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1 Introduction

1.1 Background and Motivation

Cellular automata, in the simplest of terms, are discrete n-dimensional systemsmade up

of a grid of cells, each of which can, at a single time, be in one and only one of a few

possible predefined states. The behaviour of each cell at a given time is determined by

its current state, and the state of its neighbouring cells. While the rules of these systems

are straightforward (e.g., if this cell is black, and two cells above this one are white, this

one should turn white), the resulting behaviour can often be complex and highly unpre-

dictable. In many ways, cellular automata can be thought of as a sort of game where the

outcome isn’t decided at the start but unfolds based on interactions among the cells as

time progresses [1].

Whatmakes cellular automata interesting is their ability to demonstrate a phenomenon

known as ’emergence’. Defined in the Dictionary of Cambridge as "the fact of something

becoming known or starting to exist", in this area, ’emergence’ refers to the property of

cellular automata to achieve the emergence of complex patterns and behaviours from

very simple rules [2]. As an example, even though each individual cell follows a simple

rule, the entire grid can display intricate, chaotic, and even life-like behaviour.

Due to this property, these mathematical systems have a wide range of applications

in both scientific areas and creative ones. One of the most famous examples of cellular

automata is Conway’s Game of Life, which got its name due to the fact that it, ultimately,

models the way life might evolve in a very abstract and simplified way. This automaton

easily showcases emergence even at very simple initial grid layouts [3].
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1.1.1 Cellular Automata in Computer Graphics

In the ever-growing field of computer graphics, cellular automata have proven them-

selves to be very useful tools in many different domains of the field. They’ve also proven

themselves in connected fields—such as the video game industry [4].

Patterns and Textures

On their own, alongside neural networks, or with noise functions, cellular automata

can be, and are, used for generating textures and patterns from limited rules, producing

detail-rich results.

Figure 1.1: Textures generated using the Compound Cellular Automata Processing sketch by
Tamas Karpati [5].

An example of textures generated with cellular automata without the addition of

other tools/methods is shown in Figure 1.1. To still add complexity without making

the rules too complex, adding noise in various ways (to the grid after each discrete time

step or to the initial layout of the grid) can produce satisfactory results. This is shown in

Figure 1.2.

A progressively more complex texture type—procedurally generated textures resem-

bling real-life textures (e.g., surface of a leaf) can also be generated using neural cellular

automata, as shown in Figure 1.3.

Procedural Generation

Cellular automata have usage in procedural generation as well. Not only are they useful

in this area, but they have easily proven themselves to be a noteworthy functionality for
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Figure 1.2: Texture generated in p5.js, using cellular automata, with Perlin noise attached.

both 2-dimensional and 3-dimensional procedural generation (e.g. generating landmass

or cave systems, as showcased on Figure 1.4).

When modelling virtual environments—such as realistic terrain meshes, detail pat-

terns on other meshes, or meshes depicting naturally occurring phenomena—cellular

automata prove themselves as a valuable technique as well. An example of this can be

seen in Figure 1.5.

Simulation of Physics

Due to their property of emergence, one of the most interesting ways cellular automata

are used in the field of computer graphics (and adjacent) is for the simulation of physical

phenomena (e.g., terrain erosion or fluid simulation). Cellular automata aren’t only an

efficient way to achieve this, but in case of proper rule definition, can also be a very

accurate tool [9].
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Figure 1.3: Texture generated using the cellular automaton model from Distill [6].

Figure 1.4: Images generated in Unity project by Zgeb [7].

1.2 Goals and Objectives

This thesis focuses on the design, development, evaluation, and optimization of a flexi-

ble and extensible C# library for the simulation of cellular automata on both small and

large scales. The main goal is to create a tool that enables development, testing, and

visualization of various cellular automata models in an accessible and efficient way.

Although many implementations of cellular automata already exist in academic or

research contexts, this thesis seeks to emphasize clarity, modularity, and interactivity.

The intention is for the library to serve not only as a demonstration tool but also as a

platform for experimentation, learning, and further development.
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Figure 1.5: Terrain generated using the cellular automaton model from Cawley [8].

To achieve this, the library will be built with a focus on clean architecture, extensi-

bility, and performance. Special attention will be given to enabling easy integration of

custom rule sets and flexible grid configurations. Additionally, the system will include

a visualization component to observe the evolution of automata in real time, providing

valuable feedback for both development and exploration of cellular automata.

The project blends three key aspects:

• Development: Building a robust C# library that supports rule definition, state

updating, and optimized grid management, with a clear and modular API.

• Experimentation: testing and comparison of different automaton rules, grid sizes,

and boundary conditions to evaluate performance and behaviour.

• Visualization: Providing real-time graphical feedback of system evolution, with

optional tools for pausing, stepping, and analysing rule behaviour over time.

The ultimate goal is to deliver a system that is both technically sound and useful in

practice. Whether useful as a teaching tool, a research utility, or a base for artistic or

scientific experimentation. The project focuses not just on accuracy and speed, but also

on making the library easy to use and adaptable for a variety of future uses.

1.3 Structure of the Thesis

This thesis is organized into 6 chapters:

• Chapter 1 – Introductionprovides background information, outlines the research
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problem, and highlights the relevance of the topic in the fields of computer graph-

ics and adjacent/related areas.

• Chapter 2 – Theoretical Background offers a theoretical overview of the con-

cepts necessary for understanding the subsequent chapters in the thesis.

• Chapter 3 – Simulation Library describes the design of the C# library with UML

diagrams and detailed explanations of all the core library components.

• Chapter 4 – Visualization Library describes the design of the C# library add-on

with UML diagrams, detailed explanations of all the library components, and with

an in-depth explanation of the rendering process behind the visualization.

• Chapter 5 – Results Showcases two cellular automata simulations and visualiza-

tions.

• Chapter 6 –ConclusionandFutureWork summarizes thefindings and achieve-

ments of the thesis, discusses areas where the implementation was faced with lim-

itations, and suggests potential directions for future development and research.
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2 Theoretical Background

2.1 Cellular Automata

For proper simulation of cellular automata (referred to as CA from now on), it is im-

portant to establish a definition that captures their structural and dynamic properties.

While there is no single universally agreed-upon definition of a CA, most definitions

share a common set of mathematical components which will be described.

2.1.1 Formal Definition of a Cellular Automaton

A cellular automaton of dimension 𝑑 is a tuple:

(𝐿, 𝑆,𝑁, 𝑓)

𝐿: Lattice of Cells

A discrete lattice/grid of cells, represented by integer 𝑑-tuples, each of which indexes a

cell in space.

This lattice can be infinite, in which case we can say 𝐿 = ℤ𝑑; or it can be finite,

in which case we can define the lattice as 𝐿 = (ℤ∕𝑛ℤ)𝑑 or 𝐿 = ı0, ..., 𝑛 − 1#𝑑. In this

thesis, we will be working with cellular automata that have finite lattices because these

are easier to simulate and visualize.

