
Lab-1. Signals

The signaling mechanism at the operating system level enables the processing of events that

occur in parallel with the normal operation of the program, i.e. the process, i.e. its threads.

In this respect, the signal is similar to the processor-level interrupt mechanism: the processor

executes a thread that can be interrupted by a device interrupt. The processor then suspends

execution of the thread, saves its context, and jumps to the interrupt handler. After the interrupt

handler completes, it returns and resumes the thread (restores its context). Similarly, the

signals interrupt the execution of a thread, the signal processing function is called (the default

function or a function defined in the program) and after its completion the processor returns to

the thread and resumes its operation.

Let us consider the signals SIGINT (signal interrupt) and SIGTERM (terminate). The usual use

of the signal SIGINT is to stop a process. Usually this is a "forced" interrupt due to an error in

the execution of the process. On the other hand, SIGTERM is also used to interrupt the

process, but for other reasons and not because of program errors. For example, when the

system is shutting down, all processes must be stopped, but in a pleasant way. They are

notified to stop with this signal. Then a corresponding function (SIGTERM handler) is called

within a process, which can perform additional "housekeeping" before the process stops

voluntarily.

In the terminal, we send SIGINT to the active process by pressing Ctrl + C and the process is

terminated (default behavior). The signal can also be sent with special shell commands or

other programs through the OS interface. With the kill command we can send a signal to a

process whose identification number (PID) we know with:

$ kill -<signal id> <PID>

Signal SIGTERM can be sent to process with PID 2351 with command:

$ kill -SIGTERM 2351

Character $ is command shell prefix, not part of the command.

For most signals, the program can specify what to do with them. If the program does not do

this, the default behavior is used. In many cases this means that the process is stopped, like

with the SIGINT and SIGTERM signals.

The program defines its behavior for signals through OS interface - it masks a signal, usually

with a signal handler function (function defined in the program). There are several interfaces

for this, such as the older signal and sigset functions and the newer sigaction, which is used

in this lab.

In the next example, three signals are masked, SIGUSR1, SIGTERM, and SIGINT. The

SIGUSR1 signal is a "user" signal that serves no particular purpose. Here SIGUSR1 is used

to simulate an event where an action must be performed. The signal handler for SIGTERM

and SIGINT, on the other hand, prints a message and stops the process. However, in the

handler for SIGTERM, we only announce that programs need to be stopped by using a global

variable run. When the process returns from this signal handler, it will recognize this change

and exit the infinite loop.

Then next program is explained with comments within source code.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <signal.h>

/* signal handlers declarations */

void proces_event(int sig);

void process_sigterm(int sig);

void process_sigint(int sig);

int run = 1;

int main()

{

 struct sigaction act;

 /* 1. masking signal SIGUSR1 */

 /* signal handler function */

 act.sa_handler = proces_event;

 /* additionally block SIGTERM in handler function */

 sigemptyset(&act.sa_mask);

 sigaddset(&act.sa_mask, SIGTERM);

 act.sa_flags = 0; /* advanced features not used */

 /* mask the signal SIGUSR1 as described above */

 sigaction(SIGUSR1, &act, NULL);

 /* 2. masking signal SIGTERM */

 act.sa_handler = process_sigterm;

 sigemptyset(&act.sa_mask);

 sigaction(SIGTERM, &act, NULL);

 /* 3. masking signal SIGINT */

 act.sa_handler = process_sigint;

 sigaction(SIGINT, &act, NULL);

 printf("Process with PID=%ld started\n", (long) getpid());

 /* processing simulation */

 int i = 1;

 while(run) {

 printf("Process: iteration %d\n", i++);

 sleep(1);

 }

 printf("Process with PID=%ld finished\n", (long) getpid());

 return 0;

}

void proces_event(int sig)

{

 int i;

 printf("Event processing started for signal %d (SIGINT)\n", sig);

 for (i = 1; i <= 5; i++) {

 printf("Processing signal %d: %d/5\n", sig, i);

 sleep(1);

 }

 printf("Event processing completed for signal %d (SIGINT)\n", sig);

}

void process_sigterm(int sig)

{

 printf("Received SIGTERM, saving data before exit\n");

 run = 0;

}

void process_sigint(int sig)

{

 printf("Received SIGINT, canceling process\n");

 exit(1);

}

For the demonstration shown below, two terminals must be open. On the first one a program

is started and on the second one signals are sent with the command kill. The signal SIGINT

can be sent directly with Ctrl+C. In the examples, the commands and printouts from both

terminals are shown in separate columns.

Example 1. Sending signal SIGINT with Ctrl+C

Terminal 1 Terminal 2
$ gcc signals.c -o sig1

$./sig1

Process with PID=14284 started

Process: iteration 1

Process: iteration 2

Process: iteration 3

^CReceived SIGINT, canceling process

$

In this first example, the key combination Ctrl+C is used to send a SIGINT signal. When the

signal is received, the signal handler function is called, which simply prints a message and

stops the process with a call to the exit function. The SIGINT signal can also be sent with the

kill command, just like any other signal.

