Operating systems

Fourth laboratory exercise

March 10, 2023

Contents
1 Introduction

2 Tasks
2.1 Paging simulation (4 boda) L.
2.1.1 Simulated CPU architecture overview
2.1.2 Overview of a single simulation step
2.1.3 Sample simulation output
2.2 Simulating shared memory (2 boda)
2.2.1 Quick overview of shared memory
222 Task o
2.2.3 Sample simulation output

1 Introduction

The goal of this laboratory exercise is to study virtual memory systems and
address space isolation on modern hardware. Your main task is to implement
a simulation of a simple computer system using virtual memory.

2 Tasks

2.1 Paging simulation (4 boda)

As Vas je zadatak ostvariti simulaciju rada vise procesa u sustavu koji koristi
mehanizam stranicenja na zahtjev pomocéu arhitekture prikazane na slici 1.

The simulated system consists of N processes, a hard drive, an array
of M frames and a page table for each simulated process. Your simulation
should follow the workflow the specified in Algorithm 1 and must allow the
user to specify the number of frames (M), and the number of processes (V).
Your implementation should also have the following data structures:

e hard_drive[N] - A simulated hard drive used for storing frame con-
tents,

e frames[M] - Simulated physical memory consisting of M 64-byte frames,

e page_tables[N] - Page tables for each of the N simulated processes.

Algorithm 1: Simulation pseudocode.

1 fori=1to N do

2 create process ;

3 initialize page table for process i;
4 end

5 ¢ < 0;

6 while

7 for each process p do

8 x < random virutal address;
9 i < read__contents(p, x);
10 141+ 1;
11 write__value(p, z,1);
12 t—t+1;
13 sleep;
14 end

Algorithm 2: Helper function pseudocode.

1 Funkcija read__contents(p, x)
y < translate_address(p, z);
i < contents at y;
return i;
Funkcija write_ value(p, x, i)
y < translate_address(p,);
write ¢ to address y;
Funkcija translate_address(p, x)
find process p page table entry for address z;
if adress x not valid then
print page fault;
find and allocate frame;
load frame content from hard drive;
update page table for process p;
end
print address x and the address of its corresponding frame and
page table entry;
11 return physical address;

© W N O kA W HE W N H oW N

The address space of a process must be accessed using the read_contents
and write_value helper functions. Any solution that does not adhere to
this rule will be considered invalid.

You must use the Least Recently Used (LRU) page replacement strategy
when allocating frames. The LRU implementation must use the value of the
variable t as the clock value. The page table entry (depicted in Figure 2)
contains 5 bits for LRU metadata storage. If the value of this field reaches
31 in any page table entry, you must reset the value of the variable t to 0 and
set the value of the LRU metadata for the current page to 1. When replacing
or evicting pages, you should assume that their contents have always been
modified (dirty) and store them in the simulated hard drive. The page table
entry must contain a validity bit at the sixth bit.

When generating random addresses, we recommend generating even
addresses to avoid edge cases when reading from the end of a frame. You
can do this by masking a randomly generated address with the value 0x3FE.

2.1.1 Simulated CPU architecture overview

The simulated CPU uses 16-bit virtual addresses with a page/frame size
of 64 bytes and the little-endian byte order. The structure of the virtual
address is depicted in Figure 1. Virtual address translation is done using a
single-level page table. To make the simulation easier to implement, the first
6 bits of the virtual address are left unused, limiting the virtual address
space to 1024 bytes. The next 4 virtual address bits are used as an index

for the page table, and the last 6 bits are used as a frame offset.

Virtual address

10 9 6|5 0
unused page table index frame shift
/4 //6
Process p 64B
page table frame
page table >
entry final address
Ao

Y

Figure 1: Simulated virtual memory system diagram.

15

Page table entry layout

6 5

Physical frame address

Valid
bit

LRU metadata

Figure 2: Page table entry layout.

2.1.2 Overview of a single simulation step

Let’s assume that the randomly generated virtual address was 0x1A2, that
the corresponding page is valid, and that the value of the global clock vari-
able t is 3. Finding the corresponding page table entry requires extracting
several values from the virtual address. This process is depicted in Figure 3.
The value of the page table index is 6, which means that we must check the
seventh page table entry. The page table entry points to the frame at 0x9,
the valid bit is set and the LRU value is 1. The final address is then formed
from the frame address and the frame shift value, and the LRU metadata
is set to the current value of the clock (3).

Page table for process p Virtual address
Okvir P2 LRU 0x01A2
0.
9 6,5
unused ofi1|1|0f(1|0|0|0|1]|0
0x6 0x22

[

6. 0|0|0|0|0|U|1|0|U|1 0|0|0|0|1

Final address

4|o|0|0|0|0|o|1|0|o|1 1|o|0|o|1|0|

Figure 3: Address translation.

2.1.3 Sample simulation output

This is an output from a properly implemented solution simulating two
processes and a single frame. Each process accessed the same address 0x1FE.

Listing 1: Simulation output.

$./labd 2 1

process: 0

t: 0
virt. address: 0x0Olfe
Page fault!

allocated frame 0x0000
phys. adress: 0x003e
page table entry: 0x0020
address contents: 0

process: 1

virt. address: 0xOlfe

Page fault!
Evicting page 0x01cO from process O
evicted page LRU: 0x0000
allocated frame 0x0000

phys. address: 0x003e

page table entry: 0x0021

address contents: 0

process: 0
t: 2
virt. address: 0xOlfe
Page fault!
Evicting page 0x01cO from process 1
evicted page lru: 0x0001
allocated frame 0x0000
phys. adresa: 0x003e
page table entry: 0x0022
address contents: 1
process: 1
t: 3
virt. address: 0xOlfe
Page fault!
Evicting page 0x01cO from process 0
evicted page lru: 0x0002
allocated frame 0x0000
phys. address: 0x003e
page table entry: 0x0023
address contents: 1

