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1. Introduction 

Skeletal animation is a technique in computer animation in which a character or other 

articulated object is represented in two parts: a surface representation used to draw the 

character called skin or mesh and a hierarchical set of interconnected bones called the 

skeleton or rig used to animate (pose and keyframe) the mesh [1]. 

Skeletal animation has become the industry standard way for animating organic models such 

as characters and nonorganic 3d models. 

The technique was introduced in 1988 by Nadia Magnenat Thalmann, Richard Laperrière, and 

Daniel Thalmann [ref]. This technique is used in virtually all animation systems where 

simplified user interfaces allows animators to control often complex algorithms and a huge 

amount of geometry; most notably through inverse kinematics and other "goal-oriented" 

techniques. In principle, however, the intention of the technique is never to imitate real 

anatomy or physical processes, but only to control the deformation of the mesh data [1]. 

This project explores building a system that reproduces animations based on a skeleton 

system, allows masking and blending of animations, and displaying the skeleton. It has been 

built from the ground up using OpenGL to render the scene.  

This paper will explain the features and techniques used in our application, the various 

libraries, animation theory behind the scenes.   
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2. Skeletal animation theory 

Skeletal Animation is a technique in computer animation in which an animated object 

represented by a mesh is animated using a hierarchical structure of bones called a Skeleton 

or Rig. 

 

Figure 1 A completed Skeleton 

Rigging is a process of building the skeleton which will drive the animation for a chosen mesh 

or meshes, thus making the mesh able to move (Figure 1). It includes linking the bones in a 

hierarchy, setting constraints on the bones' movement, and setting up controls which are 

aids for the animator.  

The bones are organized in a hierarchical manner, this means the bones have child/parent 

relationships, every bone except the root has one parent. When a bone moves it also moves 

all its children, but not the parent. This means that when calculating transformations of a 

bone, we need to combine the transformations of all the parent bones up to the root [2]. 

Even though most SDKs and game engines define a skeleton as having bones, that's incorrect. 

It has joints. The bones are the implied connections between joints. 
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A bone is usually visualized by its head and tail, the head is in place of the joint it represents, 

transforming the bone does not move the head, while the tail represents the next joint this 

bone is connected to or if it is a leaf bone it does not represent anything and essentially does 

not exist. That’s why most file formats for storing skeletal and animation data do not store 

the placement of the tail. However, many rigging programs use this kind of visualization since 

it is easy to perceive and control the transformation using the tail. 

Skinning is the process of attaching vertices to the bones, an artist does this using a process 

called weight painting, where for a select bone the artist assigns weights to the mesh ranging 

from 0.0 (no influence) to 1.0 (full influence). A vertex can be influenced by multiple bones 

with different weights, the total sum of weights on a vertex should be 1, this is handled by 

the modeling program (Figure 2). 

 

 

Figure 2 Skinning a mesh to the skeleton, the colors indicate weight values, with red being 1 (full influence) and 
blue being 0 (no influence) 

 

Once the rigging and skinning procedures are complete, the skeleton can be posed to deform 

the mesh, bone movement influences assigned vertices multiplied by weight. 

The Bind pose of the skeleton is the transform (position, rotation and scale) of the bones in 

which no deformation occurs on the mesh. Movement from the bind pose deforms the mesh. 

To animate a vertex, we need to transform it with the bone transformation. Each bone has 

its local space called bone space, the transformation for each bone is in that space, to 

transform the vertex we first move the vertex into bone space, then we transform it with the 

transformation obtained by combining the transformations of all the parent of the bone and 

the bone itself.  
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The approach we take when building the application is to first calculate the final transform 

matrix of a bone and pass it into the shader that will then transform the vertex. The final 

transform matrix is applied to the vertex with a weight of influence that bone has on the 

vertex.  

A keyframe in 3d animation is a location on an animation timeline that stores transformation 

information such as scale, rotation and position of that point in time of the animation. It can 

also store other information that is animated in time, such as slider values on various 

modifiers, but in this project, we are working with bone keyframes only. 