𝑆: Finite Set of States

Each cell in the lattice can take a state from a finite set of states 𝑆. All finite sets of states

can be represented using integers: 𝑆 = ı0, 1, ..., 𝑘 − 1# where 𝑘 is the number of unique

states.
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𝑁: Set of Relative Positions (Neighbourhood)

Afinite set of relative position vectors which determine which cells influence the update

of a given cell is called a neighbourhood and is denoted as 𝑁 ⊂ ℤ𝑑.

𝑓: Local Transition Rule Function

A (usually) deterministic function that maps the states of a cell’s neighbourhood to the

next state of the cell: 𝑓 ∶ 𝑆|𝑁| → 𝑆. Some cellular automata define different local transi-

tion rule functions; one for each unique state in 𝑆. In this case 𝑓 is defined as a function

which calls other functions depending on the state of the cell for which the rule is called

𝑓 ∶ 𝑆1+|𝑁| → 𝑆.

2.1.2 Derived Concepts

From the formal mathematical definition of a cellular automaton, two concepts can be

derived which further explain how cellular automata behave through time.

𝑐𝑡: Configuration at time 𝑡

A configuration at time 𝑡 is a function 𝑐𝑡 ∶ 𝐿 → 𝑆 where 𝑐𝑡(𝑥) gives us the state of a cell

𝑥 ∈ 𝐿 at time 𝑡.

𝐹: Global Update Function

The global update function 𝐹 ∶ 𝑆𝐿 → 𝑆𝐿 takes the configuration of the entire system

(at time 𝑡), and returns the next configuration of the system (at time 𝑡 + 1). This global

update function defines the discrete time characteristic of every cellular automaton and

is better defined in equation 2.1. If one uses multiple local transition rule functions, the

global function is defined in equation 2.2.

𝐹(𝑐)(𝑥) = 𝑓(𝑐(𝑥 + 𝑛1), ..., 𝑐(𝑥 + 𝑛𝑘)) for all 𝑥 ∈ 𝐿, where 𝑘 = |𝑁|. (2.1)

𝐹(𝑐)(𝑥) = 𝑓(𝑥, 𝑐(𝑥 + 𝑛1), ..., 𝑐(𝑥 + 𝑛𝑘)) for all 𝑥 ∈ 𝐿, where 𝑘 = |𝑁|. (2.2)
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2.1.3 Dimensionality

The dimensionality of a cellular automaton defines the structure of its spatial domain.

A cellular automaton of dimension 𝑑 operates on a 𝑑-dimensional lattice, where each

cell is indexed by a 𝑑-tuple of integers. Common dimensionalities in theoretical works

include:

• 1D: 𝐿 = ℤ or 𝐿 = ı0, ..., 𝑛 − 1#, used for linear automata.

• 2D: 𝐿 = ℤ2 or 𝐿 = ı0, ..., 𝑛 − 1#2, used in grid-based models (e.g., Conway’s Game

of Life).

• 3D and Higher: 𝐿 = ℤ𝑑, 𝑑 > 2, useful for simulations in physical and biological

systems such as crystal growth or lattice gases.

As the dimensionality increases:

• The size of the neighbourhood typically increases exponentially (but doesn’t have

to).

• The number of possible transition rules grows with the neighbourhood size.

• The complexity of dynamics and emergent behaviours tends to be higher—yet al-

lows us to explore more interesting behaviours.

Despite this, all dimensionalities can be treated uniformly under the general frame-

work of a cellular automaton defined on a lattice 𝐿 = ℤ𝑑.

2.1.4 Lattice Structures and Coordinate Systems

While most cellular automata use regular Cartesian grids, alternative lattice structures

can be employed to model different interaction topologies. Common lattice types in-

clude:

• Rectangular (Cartesian) Grids: The standard choice, where each cell has fixed

orthogonal neighbours (e.g., 4 or 8 in 2D).

• Hexagonal Grids: Common in simulations requiring rotational symmetry (e.g.,

some biological systems) [10].
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• TriangularGrids: Used in somephysics simulations ormesh-based environments

[11].

• Irregular or Sparse Lattices: Modelled as graphs or masked arrays, where active

cells are explicitly tracked.

In all cases, non-rectangular lattices can be represented on a rectangular grid 𝐿 = ℤ𝑑

by encoding geometry in the update rule 𝑓, using masking, or modifying the neighbour-

hood set𝑁. This allows a general-purpose CA engine to simulate a wide range of lattice

topologies.

2.1.5 Neighbourhood Variants

The neighbourhood𝑁 defines which cells influence the update of a given cell. It is spec-

ified as a finite set of relative position vectors in ℤ𝑑 [1]. Different neighbourhood types

are used depending on the dimension and the model’s needs:

• von Neumann Neighbourhood (2D): Includes the four orthogonal neighbours

(up, down, left, right).

• Moore Neighbourhood (2D): Includes all eight surrounding cells in a 3×3 grid.

• Extended Moore: Includes all cells within a certain radius 𝑟 using either Man-

hattan or Chebyshev distance.

• Radius-𝑟Neighbourhoods (1D): Includes 𝑟 cells to the left and 𝑟 to the right; total

size is 2𝑟 + 1.

• Custom/ProbabilisticNeighbourhoods: Used in stochastic or irregularmodels;

neighbours can be defined dynamically or probabilistically.

The choice of neighbourhood strongly affects the cellular automaton’s dynamics. For

example, using aMoore neighbourhood can lead to more complex behaviour than when

using von Neumann neighbourhood..
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2.1.6 Simulation Approaches

SimulatingCA requires designing data structures and algorithms that can both efficiently

update and efficiently store cell configurations across time steps. The choice of simu-

lation approach often depends on the dimensionality, lattice structure, neighbourhood

size, and sparsity of the grid.

Algorithmic Implementations

CA are typically implemented using:

• Array-based representations for dense grids, where the configuration is stored

as a multidimensional array indexed by cell coordinates.

• Hash tables or sparse arrays for large grids with localized activity, reducing

memory usage and improving performance [12].

• Bitwise representations, especially in 1D or 2D binary-state CAs, which allow

for high-speed parallel updates via bit operations [13].

• GPU-accelerated implementations, which exploit data parallelism inherent in

synchronous CA updates [14].

Computational Complexity and Performance

The computational complexity of simulating a cellular automaton is generally linear in

the number of cells per time step, i.e., 𝒪(|𝐿|) for one update if the neighbourhood size is

constant. However:

• Complex local rules or larger neighbourhoods increase the per-cell computation

cost.

• In high-dimensional or sparse automata, performance is heavily dependent ondata

structure optimization.

• Time complexity can grow in reversible or stochastic automata, or where global

state tracking is required.
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3 Simulation Library

3.1 Design Goals and Requirements

The design of the library’s simulation component was guided by a mix of practical goals

and established software engineering principles. It was built with both functionality and

usability in mind—aiming to support a range of real-world use cases. It does this while

staying flexible, efficient, and easy for developers toworkwith. The result is a system that

makes it straightforward to define, run, and experiment with custom cellular automata.

3.1.1 Functional Requirements

The simulation component should meet the following functional requirements:

• Provide a clear, consistent, and concise API for developers to interact with when

using the library.

• Support the definition of custom cellular automata and their essential elements.

• Allow for the simulation of any valid user-defined cellular automata.

