions. The first two dimensions are most often used as screen

dimensions in pixels, while the third one is usually set to 1, or can be used as a num-

ber of samples per pixel. For each 3D coordinate, a ray generation shader is invoked.

The most common uses of this shader are to calculate the trajectory of the ray passing

through the designated pixel, invoke ray tracing (traceRayEXT function) and write

the result to an image. Segment of the ray that the tests will be performed on has to be

defined, serving a purpose similar to the far and near planes of the scene frustum.

Any hit shader

Once traceRayEXT is invoked, the hardware tests for intersections between the tri-

angles of the TLAS and the ray. This shader is invoked for each triangle hit. It is

advised to keep these shaders short and fast since they get invoked many times per ray.

This shader is optional and need not be implemented.

Closest hit shader

This shader is invoked over the closest intersection found in all of the geometry stored

in the provided TLAS.
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Miss shader

This shader is invoked if no intersection is found between the TLAS and the ray. This

can be used to sample a cube map to render a skybox around the scene or to signal that

there is no obstruction between the ray origin and the ray target, which is very useful

for shadow testing.

Intersection shader

While the geometry is usually defined as a set of triangles, it can also be defined as a set

of 3D objects, as long as they can fit within an axis-aligned bounding boxes (AABB).

If that is the case, the testing will be done against the AABBs and the intersection

shader will be invoked on a hit, enabling calculations determining if and how the ray

hits the bounded object. This shader is required only if TLAS contains a BLAS whose

geometry type is AABB.

Callable shader

Callable shaders are shaders that can be called from other programmable shaders. Due

to the parallelism of the GPU, the driver is able to better optimize such calls opposed

to if functions within the shaders are invoked.

5.2.3. Shader binding table

With standard rasterization, various objects with different properties can be rendered

one after another, swapping the shaders in and out as needed. When it comes to ray

tracing, the ray can hit any object in the scene, requiring all of the shaders to be avail-

able at the same time. The shader binding table holds the handles to every shader that

can be invoked during the ray tracing process. The handles are divided into groups.

Ray generation shader and miss shaders are each in their own separate groups, while

any hit shaders and closest hit shaders form hit groups. Shader binding table is refer-

enced in two contexts - firstly, when initially invoking the ray generation shaders from

within the command buffer and secondly, from within shaders for recursive ray tracing.

5.2.4. Ray tracing pipeline

Ray tracing pipeline is quite a bit simpler than it’s raster counterpart since there is not

much to set up. Its main use is to bind the various shaders and groups into a single

object.
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6. Implementation of a simple ray

traced application

The goal is to create an application that renders a voxelized space. The application can

be run in two configurations:

– using a raster pipeline

– using a ray tracing pipeline

Raster pipeline has been developed first to be used as a baseline and to compare

it’s performance to the performance of the ray tracing pipeline.

The application can be divided into three main parts:

– Generation and meshing of chunks

– Rasterizer

– Ray tracer

6.1. Generation and meshing of the chunks

This part of the application has mostly been covered in chapter 3. Each block in the

chunk can either be a completely transparent air block or a completely opaque solid

block. Application can be customised by defining the dimensions of a chunk (NxNxN,

all dimensions are the same), the number of chunks that will be rendered (MxMx1, all

chunks are laid on the same XZ plane) and the percentage of the chunk that is solid. For

this example, each chunk is 32x32x32 blocks in size, there are 32x32x1=1024 chunks

and 10% of the chunks are solid blocks. The chunks are generated in three steps:

– A vertex array is created, containing each of 33x33x33=35,937 possible vertex

positions. A single array is used for all of the chunks.

– For each chunk, a three dimensional array is filled with random values:

blocks[i][j][k] = rand() % 10 == 0;
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19 vec3 pos;

20 };

21

22 layout(binding = 0, set = 0) uniform accelerationStructureEXT

23 topLevelAS;

24 layout(binding = 2, set = 0, scalar) uniform UniformBuffer

25 {

26 vec3 lightSpan[4];

27 uint reflectionsEnabled;

28 uint shadowsEnabled;

29 } UB;

30

31 layout(binding = 3, set = 0, scalar) buffer Vertices {

32 Vertex v[];

33 } vertices;

34

35 layout(binding = 4, set = 0) buffer Indices {

36 uint i[];

37 } indices[];

38

39 layout(binding = 5, set = 0) buffer Sample {

40 vec2 samplePoints[];

41 } sampleSets[];

42

43 layout( push_constant ) uniform PushConstants {

44 mat4 viewInverse;

45 mat4 projInverse;

46 vec3 cameraPosition;

47 } push;

48

49 float PHI = 1.61803398874989484820459; // Golden Ratio

50 float goldNoise(in vec2 xy, in float seed){

51 return fract(tan(distance(xy*PHI, xy)*seed)*xy.x);

