
1 Monitors
If mutual exclusion between threads is required, we can use a more sophisti-
cated synchronization mechanism - a monitor. Monitors combine a simple
binary semaphore (mutex) with condition variables to guarantee mutual
exclusion while enabling threads to wait for specific conditions or events to
be met.

1.1 POSIX mutexes

The POSIX standard provides a basic interface for interacting with mutexes:

include <pthread .h>

int pthread_mutex_init (pthread_mutex_t * restrict mutex ,
const pthread_mutexattr_t * restrict attr);

int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

The pthread_mutex_init function is used to initialize a mutex. The
mutex argument points to a previously allocated mutex structure, the attr
argument points to a structure that defines some properties of the newly
created mutex (if NULL is passed, the mutex will be initialized with the
default properties).

The pthread_mutex_lock function attempts to lock the specified mutex.
Each thread that attempts to lock a previously locked mutex shall block
until the mutex is released by another thread. The pthread_mutex_trylock
function also attempts to lock the specified mutex but returns an error if
the mutex is locked. These functions should be used only when entering a
critical section.

1.2 POSIX condition variables

We can use condition variables to delay a thread’s execution until a specific
condition is met. These variables can be used only after their corresponding
mutex is locked by the same thread. Failing to do so results in undefined
behaviour.

The POSIX standard provides a basic interface for interacting with con-
dition variables:

1

include <pthread .h>

int pthread_cond_init (pthread_cond_t *cond , const
pthread_condattr_t *attr);

int pthread_cond_wait (pthread_cond_t *cond ,
pthread_mutex_t *mutex);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

The pthread_cond_init function is used to initialize a previously allo-
cated condition variable structure. The pthread_cond_wait function is
used to wait on a specified condition variable, which blocks the calling
thread until it is released by another thread using pthread_cond_signal or
pthread_cond_broadcast

The mutex argument points to a previously allocated mutex structure,
the cond argument points to a previously allocated condition variable struc-
ture and the attr argument can be used to specify properties of the newly
created condition variables (NULL is used to specify default properties).

Upon caling pthread_cond_wait, the calling thread is placed in a wait-
ing queue associated with the condition variable and releases the mutex.
Once the thread is released using pthread_cond_{signal, broadcast},
the mutex is reacquired before the thread resumes. The pthread_cond_signal
function releases only one thread from the waiting queue, while pthread_cond-
_broadcast releases all blocked threads.

POSIX mutexes and condition variables can be combined to form a mon-
itor.

1.3 Examples

As we previously briefly mentioned, a monitor conceptually consists of a set
of internal data structures and procedures which operate on these internal
structures. These procedures can not be executed in parallel. A thread
enters the monitor, possibly tests some condition, and proceeds to execute
the critical section. Upon completion, the thread releases the monitor and
releases one thread waiting to enter the monitor. Should any of the condi-
tions required by a thread not be met after entering the monitor, the thread
blocks on a corresponding condition variable.

The following example shows how to realize monitors in the C program-
ming language by combining POSIX mutexes and condition variables. The
sample program attempts to acquire shared resources (p and q).

2

void acquire_resources (int p, int q)
{

pthread_mutex_lock (& mtx);
while (p == 0 || q == 0)

pthread_cond_wait (&cond , &mtx);
p = q = 0;
pthread_mutex_unlock (& mtx);

/* use acquired resources */
}

void release_resources (int p, int q)
{

pthread_mutex_lock (& mtx);
p = q = 1; /* release resources */
pthread_cond_broadcast (& cond);
pthread_mutex_unlock (& mtx);

}

The following example shows a basic usage of monitors:

...
pthread_mutex_t m;
pthread_cond_t cond;
...
void * thread (void *p)
{ ...

pthread_mutex_lock (&m);
...
while (blocking_condition)

pthread_cond_wait (&cond , &m);
...
pthread_mutex_unlock (&m);
...
pthread_mutex_lock (&m);
...
if (release_condition)

pthread_cond_signal (& cond); // or
pthread_cond_broadcast (& cond);

...
pthread_mutex_unlock (&m);
...

}
int main ()
{ ...

pthread_mutex_init (&m, NULL);

3

pthread_cond_init (&cond , NULL);
...
pthread_create (... , ..., thread , ...);
...
pthread_join (...);
...
return 0;

}

Detailed information about each the whole POSIX thread interface can be
found in the following manpages: pthread, pthread_create, pthread_exit,
pthread_detach, pthread_join, pthread_mutex_init, pthread_mutex_lock,
pthread_mutex_unlock, pthread_mutex_destroy, pthread_cond_init, pthre-
ad_cond_wait, pthread_cond_signal, sem_init, sem_wait, sem_post,
sem_destroy. . .

4

	Monitors
	POSIX mutexes
	POSIX condition variables
	Examples