When creating an animation in an animation software the artist places the bones in desired 

position at a desired time and marks a keyframe on those bones. When playing back the 

animation, the keyframes are interpolated in various ways to play a smooth transition 

between the transformations of the bone. 

A 3d animation consists of a timeline populated with keyframes of various bones. An 

animation consists of channels; a channel is a keyframe timeline of only one bone. 

 

Framerate is the number of drawn frames per second, however animations have their own 

predefined framerate with which they define their timeline, rather than defining it by fixed 

time intervals. So, when playing an animation, we need to know its framerate to determine 

its duration or the time at which each keyframe is defined.  

Framerate of the animation is independent of the framerate at which an application is 

running, and the animation will be the same length no matter which framerate the 

application is running at. 

 

Animation masking is the process of playing a different animation on the masked part of the 

skeleton than the base animation being played. Such as playing a walking animation, but 

masking a look around animation on the head of the character. 

Blending animation is the process of combining two or more animations by interpolating 

their transformation by a specified weight. The result is a mix of the two, most commonly 

used to make smooth transitions from one animation to another, or to make a new in 

between animation, such as making the character turn in angles in between 0 and 45 

degrees. 
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3. Used tools 

3.1. OpenGL 
 

Open Graphics Library (OpenGL) is mainly considered an API (an Application Programming 

Interface) that provides us with a large set of functions that we can use to manipulate 2D and 

3D vector graphics and images. However, OpenGL by itself is not an API, but merely a 

specification, developed and maintained by the Khronos Group [3]. 

The OpenGL specification specifies exactly what the result/output of each function should be 

and how it should perform. It is then up to the developers implementing this specification to 

come up with a solution of how this function should operate [3]. 

OpenGL is by itself a large state machine: a collection of variables that define how OpenGL 

should currently operate. The state of OpenGL is commonly referred to as the OpenGL 

context. When using OpenGL, we often change its state by setting some options, 

manipulating some buffers and then render using the current context [3]. 

OpenGL works in 3D space, but to represent that 3D space on the screen a large portion of 

OpenGL is transforming 3D space coordinates into pixels on the screen. This process is 

managed by the graphic pipeline of OpenGL (Figure 3). The graphics pipeline can be divided 

into two large parts: the first transforms your 3D coordinates into 2D coordinates and the 

second part transforms the 2D coordinates into actual colored pixels [4]. 

 

 

Figure 3 OpenGL graphic pipeline [5] 

The programmable parts of the graphic pipeline are the vertex shader and the fragment 

shader, less commonly geometry shader and more recently tessellation. 



6 

The vertex shader inputs are vertices and their attributes, and is used to output other 
attributes and finalize the positions of the vertices. 
The primitive assembly stage takes as input all the from the vertex shader that form a 
primitive and assembles all the point(s) in the primitive shape given [4]. Primitives are the 
type of render data we want to represent with vertices such as points, lines, and most 
commonly triangles. 
 
The output of the primitive assembly stage is passed to the geometry shader. The geometry 
shader takes as input a collection of vertices that form a primitive and can generate other 
shapes by emitting new vertices to form new (or other) primitive(s).  
The output of the geometry shader is then passed on to the rasterization stage where it maps 

the resulting primitive(s) to the corresponding pixels on the final screen, resulting in 

fragments for the fragment shader to use [4]. 

A fragment in OpenGL is all the data required for OpenGL to render a single pixel.  The main 

purpose of the fragment shader is to calculate the final color of a pixel and this is usually the 

stage where all the advanced OpenGL effects occur. Usually the fragment shader contains 

data about the 3D scene that it can use to calculate the final pixel color like lights, shadows, 

color of the light and so on. The last stage is the tests and blending stage, here fragments are 

mixed based on their alpha, or discarded if they are not visible [4]. 

Defining the vertex shader and the fragment shader is required, while the geometry shader 

is optional, in our application we leave the geometry shader as default, while we provide two 

vertex and fragment shaders, for rendering models and rendering the models skeleton. 

The language used in vertex and fragment shader is GLSL, GLSL is tailored for use with 

graphics and contains useful features specifically targeted at vector and matrix manipulation. 