52 }

53

54 vec3 sampleValue(vec3 a, vec3 b, vec3 c, vec2 offset) {

55 vec3 abDir = (b-a) * offset.x;

56 vec3 acDir = (c-a) * offset.y;

57

58 return a + abDir + acDir;

59 }

60

61 void main()

62 {

63 if (backPayload.depth == 0) {

64 return;

65 }

66

67 ivec3 ind = ivec3(

68 indices[gl_InstanceCustomIndexEXT].i[3 * gl_PrimitiveID + 0],

69 indices[gl_InstanceCustomIndexEXT].i[3 * gl_PrimitiveID + 1],

70 indices[gl_InstanceCustomIndexEXT].i[3 * gl_PrimitiveID + 2]);

71

72 vec3 v0 = vertices.v[ind.x].pos;
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73 vec3 v1 = vertices.v[ind.y].pos;

74 vec3 v2 = vertices.v[ind.z].pos;

75

76 vec3 first = v1 - v0;

77 vec3 second = v2 - v0;

78 vec3 normal = normalize(cross(first, second));

79

80 vec3 worldPos =

81 gl_WorldRayOriginEXT

82 + gl_WorldRayDirectionEXT * gl_HitTEXT;

83

84 if (dot(normal, worldPos - push.cameraPosition) > 0) {

85 backPayload.hitValue = vec3(0.0f);

86 return;

87 }

88

89 vec3 toLight[4];

90 toLight[0] = normalize(UB.lightSpan[0] - worldPos);

91 toLight[1] = normalize(UB.lightSpan[1] - worldPos);

92 toLight[2] = normalize(UB.lightSpan[2] - worldPos);

93 toLight[3] = normalize(UB.lightSpan[3] - worldPos);

94

95 float lightAngle[4];

96 lightAngle[0] = dot(normal, toLight[0]);

97 lightAngle[1] = dot(normal, toLight[1]);

98 lightAngle[2] = dot(normal, toLight[2]);

99 lightAngle[3] = dot(normal, toLight[3]);

100

101 float shadowFactor = 1;

102 if (UB.shadowsEnabled == 1 &&

103 (lightAngle[0] > 0

104 || lightAngle[1] > 0

105 || lightAngle[2] > 0

106 || lightAngle[3] > 0)) {

107

108 float tMin = 0.001;

109 vec3 origin = worldPos;

110 uint flags =

111 gl_RayFlagsTerminateOnFirstHitEXT

112 | gl_RayFlagsOpaqueEXT

113 | gl_RayFlagsSkipClosestHitShaderEXT;

114

115 uint obstruction = 0;

116 uint shadowSampleCount = 25;

117

118 uint index = int(

119 100

120 * goldNoise(

121 worldPos.xy * worldPos.zy,

122 worldPos.z + worldPos.x)

123 );

124

125 for (uint i = 0; i < shadowSampleCount; ++i) {

126 vec3 samplePoint = sampleValue(
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127 UB.lightSpan[0],

128 UB.lightSpan[1],

129 UB.lightSpan[2],

130 sampleSets[index].samplePoints[i]

131 );

132

133 float tMax = length(samplePoint - worldPos);

134 vec3 rayDir = normalize(samplePoint - worldPos);

135 isShadowed = true;

136 traceRayEXT(

137 topLevelAS,

138 flags,

139 0xFF,

140 0,

141 0,

142 1,

143 origin,

144 tMin,

145 rayDir,

146 tMax,

147 1);

148

149 if (isShadowed) {

150 ++obstruction;

151 }

152 }

153

154 shadowFactor = 1.0 / (1 + obstruction);

155 }

156

157 float diffuseFactor = (

158 lightAngle[0]

159 + lightAngle[1]

160 + lightAngle[2]

161 + lightAngle[3]

162 ) / 4.0;

163

164 vec3 lightBase =

165 shadowFactor

166 * diffuseFactor

167 * vec3(0.0f, 1.0f, 0.0f);

168

169 vec3 toEye = normalize(push.cameraPosition - worldPos);

170 vec3 reflectedToEye = -toEye - 2 * dot(normal, -toEye) * normal;

171

172 forwardPayload.hitValue = vec3(0.0f);

173 forwardPayload.depth = backPayload.depth - 1;

174

175 if (UB.reflectionsEnabled == 1) {

176 traceRayEXT(

177 topLevelAS,

178 gl_RayFlagsOpaqueEXT,

179 0xFF,

180 0,
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181 0,

182 0,

183 worldPos,

184 0.001,

185 reflectedToEye,

186 1000.0,

187 2);

188 }

189

190 backPayload.hitValue =

191 0.75 * lightBase

192 + 0.25 * forwardPayload.hitValue;

193 }

Listing 6.1: Closest hit shader used in the application

In the ray generation shader, a single primary ray per pixel is traced. When the

closest intersection with the ray is found, triangle ID, index array and vertex array

are used to determine the vertices and the normal of the triangle. The light source is

modelled as four coplanar points describing a rectangle. A dot product is calculated

between the normal of the hit triangle and vectors going from the intersection towards

each of the light corners. If at least one of the results is positive, a shadow test is

performed. The shadow test involves picking one of the sample sets from the array.