Example 2. Sending signal SIGINT with command kill

Terminal 1 Terminal 2
$./sig1

Process with PID=14296 started

Process: iteration 1

Process: iteration 2

Process: iteration 3

Received SIGINT, canceling process

$

$ kill -SIGINT 14296

Similarly, other signal handlers are called for other signals.

Example 3. Sending signal SIGTERM

Terminal 1 Terminal 2
$./sig1

Process with PID=14299 started

Process: iteration 1

Process: iteration 2

Process: iteration 3

$ kill -SIGTERM 14299

Received SIGTERM, saving data before exit

Process with PID=14299 finished

$

Example 4. Sending signal SIGUSR1

Terminal 1 Terminal 2
$./sig1

Process with PID=14425 started

Process: iteration 1

Process: iteration 2

Event processing started for signal 10

Processing signal 10: 1/5

Processing signal 10: 2/5

Processing signal 10: 3/5

Processing signal 10: 4/5

Processing signal 10: 5/5

Event processing completed for signal 10

Process: iteration 4

Process: iteration 5

^CReceived SIGINT, canceling process

$

$ kill -SIGUSR1 14425

When the SIGUSR1 signal is received, the execution of the main program is temporary

suspended, and the signal handler function is called. After its completion, the program resumes

its execution. If a new signal SIGUSR1 arrives while the program is in the signal handler

function for this signal, this new signal is "paused" until the previous handling is completed.

Only then is this new signal released and the signal handler called again. Since we have

defined this in the program, SIGTERM will also be put on hold if it arrives while SIGUSR1 is

being processed.

Example 5. Sending signals while in signal handler

Terminal 1 Terminal 2
$./sig1

Process with PID=14492 started

Process: iteration 1

Process: iteration 2

Event processing started for signal 10

Processing signal 10: 1/5

Processing signal 10: 2/5

Processing signal 10: 3/5

Processing signal 10: 4/5

Processing signal 10: 5/5

Event processing completed for signal 10

Event processing started for signal 10

Processing signal 10: 1/5

Processing signal 10: 2/5

Processing signal 10: 3/5

Processing signal 10: 4/5

Processing signal 10: 5/5

Event processing completed for signal 10

Received SIGTERM, saving data before exit

Process with PID=14492 finished

$

$ kill -SIGUSR1 14492

$ kill -SIGUSR1 14492

$ kill -SIGTERM 14492

The second signal SIGUSR1 is processed only after the first has been processed. Similarly,

the signal SIGTERM must wait until the second SIGURS1 handler has finished. However, if

SIGINT would arrive it will immediately be handled since it is not on hold, even if SIGUSR1 is

being processed. This behavior with SIGINT is not shown in the example.

The process can respond to a signal in several ways:

1. call the default handler if the program has not defined another,

2. call a handler function provided by the program (e.g., with sigaction),

3. hold signals (they will not interrupt, but are stored for later processing)

4. ignore (they will not interrupt nor are stored).

Behaviors 1, 2, and 4 can be set with sigaction: with the constant SIG _DFL for 1, the handler

function for 2, and SIG _IGN for 4. Behavior 3 is set automatically when a signal is accepted

with the handler function and is reset when the handler is finished. Additionally, behavior 3 can

be set with sighod and reset with sigrelse.

Sometimes the processing of one signal must not be interrupted by other signals, at least on

specific code segments. Similarly, interruption should be allowed on other code segments.

This functionality can be achieved in several ways.

One (simpler, with the "older interface") is to call sighold(sig) for each signal we want to

temporarily block, or sigrelse(sig) for each signal we want to enable again.

The second (recommended) is to use pthread_sigmask, or sigprocmask with e.g. code:

void block_unblock_signals(int block)

{

 sigset_t signals;

 sigemptyset(&signals);

 sigaddset(&signals, SIGTERM);

 sigaddset(&signals, SIGINT);

 if (block)

 pthread_sigmask(SIG_BLOCK, &signals, NULL);

 else

 pthread_sigmask(SIG_UNBLOCK, &signals, NULL);

}

Signals are sent to process by the operating system for its own reasons or at the request of

another process. In the above examples, the signals were sent with the kill command (which

is a program), or directly via Ctrl+C, which the shell interpreted as a request to send the signal

SIGINT to the process shell started.

Many mechanisms in UNIX are based on signals. For example, periodic operations can be

implemented by alarms - signals that are sent periodically (e.g., with setitimer). The delay

operation sleep(x) is implemented by signals: the process asks OS to send a signal after x

seconds (alarm), and then the program suspends itself (with pause). However, such a sleep

can also be interrupted by other signals, so that the program is not delayed for a given number

of seconds.