3.1.2 Non-Functional Requirements

Several non-functional requirements have influenced architectural and design decisions:

• Modularity: The library should be composed of well-defined, independent com-

ponents, reflecting the structure of CA (defined and explained in Chapter 2), to

promote reusability.

• Extensibility: It should be straightforward to introduce new features or plug-ins

without altering existing code. This should be achieved through the use of inter-
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faces, abstract classes, factory methods, and adherence to the Liskov Substitution

Principle.

• Performance: The system must maintain low memory usage and computational

overhead, evenwhen handling CAof a larger scalewith complex behaviuor behind

them.

• Usability: The public API should be intuitive and easy to use. Clear documenta-

tion via C# XML comments is provided to ensure developers can get started with

minimal configuration, and get support from IntelliSense and similar tools which

provide code completion and inline documentation.

3.2 High-Level Architecture

With these requirements in mind, the architecture was designed to prioritize crality,

modularity, and extensibility. Because of this, the architecture of the simulation com-

ponent of the library follows a plugin-based style which is centered around a core engine

responsible for the management of the simulation lifecycle.

To use the library, users define their own rule classes, state enums, and state property

classes, which integrate into the system at compile time. These custom components

must conform to a set of predefined interfaces and abstract base classes, allowing them

to plug into the simulation engine seamlessly and ensuring compatibility across different

implementations.

Supporting this high-level structure, a number of lower-level design patterns and de-

cisions were applied to reinforce flexibility and maintainability.

3.3 Design Decisions and Patterns

3.3.1 Use of Interfaces and Abstract Classes

Interfaces and abstract base classes serve as contracts for user-defined plug-ins, ensuring

that all extensions follow a consistent API. This design decision supports polymorphism

and interchangeability.
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3.3.2 Factory Method Pattern

In order to create user-defined components at runtime/compile time with flexibility, fac-

tory methods are defined in interfaces and configuration classes, centralizing object cre-

ation and hiding complex instantiation logic.

3.3.3 Separation of Concerns

The simulation component of the library (and the library as a whole) is separated into

layers and modules (the API layer, the core simulation engine, configuration classes) to

isolate responsibilities and improve maintainability and testability.

3.3.4 Use of Configuration Classes for Object Creation

The simulation component of the library uses configuration classes responsible for hold-

ing the data vital for the creation of component objects (such as cellular automaton, grid,

rule, state).

This design detaches the construction logic from the client code, allowing flexible

customization of diverse propertieswithoutmodifying core implementation. It promotes

a cleaner and more readable user codebase.

3.4 Component Overview

The simulation side of the library is composed of several core components, each respon-

sible for a distinct part of the simulation lifecycle. Together, these components form the

foundation of the plug-in-based architecture. Where appropriate, class diagrams have

been provided to illustrate the structure and extensibility points of each component.

3.4.1 State

In the library, the finite set of cellular automata states is represented via a user-defined

enumeration available inside the C# programming environment (using the enum key-

word). Most class components in the library (which depend directly on this finite set),

contain a generic parameter SE, and unless stated otherwise, a generic parameter SE in
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these classes will refer to a state enumeration. For a user to be able to create a cellular

automaton, they need to define their own enumeration.

EData<SE>

Astatic classwhichholds automatically-calculatedmetadata about an enumeration type.

On usage, it validates necessary qualifications for the enumeration type (state set), and

provides public methods for quicker, easier, and meticulous interaction with the enu-

meration type. An UML class diagram for this class can be seen in Figure 3.1.

Public properties:

• int Size – returns the amount of values in the enumeration; equivalent to the

amount of states in the finite set.

• SE[] Values – returns an array of the values.

• int[] IntegerValues – returns an array of state values mapped to integer values.

Public methods:

• int Index(SE value) –methodwhich returns the index of the value. This is used

mostly as syntactic sugar and doesn’t affect performance.

• SE GetRandom() – method which returns a random state value from the finite

state. Keeps randomization of an enumeration value connected to a single Random

object used for randomization therefore reducing memory overhead slightly.

EArray<SE,T>

Awrapper class for the original T[] (array) class in C# which allows the user to access a

value T in the same manner as they would from an array, but using a state value instead

of an integer. This wrapper provides properties, constructors, and an indexer similar to

an Array class and an UML class diagram for this class can be seen in Figure 3.2. This

class provides syntactic sugar for the API.
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Figure 3.1: EData UML class diagram.

3.4.2 Grid

The cell state values are stored in specialized n-dimensional grid objects designed to al-

low for quick and efficient access to data.

IGrid<SE>

The IGrid<SE> interface defines the abstraction for the core data structure used to store

and manipulate the states of a cellular automaton. It generalizes the concept of a mul-

tidimensional grid whose element type is a state value. The UML class diagram for this

class can be seen in Figure 3.3.

Required public properties:

• int Rank – returns the dimensionality of the grid—and, in extent—of the cellular

automaton.

• IReadOnlyList<int> Extents – returns a readonly list of sizes of each dimension

of the grid.

Required public methods:

• IGrid<SE> Create(GridConfig<SE> config) – a factorymethod to create a grid

object using a configuration object.
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Figure 3.2: EArray UML class diagram.

• IGrid<SE> Clone() –method which creates and returns a clone of the grid object

it is called on.

• void Refactor() – non-mandatory method which allows for the refactoring of

the data placement inside the grid object.

Figure 3.3: IGrid UML class diagram.

The main role of this interface is detaching simulation logic from specific data stor-

age implementations (both custom and library-provided), enabling interchangeable grid

back-end implementation.
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GridConfig<SE>

The GridConfig<SE> class serves as a configuration container for creating grid instances

through the IGrid<SE>.Create()method. It encapsulates all parameters needed to ini-

tialize a grid with specific dimensionality, border behaviour, and default values. The

UML class diagram is shown in Figure 3.4.

Public properties:

• GridBorder Border – Determines border handling (Wrapped, Fixed, or Mirrored

are available values).

• SE FixedBorderValue – Conditionally available border state (when Border ==

Fixed).

• SE Default – Initial state for all cells.

• int Rank – Gets/sets the grid’s dimensionality (resizes extents)

• bool Randomize – Enables random initialization of the cells in the grid.

Public methods concerning the extents of the grid:

• SetExtents(params int[] extents) – Bulk-sets all dimension sizes.

• GetExtents() – Retrieves a copy of dimension sizes.

• GetExtentAt(int index) – Returns the dimension size of dimension at index.

• SetExtentAt(int index) – Sets the dimension size of dimension at index.

Builder pattern methods:

• WithExtents(params int[] extents) – Fluent setter for extents

• WithRank(int rank) – Fluent setter for dimensionality

These builder pattern methods serve as syntactic sugar, and can be used like this:

var config = new GridConfig<CustomCellState>().WithRank(3)
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.WithExtents(10, 20, 5) { Border = GridBorder.Fixed };

Figure 3.4: GridConfig UML class diagram.

This configuration object allows for type-safe grid initialization while handling edge

cases such as:

• Automatic extent adjustment when changing rank;

• Validation of dimension sizes (≥ 1);

• Conditional availability of border values;

• Thread-safe extent array copying.