Once the vertices pass through the vertex shader they should be in normalized device 

coordinates (NDC). That is, the x and y coordinates of each vertex should be between -1.0 

and 1.0 and between 0.0 and 1.0 in z (a 2x2x1 cuboid), all vertices outside of that range won’t 

be visible. The users view is at the origin, and is looking at +z. 
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Figure 4 Transformations between spaces in OpenGl [6] 

Transforming coordinates to NDC and then to screen coordinates is usually accomplished in 

a step-by-step fashion where we transform an object's vertices to several coordinate systems 

before finally transforming them to screen coordinates (Figure 4). The advantage of 

transforming them to several intermediate coordinate systems is that some 

operations/calculations are easier in certain coordinate systems as will soon become 

apparent. There is a total of 5 different coordinate systems that are of importance to us [6]: 

Local space (or Object space) 
World space 
View space (or Eye space, Camera Space) 
Clip space (NDC) 
Screen space 
 
 
 
Model matrix represents the placement of the object in the world, the view matrix the 

placement of the camera, while the projection matrix is used to project the objects onto the 

camera lens in various ways, most notably orthographic projection and perspective 

projection. 

Orthographic projection is a form of parallel projection, in which all the projection lines are 

orthogonal to the projection plane. 

Perspective projection is more natural to our perception of the world, with distant things 

appearing smaller then closer things, this is the projection we use in our application. 

 

Old OpenGL conventions state that the camera space is right handed, the camera is 

positioned at the origin and is looking at the negative z axis, while in NDC space it is looking 

at the positive z axis. However, in modern OpenGL we can use arbitrary matrices, and are not 

forced to define our eye or object spaces right-handed, it used to be something akin to a 

default convention. A lot of libraries still follow this convention, including the ones we use. 



8 

So, our camera space is defined as right handed with the camera looking at the negative z 

axis, with its up axis being y and right axis being x. Moving the camera around is achieved by 

instead moving the scene while the camera stays fixed; we are moving the entire scene 

inverse of what would be the movement of the camera. 

 

3.1.1 Libraries 
 

Other libraries used for OpenGL include: 

opengl32 included with Microsoft SDK 
GLFW a simple API for creating windows, contexts, surfaces and receiving inputs and events  
GLEW an OpenGL Extension Wrangler Library that provides efficient run-time mechanisms 
for determining which OpenGL extensions are supported on the target platform 
SOIL (Simple OpenGL Image Library) a tiny C library used primarily for uploading textures 
into OpenGL. 
 

3.2. Assimp 
 

Open Asset Import Library (Assimp) is a portable Open Source library to import various well-

known 3D model formats in a uniform manner. It is tailored at typical game scenarios by 

supporting a node hierarchy, static or skinned meshes, materials, bone animations and 

potential texture data. 

Written in C++, it is available under a liberal BSD license. Assimp loads all input model formats 

into one straightforward data structure for further processing. 

 

3.2.1. Assimp Data Structure 
 

The assimp library returns the imported data in a collection of structures. 
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Figure 5 Assimps imported structure [7] 

aiScene forms the root of the data, from here you gain access to all the nodes, meshes, 

materials, animations or textures including the number of each these structures that were 

read from the imported file (Figure 5). The aiScene is returned from a successful call to 

Assimp::Importer::ReadFile(), aiImportFile() or aiImportFileEx() [8]. 

 

aiNodes are little named entities in the scene that have a place and orientation relative to 

their parents. Starting from the scene's root node all nodes can have 0 to x child nodes, thus 

forming a hierarchy [8]. 