The samples are generated using multi-jittered sampling [5] on a unit rectangle. This

is then superimposed over the light source and, in this case, 25 samples are chosen. A

ray is traced from the intersection towards each of the samples and the shadow factor

is determined as a number of samples over (1 + number of obstructed samples). The

diffuse factor is calculated as an average of the dot product between the hit triangle

normal and the vector towards each of the corners of the light source. The shadow

factor and the diffuse factor are then multiplied with the colour of the triangle (in this

case, solid green) to get the base colour. If reflections are enabled, a new reflected

ray is traced from the intersection, repeating the whole process recursively up to a

predefined depth. On each layer of the recursion, the base colour of the current layer

and the base colour of the layer deeper in the recursion are combined in a ratio 3:1.

Once the resulting image is produced, if denoising is enabled, the image is sent to

the denoiser for post-processing. Either way, the image is then copied to the swapchain

and presented to the screen.
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6.4. Performance measurements

In this chapter, multiple application configurations are tested and compared. All of the

tests are run on a machine with specifications described in table 6.1.

Table 6.1: Specifications of the test machine

Component type Component used

CPU Intel Core i9-9900KS

GPU Nvidia GeForce RTX 2080Ti

RAM 32GB DDR4 3600CL16

The same scene is used for each test. It consists of 1024 32x32x32 chunks arranged

in a 32x32x1 pattern. 10% of each chunk is randomly filled with opaque blocks, but

the seed is set at the start of the program, so the same scene consisting of 30,917,848

triangles is generated on every run. Resolution is set to 1920x1080.

It takes roughtly 20 seconds for the application to start rendering in both raster and

render mode since about 80% of initialization time is spent on meshing the chunks.

Performance is calculated as an average frame time over a period of 5 seconds after

the application has been initialized. The camera is not moved during that period. The

frame time includes workloads on both the CPU and the GPU.

The first test is a comparison between the raster (image 6.3) and ray tracing (image

6.4) pipelines, the results can be viewed in table 6.2. There are no calculations in the

shaders, if a block is present, the pixel is coloured in a solid colour. Since the program

has to be recompiled to change the rendering technique, the camera is positioned in the

roughly the same position and orientation. The whole scene is visible in the frame.

Table 6.2: Rasterization vs. ray tracing

Test Average frame time

Rasterization 4.37ms

Ray tracing 1.13ms

Ray tracing is almost four times faster than rasterization. This result is unexpected,

especially since the implementation of the ray tracing pipeline is less parallel than the

rasterization one. Another contributing factor could be that a new value is written to
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The following tests compare the impact of shadows, reflections and denoising on

the frame times, the results are in table 6.3. All of these features can be toggled during

runtime, so each test is run on exactly the same frame. Reflections are set to 5 bounces,

while shadows are calculated using 25 samples.

Table 6.3: Rasterization vs. ray tracing

Test Average frame time

All off 1.00ms

Reflections only 2.09ms

Shadows only 8.14ms

Denoising only 16.47ms

Reflections + denoising 17.83ms

Shadows + reflections 19.12ms

Shadows + denoising 23.30ms

All on 34.82ms

Reflections seem to have a lower impact on performance than shadows since reflec-

tions trace only 5 additional rays per primary ray, opposed to shadows which trace 25.

Denoising seems to impact performance quite a lot, especially when combined with

other effects, especially shadows. Since the sole purpose of denoising is to smooth out

the shadows in the scene, there is not much point in turning denoising on if no (smooth)

shadows are present. It is also worth noting that reflections decrease the quality of the

denoised image. Since the shadowed surface is no longer of a solid colour, the denoiser

has additional data for which it has no way of filtering out. Using the earlier mentioned

advanced version of the denoiser with the additional input could improve the quality

of the result. Resulting renders can be seen in images 6.5 to 6.12
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6.5. Possible improvements and additions

The application can be improved in several ways. Firstly, the greedy mesher, while

meshing each of six slice sets concurrently, meshes them one chunk after another, and

does so on only six concurrent threads at a time. The concurrent code is also only

two times faster than the serial one, most likely due to the overhead of creating and

destroying threads. The CPU also never goes above 40% utilization, since it uses at

most 37.5% of threads available (on the test system). Using thread pools and generat-

ing all of the chunks in parallel could improve the performance significantly. Greedy

mesher is capable of processing chunks that are made of only two types of blocks.