3.4.3 Grid Implementations

In this library, there are three classes which implement the IGrid<SE> interface. Each

of these three focuses on a different sparsity level of the grid.

ArrayGrid<SE>

The ArrayGrid<SE> class provides a concrete implementation of the IGrid<SE> inter-

face using a flat array to store multidimensional grid data. It is best for fully populated
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grids due to its dense representation. Internally, it flattensmultidimensional indices into

a single-dimensional array.

Key characteristics:

• Uses a single contiguous SE[] array for storage.

• Converts multidimensional indices to a flat index via a multiplier array.

• Supports fixed, wrapped, and mirrored border behaviour.

Advantages:

• Excellent performance for dense data.

• Low overhead for index resolution due to precomputed multipliers.

• Compatible with any dimensionality and efficient cache locality.

Limitations:

• Memory cost grows exponentially with the number of dimensions.

• Very inefficient for sparse or large grids where many cells share the default value

because it still uses space for these default values.

DictionaryGrid<SE>

The DictionaryGrid<SE> class provides a sparse implementation of the IGrid<SE> in-

terface using a dictionary to store only non-default values. It is ideal for grids with large

dimensionality where only a small subset of cells hold non-default data. Internally, it

maps multidimensional indices to values via hashed composite keys.

Key characteristics:

• Uses a Dictionary<IndexKey, SE> to store explicitly set values.

• Unset cells implicitly return the configured default value.
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• Supports fixed, wrapped, and mirrored border behaviour.

Advantages:

• Memory-efficient for sparse or large grids.

• Avoids storing default values, reducing unnecessary allocation.

• Flexible and scalable across arbitrary dimensionalities.

Limitations:

• Slower access time compared to array-based grids due to dictionary lookups. This

is ignorable for a dictionary with a smaller amount of stored values.

• Higher overhead for index hashing and equality checks.

• No inherent memory locality, which can affect performance with dense grids.

ChunkGrid<SE>

The ChunkGrid<SE> class implements a hybrid sparse grid by partitioning the space into

equally sized dense subregions (chunks). Each chunk is allocated only when needed,

enabling efficient memory usage for large, sparsely populated multidimensional grids.

Key characteristics:

• Divides the grid into fixed-size chunks, each backed by a dense SE[] array.

• Uses dictionary-based chunk management with string keys derived from chunk

coordinates.

• Unset cells return the configured default value without allocating chunks.

Advantages:

• Efficient balance between dense and sparse representations.

• Memory allocation is localized to active regions, reducing footprint.
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• Fast access within allocated chunks due to dense array storage.

Limitations:

• Slightly higher access overhead compared to flat arrays due to chunk lookup.

• Chunk granularity must be chosen carefully to balance performance and memory

use.

3.4.4 Neighborhood

The neighborhood class is used as a readonly view into an IGrid<SE> object that sup-

ports observing from a local center, and allows the user to create rules for how a cellular

automaton should behave.

NeighborhoodConfig<SE>

The NeighborhoodConfig<SE> class defines reusable and configurable neighborhood

patterns for cellular automata simulations. It encapsulates the neighborhood type, ra-

dius, and supports automatic offset generation based on grid dimensionality. The class

also includes an internal caching mechanism to avoid redundant computations and en-

sure thread-safe performance. The UML diagram for this class is shown in Figure 3.5.

Public properties:

• NeighborhoodType Type – Specifies the neighborhood type (supported types are

Moore and Von Neumann).

• uint Radius – Defines the maximum distance from the central cell to include in

the neighborhood.

Public methods:

• IReadOnlyList<int[]> GetPrecomputedOffsets(int rank) – Returns a list of

relative coordinate offsets corresponding to the selected neighborhood type and

radius in a grid of given dimensionality. Results are cached using a thread-safe

dictionary to avoid recomputation for identical configurations.
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• static NeighborhoodConfig<SE> Moore(uint radius = 1) – Factory method

for creating a configuration for a Moore neighborhood with a specified radius.

• static NeighborhoodConfig<SE> VonNeumann(uint radius = 1) –Factorymethod

for creating a configuration for a Von Neumann neighborhood with a specified ra-

dius.

Design characteristics:

• Thread-safe offset caching for high-performance simulations.

• Avoids unnecessary recalculations of offset patterns.

• Flexible design supports arbitrary grid dimensionality (rank ≥ 1).

• Decouples neighborhood definition logic from simulation runtime.

Figure 3.5: NeighborhoodConfig UML class diagram.

This class plays a critical role in parameterizing neighborhood structure for cellular

automata, supporting pattern reuse and runtime optimization through offset caching

and efficient recursive construction.

Neighborhood<SE>

The Neighborhood<SE> class represents a logical view of the cells surrounding a central

cell in a grid, as defined by a specific NeighborhoodConfig<SE>. This structure enables

relative neighborhood-based queries and local computations in multi-dimensional cel-

lular automata. A UML diagram is provided in Figure 3.6.
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Public constructor:

• Neighborhood(int[] center, IGrid<SE> grid, NeighborhoodConfig<SE> config)

– Initializes a new neighbourhood instance centered at a given grid position. Val-

idates that grid and center are not null, and that center.Length matches the

grid’s rank.

Public indexer:

• SE this[params int[] offset] – Provides access to the state of a cell at a spec-

ified relative position from the center. Throws exceptions if:

– The offset dimension does not match grid rank.

– The offset lies outside the defined neighbourhood bounds.

The center cell (offset = 0) is included but handled separately.

Public methods:

• int HasEqual(SE[] values) –Returns thenumber of neighbour cellswhose states

are equal to any of the given values.

• int HasDifferent(SE[] values) –Returns thenumber of neighbour cellswhose

states differ from all given values.

• IEnumerable<(int[] Offset, SE State)> EnumerateNeighbors() – Returns

all neighbouring cells’ relative offsets and corresponding states.

Design characteristics

• Generic over cell state enum type SE.

• Compatible with grids of arbitrary dimensionality.

• Efficient recursive enumeration with filtering.

• Integrates cleanly with NeighborhoodConfig<SE> and IGrid<SE> interface.
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• Includes utility queries for cell comparison (HasEqual, HasDifferent).

Figure 3.6: Neighborhood UML class diagram.

This class encapsulates all logic for neighborhood-based inspection in cellular au-

tomata and is a critical building block for rule evaluation and pattern recognition in local

update schemes.

3.4.5 Rule

In order to create a rule which the cellular automaton will follow, the user needs to im-

plement a new class which will extend IRule<SE,SD>. A created object of this (user-

defined) class should ideally be stateless and reusable.

IRule<SE, SD>

The IRule<SE, SD> interface defines the contract for any cellular automaton rule that

computes the next state of a cell based on its local Neighborhood<SE>. This interface

makes it possible to create pluggable and reusable rule logic with different automaton

configurations. The UML diagram is shown in Figure 3.7.

The generic parameter of this class SD represents a class with a public parameterless

constructor which holds and represents per-state data (e.g., if the automaton simulates

liquids, and all state values are liquids, SD class can contain a property for temperature

and viscosity).

Required static factory method:

• static abstract IRule<SE, SD> Create() –Defines a staticmethod thatmust
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be implemented to construct a new instance of the rule. This allows instantiating

rules generically without knowing the concrete type.