An aiNode can represent a mesh or multiple meshes, a bone or an animation channel, the 

specifications of which are stored in other nodes that can be referred to by name shared with 

aiNode. Each aiNode stores their transformation matrix which defines the nodes coordinate 

system relative to its parent. A pointer to its children, its index and its Name. 
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An aiMesh houses a single or multiple meshes, the vertices, faces, normals and uv 

coordinates of said meshes, material data (not pictured), and has a list of bones that influence 

that mesh. If only a part of the skeleton influences the mesh only those bones will be 

contained in the mesh. This in turn means that if a bone does not influence anything (like a 

control bone) it will not be referenced by any mesh, it is still possible to use this bone as it is 

stored as an aiNode only. 

aiBone represents one bone in the skeleton of the mesh. Each bone has a name by which it 

can be found in the node hierarchy, an array of vertex weights and a 4x4 offset matrix 

transforming from mesh space to bone space, also called the inverse bind pose transform in 

Assimp [7]. The reason why we need this matrix is because the vertices are stored in the usual 

local space. This means that even without skeletal animation support our existing code base 

can load the model and render it correctly. But the bone transformations in the hierarchy 

work in a bone space and every bone has its own space which is why we need to multiply the 

transformations together. So, the job of the offset matrix it to move the vertex position from 

the local space of the mesh into the bone space of that bone [2]. 

aiAnimation node is a single named animation. An animation in this context is a set of 

keyframe sequences where each sequence describes the orientation of a single node in the 

hierarchy over a limited time span. An aiAnimaiton contains aiNodeAnims which represent a 

channel of animation. A channel is a set of keyframes over a period that influence a single 

Bone. aiNodeAnims store a bones rotation, position and scale keyframes and their count.  

 

aiNodes are stored in a hierarchy, while other node types are stored in a list, to access the 

full information of a given node we must find the corresponding structure by name.  

In the case of extracting skeleton and animation data, the skeleton is a hierarchical structure 

and aiNodes corresponding to bones follow this defined structure, so we must traverse the 

aiNode hierarchy to properly propagate parental transform matrices, determine if an aiNode 

is a bone and then refer to the aiBone node by name stored in the aiNode. 

 

Matrices stored in the assimp node structures are row major type, linmath and OpenGL both 

use column major type matrices, so when extracting matrices from the assimp structure it is 

important to transpose them before storing. 

 

3.3. Blender 
 

Blender is the free and open source 3D creation suite. It supports the entirety of the 3D 

pipeline—modeling, rigging, animation, simulation, rendering, compositing and motion 

tracking, even video editing and game creation. 

Blender was used to model, rig, texture, animate and export various 3d models for testing 

this application (Figure 6). 
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Figure 6 Blenders user interface for animation 

 

3.4. Library Linmath 
 

Library Linmath.h is a free small library for linear math as required for computer graphics, it 

supports the most used types of data structures required for programming graphics including 

vector of 3 elements, vectors of 4 elements, quaternions and 4 by 4 matrices in column major 

order. 
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4. Implementation 

4.1. Classes  
 

The application that is the subject of this paper is developed in C++, and adopts an object-

oriented approach to its structure. As such, it uses classes to organize code. 

 

The Camera class handles the logic that controls the users point of view. The cameras 

projection type is perspective to give the impression of depth and a more realistic depiction 

of 3d space. The camera class is used to move the camera around, calculate needed vectors 

such as the forward up and right vectors, calculate look at and the view and projection 

matrices, and set field of view and clipping planes. 

 

The Shader class is the owner of the shader program, the application uses two shaders one 

for displaying the loaded object and another to display the skeleton structure of that object. 

The Shader class handles reading, compiling shaders, checking for errors and creating the 

shader program.   

Model class represents a single model imported with assimp, that model can consist of 

multiple meshes, materials, textures and a skeleton, that skeletons animations and channels, 

user created masks, blends and transitions. It handles loading the model, animating the 

model, animation controls, position scale and rotation of itself, drawing the model on the 

screen. 

It contains the following structs 

typedef struct BoneInfo { 

 mat4x4 boneOffset; 

 mat4x4 finalTransformation; 

}; 

 

Vector of BoneInfos keeps a bones boneOffset matrix that transforms vertices to bone space 

and its finalTransformaiton matrix which is the matrix fed into the OpenGL pipeline to 

determine the final positions of vertices. 

typedef struct AnimationInfo { 

 Time::time_point tStart; 

 Time::time_point tNow; 

 int animation; 

 float animationTime; 

}; 
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AnimationInfo stores data regarding a played animation, when did it start playing, current 

time, what animation and duration. 

