
SEMAPHORES

Semaphores as synchronization mechanisms are used to protect critical sections or to control

limited resources (resource counters). Basic operations can be performed with functions:

int sem_init(sem_t *sem, int sync_proc, unsigned int initial_value);

int sem_set(sem_t *sem);

int sem_wait(sem_t *sem);

where sem is a pointer to a sem_t object, sync_proc is set to zero if the semaphore is used

by threads within the same process, to a different value otherwise, and initial_value is

the initial value for the semaphore.

When a semaphore is used to synchronize threads within the same process, the semaphore

object is usually defined as a global variable, e.g. sem_t sem; and a pointer to it (&sem) is

passed to semaphore functions (sem_wait(&sem)).

When a semaphore is used to synchronize threads from different processes, the semaphore

object must be allocated in shared memory. In such scenarios, the parent process usually first

creates shared memory, initializes a semaphore object in it, and then creates child processes

that synchronize with that semaphore.

A sketch of code for both cases follow.

Threads within the same process:

...

sem_t sem; //global variable, outside functions

...

in function main:

 ...

 sem_init(&sem, 0, 1);

 ...

 pthread_create(...)

 ...

in threads:

 ...

 sem_wait(&sem);

 ...

 sem_post(&sem);

 ...

Threads within different processes:

...

sem_t *sem; //global variable, outside functions

...

in function main:

 ...

 allocate shared memory

 sem = address of share memory

 sem_init(sem, 1, 1);

 ...

 fork(...)

 ...

in child processes:

 ...

 sem_wait(sem);

 ...

 sem_post(sem);

 ...