Required primary method:

• SE Apply(Neighborhood<SE> nbh, EArray<SE, SD> data, int step) –Applies

the rule logic to the specifiedneighbourhood. It takes into account the current local

cell environment, any additional data, and the automaton step number. Returns

the new state to assign to the central cell.

Design characteristics:

• Fully generic and extensible rule interface.

• Supports n-dimensional neighbourhoods via Neighborhood<SE>.

• Encourages separation of state-transition logic from grid infrastructure.

• Auxiliary data (SD) allows for rule-specific extensions.

Figure 3.7: IRule interface UML diagram.

This interface serves as the formal abstraction for defining rule logicwithin the frame-

work. It guarantees that all rule implementations align with the underlying neighbour-

hood model and can be managed consistently by the simulation engine.

3.4.6 Automaton

The Automaton class integrates all key components to provide a flexible cellular automa-

ton engine. It enables users to create automata with minimal complexity.
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AutomatonConfig<SE, SD, R, G>

The AutomatonConfig<SE, SD, R, G> class encapsulates all necessary configuration

parameters to instantiate a cellular automaton. It is a generic class with the following

type parameters and constraints:

• SD—Data type associated with each cell.

• R—Arule type implementing IRule<SE, SD>, which defines the cell update logic.

• G—Agrid type implementing IGrid<SE>, responsible for spatial storage andman-

agement of cell states.

The constructor optionally accepts a rank parameter, defaulting to 1, which sets the

dimensionality of the grid.

Primary properties:

• State: An instance of EArray<SE, SD> holding state data for every state.

• Neighborhood: A NeighborhoodConfig<SE> instance specifying theneighborhood

type and radius, defaulting to a Moore neighborhood of radius 2.

• Grid: A GridConfig<SE> instance configuring the grid’s extents and border be-

havior.

Automaton<SE, SD, R, G> and Static Factory

The Automaton<SE, SD, R, G> class implements the core execution engine of the cel-

lular automaton. Its parameters are the same as AutomatonConfig<SE, SD, R, G>.

A static Automaton class in the same namespace offers a factory method:

• Create<SE, SD, R, G>(AutomatonConfig<SE, SD, R, G> config)—Constructs

a new Automaton instance from the provided configuration.

This class and method are used as syntactic sugar to avoid constant redefinition of

parametrized values.
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Internal fields and properties:

• Reference to the underlying grid instance.

• Neighborhood configuration.

• Auxiliary state array.

• A thread-safe queue for managing pending state changes.

• Publicly exposed grid property.

• Current generation counter.

The Step method: The Step(int amount = 1) method advances the automaton by

the specified number of iterations. Each iteration executes the following steps within a

private method _StepOver:

• Computes the total number of cells from the grid extents.

• Creates a new instance of the rule R.

• Executes a parallel loop over all cell indices, converting linear indices to multi-

dimensional coordinates.

• Applies the rule to each cell’s neighborhood, producing the next state.

• Enqueues changes where the next state differs from the current.

• Applies all queued state changes atomically to the grid.

• Increments the generation counter.
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4 Visualization Library

4.1 Design Goals and Requirements

The visualization add-on for the cellular automata simulation library is designed to sup-

port real-time, interactive 3D rendering with a strong focus on user engagement. Its

primary goal is to enhance the simulation experience by offering clear, intuitive, and

high-performance visual representations of cellular automata states and their evolution

over time.

4.1.1 Functional Requirements

The visualization component should meet the following functional requirements:

• Render cellular automata states in a 3D environment with voxel-based representa-

tion, supporting color-coded states.

• Provide real-time interactive control of the camera, including rotation, panning,

and zooming.

• Enable user interaction to advance simulation steps and observe changes dynami-

cally.

• Support renderingmodes based on state alpha values, switching between solid face

rendering and wireframe visualization.

• Integrate well with the simulation library as an add-on, interpreting simulation

data and exposing an extensible API.
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4.1.2 Non-Functional Requirements

The visualization component should meet the following non-functional requirements:

• Performance: LeverageGPU-acceleratedmesh generation through compute shaders

to efficiently render large-scale cellular automata, minimizing CPU overhead and

ensuring smooth real-time interaction.

• Extensibility: Built as amodular layer on top of the simulation engine, it needs to

allow users to tailor interaction models and visualization settings without altering

the core system.

• Usability: Offer intuitive default controls for navigation and interactionwithmin-

imal setup, while also supporting advanced customization options for experienced

users.

• Maintainability: Adhere to modular design principles and use clearly defined

interfaces to separate visualization logic, making the system easier to test, update,

and extend over time.

• Forward Compatibility: Designed with future enhancements in mind—such

as improved transparency and lighting techniques—ensuring the architecture re-

mains adaptable without requiring major refactoring.

4.2 High-Level Architecture

The visualization add-on is implemented as a modular extension layered on top of the

core simulation library. It acts both as a visual interpreter of simulation states and as an

interactive interface for exploring 3D-rendered cellular automata.

The system is built using OpenTK, which provides OpenGL bindings for graphics

rendering and user input handling. To ensure high performance, the visualization uses

compute shaders for mesh generation directly on the GPU—minimizing CPU-GPU syn-

chronization overhead and enabling relatively-smooth real-time updates.

Interaction features are designed for flexibility, with a default controller that includes

standard camera navigation and simulation stepping via keyboard or UI input. Thanks
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to its modular architecture, users can easily override or extend these behaviours to fit

their own use cases.

By adhering to well-defined interface contracts, the visualization component main-

tains a loosely coupled relationship with the simulation engine, supporting independent

development and reuse. Rendering options—such as wireframe mode or transparency

control—are exposed through configuration objects, allowing for easy customization of

visual styles.

4.3 Component Overview

The visualization side of the library is composed of several key components. Each of

these is responsible for a distinct aspect of rendering and interaction. Together, these

components form the foundation of the plug-in-based architecture that supports real-

time 3D visualization. Where applicable, class diagrams are included to illustrate the

structure and extensibility points of each component.

4.3.1 State

VisualData

For the simulation towork properly, the usermust define a classwhich defines properties

of a state. For the visualization to work properly, this class must extend a class defined

in this library called VisualData.

This class is intentionally small, containing only two fields:

• float Light - a light attribute for a cell state type, implemented as a preparation

for future implementations of lighting.

• Color4 Color - a color attribute to define a cell state type’s color and transparency,

implemented in the actual version of the add-on library.

4.3.2 Internal

To simplify the internal structure of the visualization, certain functionalities of the visu-

alization have been encapsulated into classes for ease of use.
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Camera

The Camera class is a highly extensive class which allows the user to control (move, ro-

tate, animate, etc.) the camera smoothly and with ease. The class itself has many prop-

erties, and matrices, each clearly named to reflect its purpose. The class diagram of this

class is shown in Figure 4.1.

Figure 4.1: Camera UML class diagram.