typedef struct TransitionInfo { 

 int anim1; 

 int anim2; 

 int frameStart; 

 int frameEnd; 

 Time::time_point tAnimationStart; 

 Time::time_point tAnimationCurrent; 

}; 

 

TransitionInfo stores user created transitions, when creating a transition we need the indexes 

of the two animations being blended, frame in which the transition starts and ends, and the 

current and start time of playback. 

typedef struct BlendInfo { 

 int anim1; 

 int anim2; 

 float weight; 

 Time::time_point tAnimationStart; 

 Time::time_point tAnimationCurrent; 

}; 

 

BlendInfo stores user created blends which need animations that are being blended, and the 

weight at which we blend them (0 being 100% of anim1 and 1 being 100% of anim2). 

 

Mesh class represents a collection of polygons and the vertices, coordinates and normal of 

those polygons. It handles setting up OpenGL buffers. Assigning bones to vertices and 

drawing uniforms. 

 

typedef struct Vertex { 

 vec3 position; 

 vec3 normal; 

 vec2 texcoord; 

}; 

 

A single vertex has information on its position, normal and uv coordinates. 

 

struct MatStruct { 

 mat4x4 mat; 

}; 
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Used as a workaround to tightly pack matrices to send them easily to the shader. 

Linmaths mat4x4 is an array, so vector<mat4x4> is a vector of pointers that point to their 

array values, thus making the matrices scattered. A struct is always tightly packed, so putting 

the array in a struct and then a vector<MatStruct> makes sure all the matrices are tightly 

packed.  

 
typedef struct VertexBoneData { 

 GLuint boneID[NUM_BONES_PER_VERTEX]; 

 GLfloat weights[NUM_BONES_PER_VERTEX]; 

}; 

 

Vertex Bone data keeps bone weights and boneID information of a vertex. 

NUM_BONES_PER_VERTEX defines how many bones can influence a single vertex, it varies 

between different applications, a common number is usually 3 or 4, this application supports 

up to 4 bones. 

 

SkeletonMesh class is similar to the mesh class, but without most of the functions of the 

mesh class. Each Model has exactly one or no SkeletonMesh. The skeleton mesh stores 

vertices in proper positions that represent placements of bones. It also handles drawing the 

uniforms and assigning those vertices to appropriate bones. 

 

The Texture class handles loading a texture with soil, assigning an OpenGL id to the texture, 

binding the texture, and setting up OpenGL parameters for handling the texture. 

 

4.2. Basics of OpenGL 
 

OpenGL uses buffers to store large amounts of data that is passed to the graphic card. 

For sending vertices we use the vertex buffer objects (VBO) that can store a large number of 

vertices in the GPU's memory.  Once we load the vertices into our program we must send 

them to the graphic card. We first must create and fill the VBO for each vertex attribute such 

as position, normal and uv coordinate. And indicate which vertex buffer corresponds to 

which attribute. 

Vertex array objects (VAO) save information about which Vertex Buffer Object is connected 

to which attribute of the vertex shader, so when drawing objects, we simply bind the VAO. 

Element buffer objects (EBO) is used to store indices of vertices, so even though a vertex is 

shared between triangles it is stored only once, while the EBO takes care that both triangles 

use it. This drastically reduces the memory needed to store meshes. 
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This is handled by the mesh class that loads vertex positions, normals, uv coordiantes, bone 

weights and bone ids. 

 

Since we want OpenGL to keep drawing images on the screen we use the render loop located 

in the main function, the render loop keeps running and drawing images until we tell OpenGL 

to stop. 

Inside the render loop we handle all the changes that can happen to an OpenGL scene. Here 

is the code that’s executed after we load the model including calculating all necessary 

transformations to handle animation moving the camera. 

In the render loop, we send the needed uniform to the shaders including the model matrix, 

the view matrix, the projection matrix, the bone transformations and other. We also handle 

drawing objects, handling key inputs, swapping buffers and clearing buffers.  

The Draw function of the mesh handles binding the textures and the necessary buffers, and 

drawing into the buffer with the passed shader. 