Enhancing it to be able to use an arbitrary number of block types should be relatively

straightforward.

Light in the ray tracer is not attenuated, this feature could be implemented, but

would require the redesign of the way colours are blended.

The ray tracer only works with a single light source. Adding more light sources

would linearly increase the required number of rays per each intersection, so a different

approach would be required. Instead of taking all of the samples of all of the lights,

only a single sample could be taken per light source. This would still linearly increase

the required number of rays per intersection, albeit a bit slower. A step further would

be sampling only a certain amount of light sources per intersection and doing so only

for light sources that are within a certain distance from the intersection.

Figure 6.13: RTX in Minecraft [4]
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The ray tracing model does not account for colour bleed from nearby surfaces

which could be resolved similarly to shadows. Instead of a rectangular sample set, one

would be derived from a hemisphere. Relatively short rays would be traced towards

the sample points, blending the hit colours with the colour of the intersection.

Ambient occlusion could be implemented similarly to colour bleed, using hemi-

spheres. Each ray would be fairly short and tested whether it hits the a nearby surface

or not.

Denoiser currently only takes the ray tracing output image, but the API can also be

given additional information in the form of an albedo and a normal render. A raster

pipeline running parallel to the ray tracer could be set, writing this data to images that

could then be passed to the denoiser along with the ray tracing output image, producing

better results.

Currently, a scene is loaded at the start of the program and never changed. The

application could be altered to load and unload chunks as the player moves through

space. The time required to load the data from the disk and more importantly to build

the accelerations structures on the fly would have to be taken into account.

Image 6.11 demonstrates what can be done with ray tracing when properly im-

plemented. DirectX equvivalent of the Vulkan ray tracing extension was used to im-

plement reflections, shadows and global illumination in Minecraft. DLSS is used to

achieve playable framerates (>30FPS at 1080p on a GeForce RTX 2060 and above).
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7. Conclusion

Ray tracing simplifies many concepts which, when using rasterization, need to be sim-

ulated by complex algorithms. When properly implemented, ray tracing produces soft

shadows, accurate reflections and detailed global illumination, and does so inherently.

Its main drawback is its prohibitive cost - while GPUs today are technically capable

of running the algorithm in real-time, they just are not fast enough to do everything we

would like naively, requiring some kind of compromise:

– limiting ray tracing to only certain aspects of the scene (only shadows, only

reflections or only global illumination), while using rasterization for the rest

– ray tracing with a low number of samples per pixel, resulting in noisy images

that needs to be denoised

– ray tracing at lower resolutions using one of the upscaling techniques to get the

full resolution image

– accumulating lighting and other data over several frames, creating a higher

quality renders, but with visible lighting latency and artefacts

The methods enumerated above are only a few possible optimizations and many

implementations often use more than one of them. Especially interesting is rendering at

a lower resolution and upscaling - Nvidia has been developing a deep learning powered

technique called DLSS (Deep Learning Super Sampling) which runs in constant time

but produces very good results.

However drastic the advancements in ray tracing have been in recent years, the

(real-time) rendering industry has been using rasterization ever since GPUs were in-

vented, developing the field for more than 30 years. With that in mind, it is abundantly

clear that ray tracing will not be replacing rasterization in any foreseeable future. It will

be used more often though, especially as more powerful hardware becomes available.
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Interaktivan prikaz vokseliziranog prostora s Vulkanom uz sklopovski ubrzano

praćenje zrake

Sažetak

U ovom radu razrad̄en je prikaz konačnog vokseliziranog prostora upotrebom

sklopovski ubrzanog algoritma praćenja zrake. Uspored̄ena je standardna rasterizacija

s algoritmom praćenja zraka te su opisani prednosti i mane jednog nad drugim. Posebna

pažnja dana je načinu na koji Vulkan izlaže sklopovski ubrzano praćenje zrake kroz

ekstenziju VK_KHR_RAY_TRACING. Konačno, opisan je malen Vulkan primjer koji

demonstrira osnovnu implementaciju algoritma praćenja zrake.

Ključne riječi: algoritam praćenja zrake, Vulkan, voksel, sklopovsko ubrzanje

Rendering of Voxelized Space with Vulkan Using Hardware Accelerated Ray

Tracing

Abstract

This paper explores the real-time representation of finite voxelized space using

hardware-accelerated ray tracing. It compares standard rasterization to ray tracing

and outlines the benefits and drawbacks in comparison to each other. It explores how

Vulkan exposes hardware ray tracing capabilities through its VK_KHR_RAY_TRACING

extension. Finally, a small Vulkan example is described that shows a basic implemen-

tation of the ray tracing algorithm.

Keywords: ray tracing, Vulkan, voxel, hardware acceleration