Window

The Window class encapsulates the creation and management of a native OpenTK win-

dow used for rendering the cellular automaton. It provides access to key properties such

aswindow size, title, VSync, and fullscreenmode, and it exposes essential lifecycle events

including load, render, update, and resize. By abstracting the underlying GameWindow,

the class simplifies window initialization and control. A class diagram illustrating its

structure is shown in Figure 4.2.
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Figure 4.2: Window UML class diagram.

4.3.3 Chunk

Chunk<SE, SP>

The Chunk<SE, SP> class is a generic representation of a voxel-based chunk of size: Size

= 32. This class is used in rendering cellular automata in a 3D environment. It is de-

signed to work with a grid reference which manages voxel state, and a handler reference

that manages visualization data.

Public Members

• static int Size – Size of the chunk in each dimension (fixed to 32).

• Vector3i Position – The world-space position (in chunk units) of this chunk.

Constructor

• Chunk(Vector3i position, IGrid<SE> grid, ChunkHandler<SE, SP> handler)

– Constructs a new chunk with a position and references to the voxel grid and vi-

sual data handler.

Methods

• void Reset(Vector3i, IGrid<SE>?, ChunkHandler<SE, SP>?) – Resets the

chunk to a new position, with optional new grid and handler.
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• void BuildMesh() –Generates or regenerates themeshdata using compute shaders.

• void RenderOpaque() – Renders the chunk’s opaque geometry.

• void RenderTransparent() – Renders the chunk’s transparent geometry.

• void MarkDirty() – Marks the chunk as needing a rebuild.

• bool UpdateChunk() – Rebuilds the mesh if the chunk is dirty.

• void Dispose() – Frees OpenGL resources allocated by the chunk.

Rendering Pipeline

• Themesh generation uses a compute shader to process voxel data into vertex/index

buffers.

• These buffers are stored in Shader Storage Buffer Objects (SSBOs) and later used

for indirect rendering of both opaque and transparent geometry.

ChunkHandler<SE, SP>

The ChunkHandler<SE, SP> class manages chunk initialization, visibility updates, and

rendering in a 3D voxel-based grid. It also works with OpenGL to store and update GPU-

compatible visual data.

Public Properties

• EArray<SE, SP> StateVisualData – The shared visual state data array for all

chunks.

• int Radius – The chunk load radius around the camera (in chunk units).

• int ChunkUpdatesPerFrame – Maximum number of chunks to update per frame.

• int StateDataSSBO –OpenGLShader StorageBufferObject storingGPU-formatted

visual data.
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Constructor

• ChunkHandler(Camera camera, IGrid<SE> grid, EArray<SE, SP> stateData,

int radius = 5, int chunkUpdatesPerFrame = 1) – Initializes the handlerwith

the camera, voxel grid, and visual state array. Builds chunks within a camera-

centered radius and uploads visual data to the GPU.

Public Methods

• void UpdateChunksIncremental() –Updates dirty chunks incrementally, capped

by ChunkUpdatesPerFrame.

• void MarkAllChunksDirty() –Marks all active chunks as dirty and queues them

for update.

• void Render() – Renders all chunks (opaque and transparent passes) relative to

the camera view.

• void InitializeStateDataSSBO() – Initializes or rebuilds the SSBO with cur-

rent visual data for use in compute/fragment shaders.

• void Dispose() – Frees all GPU and chunk-related resources.

Private/Internal Methods

• Vector3i GetCameraChunkPosition() – Returns the current chunk-space posi-

tion of the camera.

• void InitializeChunks() – Loads all chunks within the defined radius of the

camera at startup.

• void RefreshChunkSet(Vector3i newCenter) –Replaces and reuses chunks based

on the camera’s movement.

• bool IsChunkWithinGrid(Vector3i pos) – Determines if a chunk lies within

the voxel grid’s bounds.
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• void SetShaderMatrices() –Uploads the camera’s view and projectionmatrices

to the chunk shader.

Rendering Pipeline

• The rendering is split into opaque and transparent passes. Transparent geometry

uses blending and wireframe rendering.

• Visual metadata (e.g., color, lighting) is uploaded to the GPU via a Shader Storage

Buffer Object (StateDataSSBO).

• Chunks use indirect drawing and compute-generatedmesh data, referenced by the

handler during rendering.

VisualDataGPU Layout

• Struct used to represent each voxel’s visual data on the GPU.

• Fields: Vector4 Color, float Light, Vector3 Padding.

• Structured for alignment in SSBOsusing [StructLayout(LayoutKind.Sequential)].

4.3.4 Input

IInput<SE, SP, R, G>’

The IInput<SE, SP, R, G> interface defines an abstraction for handling user input and

frame lifecycle events in a cellular automaton rendering context. Its parameters are the

same as AutomatonConfig<SE, SD, R, G>.

Public Methods

• void RenderFrame(FrameEventArgs e, Renderer<SE, SP, R, G> renderer)

– Invoked during each render frame to handle visual updates.

• void UpdateFrame(FrameEventArgs e, Renderer<SE, SP, R, G> renderer)

– Invoked during each update frame to handle user input, camera control, and sim-

ulation steps.
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DefaultInput<SE, SP, R, G>

The DefaultInput<SE, SP, R, G> class implements IInput and handles user interac-

tion, camera movement, and automaton updates based on keyboard and mouse input.

Public Properties

• float MoveCameraSpeed – Speed factor for camera movement (default: 5).

• float RotateCameraSensitivity – Sensitivity for camera rotation (default: 0.1).

• int Steps – Number of simulation steps triggered per key press (default: 1).

Methods

• void RenderFrame(FrameEventArgs e, Renderer<SE, SP, R, G> renderer)

– Handles camera visibility and input initialization during rendering.

• void UpdateFrame(FrameEventArgs e, Renderer<SE, SP, R, G> renderer)

– Orchestrates camera movement, rotation, and simulation step logic.

Input Behaviors

• Camera Movement: Uses W, A, S, D, Q, E keys for directional movement.

Holding Shift doubles movement speed.

• Camera Rotation: Hold right mouse button and move the mouse to rotate the

view.

• Automaton Step: Press F to trigger a simulation step, processed asynchronously

to avoid blocking rendering.

Mouse Interaction

• Pressing the right mouse button grabs the cursor for rotation.

• Releasing it resets the cursor to screen center and restores normal mode.
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4.3.5 Renderer<SE, SP, R, G>

The Renderer<SE, SP, R, G> class manages the visualization of a 3D cellular automa-

ton. It integrates camera control, chunkmanagement, user input handling, and the ren-

dering loop. Its parameters are the same as AutomatonConfig<SE, SD, R, G>.

Fields

• DefaultInput<SE, SP, R, G>? _interaction –Optional input handler for user

interaction (default: null).

• int _radius – The radius (in chunks) around the camera to render (default: 5).

• ChunkHandler<SE, SP>? _chunk_handler – Handles chunk management and

rendering.

Properties

• Automaton<SE, SP, R, G> Automaton – The cellular automaton instance being

visualized.

• Camera Camera – The camera used to view the simulation.

• Window Window – The main rendering window.

• IInput<SE, SP, R, G> Interaction – Input handler for user interactions (de-

faults to DefaultInput).

Constructor

• Renderer(Automaton<SE, SP, R, G> automaton, int radius = 5) – Initial-

izes the renderer with the automaton and render radius. Throws an exception if

the automaton grid is not 3D or if radius is not positive.