  

4.3. Shaders 
 

We use two shaders in this application, a general shader to shade models and animate them, 

and a second shader that renders the skeleton. 

To animate the vertices, we take the transformations of the bones, combine them by weight 

and multiply with the position of the vertex. 

 

mat4 bonetransform = gBones[boneIDs[0]] * weights[0]; 

bonetransform += gBones[boneIDs[1]] * weights[1]; 

bonetransform += gBones[boneIDs[2]] * weights[2]; 

bonetransform += gBones[boneIDs[3]] * weights[3]; 

 

newpos = bonetransform * vec4(position, 1.0f); 

 

gl_Position =  projection * view * model * newpos; 

  

 

The gBones is the uniform storing the bone transformation while boneIDs store a maximum 

of 4 bone IDs that influence the current vertex.  

The second shader used for rendering the skeleton operates much in the same way, but with 

only one bone influencing a vertex. 
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4.4. Importing through Assimp 
 

Before we start rendering our scene we need to load chosen objects into it, this is done using 

Assimp. Once Assimp has successfully loaded the file it will return the reference to the root 

of its data structure in aiScene, aiScene objects are owned by Assimp, and not the caller, to 

make sure the loaded data does not get destroyed we must store a pointer to the data. 

From aiScene we must extract every mesh, the meshes vertices, materials of the mesh, assign 

bones to vertices of the mesh and the skeleton information of the model. 

A vertex is described by its position, normal, and uv coordinates, this vertex data is stored in 

a struct of the same name. Once we extract all vertices of a mesh, for OpenGL to form 

triangles from them we must store a vector of indices that represent vertices, bunches of 

three indices starting from the first forms one triangle, many vertices are shared between 

triangles so this type of storage greatly reduces needed space. 

From materials, we only use the diffuse texture. For every texture, instantiate a Texture class, 

load the texture using SOIL and generate an OpenGL texture ID and set up OpenGL settings. 

After needed data is extracted we instantiate a Mesh class, and setup that mesh and its 

OpenGL buffers with the extracted data. 

 

glGenBuffers(1, &ebo); 

glGenVertexArrays(1, &vao); 

glGenBuffers(1, &vbo); 

 

glBindVertexArray(vao); 

 

glBindBuffer(GL_ARRAY_BUFFER, vbo); 

glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], 

GL_STATIC_DRAW); 

 

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); 

glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(GLuint), 

&indices[0], GL_STATIC_DRAW); 

 

glEnableVertexAttribArray(0); 

glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)0); 

 

glEnableVertexAttribArray(1); 

glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), 

(GLvoid*)offsetof(Vertex, normal)); 

 

glEnableVertexAttribArray(2); 

glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), 

(GLvoid*)offsetof(Vertex, texcoord)); 

 

glBindBuffer(GL_ARRAY_BUFFER, 0); 

 

glBindVertexArray(0); 

 

The function glVertexAttribPointer defines an array of generic vertex attribute data to be 

sent to the vertex shader. At location 0 we send the positions, at location 1 we send the 

normal, and at location 2 we send the uv coordiantes. 
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Next we must assign the bones to the vertices of the mesh detailed below. 

 

4.5. Assigning bones to vertices 
 

The last step of loading mesh data is to assign each vertex of the mesh its bones and their 

weights.  During this procedure, we also populate the various structures that hold bone 

information and animation information. We iterate through all the bones contained in 

aiMesh, and for each of them save appropriate information in the maps. 

std::map<std::string, int> boneMap maps the name of the bone to its index, this is 

needed since we identify bones by their name. If a bone wasn’t previously saved in the map, 

we create its bone info and populate it with necessary data. 

std::map<int, BoneInfo> boneInfoMap is a map with the index of the bone being the 

key and the BoneInfo struct which holds bone data being the value. 