Public Methods

• void ChunksDirty() –Marks all chunks as dirty to force a rebuild on next update.
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• void Start() – Creates the rendering window and starts the main render loop,

handling OpenGL initialization, event hookup, and continuous rendering and up-

dating.

Rendering Pipeline and Initialization

• Start() hookswindow lifecycle events such as Load, RenderFrame, UpdateFrame,

and Resize to manage rendering and input.

• Theprivatemethod _InitializeOpenGL() configuresOpenGL state: enables depth

testing, back-face culling, blending, sets clear color, line width, and enables debug

output.

• ChunkHandler is instantiated on load and is responsible for updating and render-

ing voxel chunks.

Static Factory

• The static Renderer class provides a Createmethod for convenient instantiation,

enforcing the 3D constraint on the automaton grid.

4.4 Rendering Flow

The rendering flow is decoupled from the components behaviour and can be explained

on its own, only referencing the components in which the behaviour takes place.

4.4.1 Renderer

The Renderer class handles the entire rendering process of the 3D cellular automaton

simulation. It is responsible for initializing OpenGL, managing the rendering window

and its events, handling user input, and coordinating the chunkmanagement and draw-

ing pipeline.

• Initialization: Upon starting, it creates awindowand sets upOpenGL state (depth

testing, back-face culling, blending, and debug output).
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• Chunk Management: The renderer instantiates a ChunkHandler which main-

tains and updates voxel chunks within a configurable radius around the camera.

• Rendering Loop: The rendering loop is driven by window events:

– Load event initializes OpenGL and chunk handler.

– RenderFrame clears the screen, updates visible chunks incrementally, renders

them, invokes the input handler’s rendering method, and swaps buffers.

– UpdateFrame delegates to the input handler to process camera movement,

rotation, and automaton stepping.

– Resize updates the camera’s aspect ratio.

• Input Handling: User input is abstracted via an IInput interface, allowing cam-

era control and automaton interaction.

4.4.2 ChunkHandler

The ChunkHandler manages a collection of Chunk instances representing localized 3D

volumes of the automaton grid.

• ChunkGrid: Organizes chunks in a spatial data structure for efficient update and

rendering based on camera position.

• Incremental Updates: Chunks are updated incrementally per frame to spread

out the workload and maintain performance.

• Dirty Flags: Chunks marked as dirty are rebuilt, which regenerates their mesh

data to reflect state changes in the automaton.

• Rendering Coordination: The handler issues draw calls for all visible chunks,

separating opaque and transparent geometry rendering.

4.4.3 Chunk

The Chunk class represents a fixed-size 3D block (typically 323323 voxels) of the automa-

ton’s grid.
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• State and Position: Each chunk tracks its world-space position in chunk units

and holds references to the voxel grid and rendering handler.

• Mesh Generation: Utilizes a compute shader to process voxel data and generate

vertex and index buffers for rendering.

• Rendering Data: Stores generated mesh data in GPU buffers (SSBOs) used for

indirect rendering.

• Lifecycle: Supports resetting to new positions and disposes of GPU resources

when no longer needed.

• Dirty Flag: Tracks when the chunk needs to rebuild its mesh to represent updated

voxel states.

4.4.4 Rendering

The rendering phase consists of multiple stages to draw the 3D automaton:

• Clearing Buffers: At each frame, the color and depth buffers are cleared.

• Chunk Updates: The ChunkHandler updates a subset of chunks incrementally,

rebuilding meshes as needed.

• Drawing Geometry:

– Opaque geometry of each chunk is rendered first.

– Transparent geometry is rendered afterwards to ensure correct blending.

• Input-DrivenUpdates: Camera movements and automaton stepping can trigger

chunk updates or visual changes.

• Double Buffering: The final rendered frame is presented by swapping buffers.

4.4.5 Compute Shader

The compute shader is responsible for generating the mesh data for each chunk of the

automaton in a massively parallel manner on the GPU.
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• Input Buffers:

– VoxelBuffer holds the voxel types for the chunk, including a padding layer

for boundary checks.

– TypeBuffer stores color and lighting properties for each voxel type.

• Output Buffers:

– Separate vertex and index buffers for opaque and transparent geometry are

generated to optimize rendering order and blending.

– Atomic counters track the current count of emitted vertices and indices.

– Indirect draw commandbuffers are populated for usewith glDrawElementsIndirect,

enabling GPU-driven rendering.

• Execution: The shader dispatches one thread per voxel within a chunk. For each

voxel:

– It reads the voxel type and skips empty or fully transparent voxels.

– For each of the six faces of the voxel, it checks neighboring voxels to decide

whether to emit a face. Faces are emitted only if the neighbor is empty, of a

different type, or differs in transparency.

– Vertices for quads representing faces are generated and indexed accordingly.

• MeshOutput: This approach generates a completemesh representing only visible

faces, optimizing performance by culling internal faces.

4.4.6 Vertex and Fragment Shaders

Vertex Shader The vertex shader transforms each vertex position using the model,

view, and projection matrices. It also retrieves the color and lighting information for the

voxel type from a shader storage buffer and passes these to the fragment shader.

Fragment Shader The fragment shader receives interpolated color and light values

from the vertex shader and outputs the final fragment color. It currently applies the
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color directly without additional lighting effects, but the lighting value is available for

future enhancements.
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5 Results

As proof of both concept and implementation, two example projects using both the sim-

ulation library and the visualization add-on library have been created.

5.1 Plant Growing Cellular Automaton

5.1.1 Overview

This example demonstrates a 3D cellular automaton simulating plant growth in a voxel

grid. The automaton evolves states such as air, seed, branches, and leaves to model the

development of a plant-like structure.

5.1.2 Plant States

• Air: Empty space, no plant voxel.

• Seed: Initial growth point.

• Branch: Growing plant structure.

• StrongBranch: Mature and reinforced branch.

• Leaf : Photosynthetic elements.

• PseudoLeaf : Visual leaf state with Air behavior.

5.1.3 Automaton Setup

• Grid size: 25 (X) × 100 (Y) × 25 (Z)

• Border fixed to Air state.
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• Neighborhood: Von Neumann, radius 2.

• Initial seed placed at grid position (12, 0, 12).

• Each state assigned a color for rendering (e.g., seed is brownish, leaves are green-

ish).

5.1.4 Growth Rules

• Seed transforms into Branch on the first step.

• Branch becomes StrongBranch if supported by branches above or sufficient ad-

jacent branches (checked periodically).

• StrongBranch remains stable.

• Leaf disappears if adjacent to a StrongBranch, otherwise may revert to Branch

based on adjacency.

• PseudoLeaf and Air can convert to Leaf if near branches under certain condi-

tions.

• Various time-based and neighbor-count rules control growth patterns.

5.1.5 Visualization Examples

Visualization examples have been provided on Figure 5.1, Figure 5.2, and Figure 5.3.

5.2 Cave Formation Cellular Automaton

5.2.1 Overview

This example simulates cave-like structures using a 3D cellular automaton. The system

evolves states representing solid rock and air, modeling natural erosion and filling pro-

cesses to form caves.

5.2.2 States

• Air: Empty space inside the cave.
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Figure 5.1: Initial seed voxel at the center of the grid.

• Solid: Solid rock or ground.

5.2.3 Automaton Setup

• Grid size: 100 × 100 × 100 (1,000,000 cells total).

• Default state: Air.

• Border state: Fixed to Solid.

• Initial grid randomized with a mixture of solid and air.

• Neighborhood: Moore neighborhood with radius 1.

5.2.4 Erosion and Filling Rules

• For a Solid voxel:

– If fewer than 12 neighboring voxels are solid, it erodes into Air.

– There is a very small random chance (0.1%) it erodes regardless.

– Otherwise, it remains Solid.

• For an Air voxel:
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Figure 5.2: Intermediate growth with branches and leaves forming.

– If more than 13 neighbors are Solid, it becomes Solid (filling in).

– Otherwise, it remains Air.

5.2.5 Performance Metrics

This simulation involves a relatively complex 3D cellular automatonwith 100×100×100

cells (1,000,000 in total), processed using neighborhood-based rule evaluation for each

voxel in a dense grid.

To evaluate performance, execution times were recorded during the simulation setup

and execution steps:

• Automaton object creation: 321 ms.

• Single automaton step (without visualization): 5100 ms.

• Renderer object creation: 2 ms.

• Automaton step with renderer active: 5134 ms.

It is important to note that automaton stepping with the renderer being active takes

place in a separate thread, and does not slow down rendering.
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Figure 5.3: Fully grown plant with strong branches and dense foliage.

Performance measurements were collected on a machine with the following config-

uration:

• CPU: AMD Ryzen 5 5600U with Radeon Graphics

• RAM: 16 GB

• GPU: NVIDIA GeForce RTX 3050

• OS: Windows 11 64-bit

5.2.6 Visualization Examples

Visualization examples of a smaller (32 × 32 × 32) cellular automaton of the same be-

haviour have been provided in Figure 5.4, Figure 5.5
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Figure 5.4: Cave formation with low initial solid density and minimal erosion, resulting in a
large hollow space.

Figure 5.5: Cave structure with very high solid fill and minimal erosion, creating smaller cave
openings and more compact formations.
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6 Conclusion and Future Work

This thesis documents the creation of a C# cellular automata framework that evolved

through iterations. The final architecture emerged from solving problems in simulat-

ing 3D automata while maintaining interactive visualization—challenges particularly

apparent in the plant growth simulation’s branching behaviour.

6.1 Core Achievements

1. Modular Design – The library’s architecture solves a key extensibility problem:

how to support arbitrary rules without compromising simulation performance.

The solution combines:

• Interface-driven state management,

• Abstract base classes for grid implementations,

• A factory pattern for automaton composition.

This approach proved crucial when adapting the system between plant growth and

cave formation models.

2. PerformanceTradeoffs –The three grid implementations (ArrayGrid, DictionaryGrid,

ChunkGrid) each excel in different scenarios:

• ArrayGrid for small, dense automata,

• DictionaryGrid for sparse populations,

• ChunkGrid as a balanced hybrid best for a middle ground.
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Because of this, parallel processing maintained responsiveness during multi-state

simulations.

3. Visualization System – The OpenGL renderer’s two-phase approach (compute

shaders for mesh generation, traditional rendering for display) successfully helped

bridge the gap between discrete automata states and smooth 3D visualization. The

camera controls enabled detailed inspection of emergent patterns.

6.2 Limitations Observed

• Rendering: Current capabilities don’t fully capture translucent materials like fo-

liage or liquids due to lack of depth sorting implementation.

• Rules: The system implements deterministic rules only, but allows for user to cre-

ate their own ruleswhich don’t stick to deterministic approaches anduse stochastic

ones; although this is slower.

• Scale: Memory constraints affect very large grids, and interactiveness with re-

building meshes shows visible artifacts when updating chunks on automaton step

over.

• Interaction: Real-time interaction requiredmesh recomputationwithout the abil-

ity for caching.

6.3 Future Work

The current implementation provides a solid foundation for severalmeaningful enhance-

ments:

• AdvancedLighting – Implementing physically-based renderingwith shadowmap-

ping would address current limitations in material representation. This includes:

– Dynamic shadows for organic structures (e.g., plant canopies);

– Normal mapping for surface detail;

– Ambient occlusion for depth perception;
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– Light propagation through transparent and non-existent voxels.

• TransparencyHandling –Proper order-independent transparency could be achieved

through:

– Depth sorting implementation inside the compute shader;

– Depth peeling for accurate foliage rendering;

– Screen-space refraction for liquid effects;

– Particle-based alternatives for performance-critical cases.

• Hybrid Rendering – Combining the current voxel approach with:

– Signed distance fields for smooth surfaces;

– Tessellation for dynamic LOD;

– Ray marching for advanced effects.

These improvements would specifically address the current rendering limitations

whilemaintaining the system’s real-time performance characteristics. The architecture’s

modular design makes these extensions feasible without fundamental restructuring.

6.4 Final Remarks

This framework demonstrates that cellular automata remain valuable for both research

and education. Its architecture intentionally supports several logical extensions while

already providing a complete foundation for 3D automata experimentation. All project

and test files are available for community use and extension at https://github.com/

vito-vrbic/CADNDS/releases/tag/v1.0.
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Abstract

Simulation and visualization of cellular automata in discrete

space

Vito Vrbić

This paper explores methods for simulating and visualizing cellular automata in dis-

crete space, with an emphasis on their application in computer graphics. The theoret-

ical foundations of cellular automata are analysed, including the formal definition, lat-

tice structure, and neighbourhood variants. An implementation of a modular library in

the C# programming language for automata simulation is presented, along with an ex-

tension for 3D visualization using OpenGL. The results are demonstrated through two

examples: plant growth and cave formation. The paper concludes with a discussion of

the advantages, limitations, and possible directions for further development, providing

useful insights into applications in the areas of procedural generation and dynamical

systems modelling.

Keywords: Cellular Automata, OpenGL, C#, Library, Visualization, Simulation, Op-

timization
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Sažetak

Simulacija i vizualizacija staničnih automata u diskretnom

prostoru

Vito Vrbić

U ovom radu istražuju se metode simulacije i vizualizacije staničnih automata u dis-

kretnom prostoru, s naglaskom na njihovu primjenu u računalnoj grafici. Analiziraju se

teorijski temelji staničnih automata, uključujući formalnu definiciju, strukturu rešetke i

varijante susjedstva. Prikazana je implementacija modularne biblioteke u programskom

jeziku C# za simulaciju automata, zajedno s proširenjem za 3D vizualizaciju korištenjem

OpenGL-a. Demonstriraju se rezultati kroz dva primjera: rast biljaka i formiranje špilja.

Rad zaključuje raspravom o prednostima, ograničenjima i mogućim smjerovima dalj-

njeg razvoja, pružajući korisne uvide za primjenu u područjima proceduralne generacije

i modeliranja dinamičkih sustava.

Ključne riječi: Stanični Automati, OpenGL, C#, Biblioteka, Vizualizacija, Simulacija,

Optimizacija
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