 

We then need to assign the weights of that bone to all the vertices of the mesh it affects. 

for (int j = 0; j < mesh->mBones[i]->mNumWeights; j++) { 

 int vertexID = mesh->mBones[i]->mWeights[j].mVertexId; 

 float Weight = mesh->mBones[i]->mWeights[j].mWeight; 

 

 if (Weight <= 0.1) continue; 

 

 //std::cout << "bone assigned weigt " << Weight << std::endl; 

 createdMesh->AddBoneData(boneIndex, Weight, vertexID); 

} 

 

A vertexID is the index at which the vertex is stored in the list of vertices, this index is unique 

between the vertices of a mesh and can be used as its identifier. 

 

Each mesh has a std::vector<VertexBoneData> vbd that keeps VertexBoneData data for 

each vertex 

void Mesh::AddBoneData(GLuint boneID, float weight, GLuint vertexID) 

{ 

 if(vbd.size() == 0) vbd.resize(vertices.size()); 

 

 for (GLuint i = 0; i < NUM_BONES_PER_VERTEX; i++) { 

  if (vbd[vertexID].weights[i] == 0.0f) { 

   vbd[vertexID].boneID[i] = boneID; 

   vbd[vertexID].weights[i] = weight; 

   return; 

  } 

 } 

} 
 

For each vertex the bone affects, we save the information as follows: 
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We iterate over the weights of the vertex, if we find 0 that means it is an unused slot since 

nothing is affecting the vertex. We save the new weight and the BoneID of the bone that’s 

influencing the vertex.  It is possible that more than 4 bones are affecting a vertex, in that 

case we simply ignore the all but the first 4 bones. 

Finally, we need to save the animation keyframes for the bone. 

for (int anim = 0; anim < scene->mNumAnimations; ++anim) { 

 const aiAnimation* pAnimation = scene->mAnimations[anim]; 

 std::string animName = pAnimation->mName.data; 

 for (int i = 0; i < pAnimation->mNumChannels; i++) { 

  //save each chanell to a bone 

  if (pAnimation->mChannels[i]->mNodeName.data == boneName) { 

   animations[animName][boneName] = pAnimation->mChannels[i]; 

   break; 

  } 

 } 

} 

 

After we assign the bones to the vertices we need to send that info to the OpenGL pipeline. 

glBindVertexArray(vao); 

 

glGenBuffers(1, &boneVB); 

glBindBuffer(GL_ARRAY_BUFFER, boneVB); 

glBufferData(GL_ARRAY_BUFFER, sizeof(vbd[0]) * vbd.size(), &vbd[0], 

GL_STATIC_DRAW); 

//bone IDs 

glEnableVertexAttribArray(3); 

glVertexAttribIPointer(3, 4, GL_INT, sizeof(VertexBoneData), (const 

GLvoid*)0); 

//weights 

glEnableVertexAttribArray(4); 

glVertexAttribPointer(4, 4, GL_FLOAT, GL_FALSE, sizeof(VertexBoneData), 

(const GLvoid*)16); 

 

glBindVertexArray(0); 

 

 

4.6. Drawing the skeleton 
 

After loading each mesh, we have to construct the skeleton, this action is solely for the 

purpose of displaying that skeleton in the application and is not necessary to make the 

animation work. 
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void Model::GetSkeletonBonesRec(aiNode* pNode, mat4x4 parentTransform, vec3 

startPosition, int prevID, bool recThroughSkeleton) 

{ 

 //bones are joints, we draw lines that connect them - we need previous 

position and this position 

 std::string NodeName(pNode->mName.data); 

 

 

 mat4x4 nodeTransformation; 

 aiMatTolinMat(nodeTransformation, pNode->mTransformation); 

 //pAnimation->mChannels[0]->mNodeName 

 

 //mat4x4 res1; 

 mat4x4 res; 

 vec3 pos; 

 pos[0] = startPosition[0]; 

 pos[1] = startPosition[1]; 

 pos[2] = startPosition[2]; 

 

 mat4x4_mul(res, parentTransform, nodeTransformation); 

 

 int ID = -1; 

 

 std::string cName = NodeName.substr(NodeName.find_last_of("_") + 1); 

 

 if (boneMap.find(NodeName) != boneMap.end() || cName == "end") { 

  if (cName == "end") { 

   ID = prevID; 

  } 

  else { 

   ID = boneMap[NodeName]; 

  } 

  recThroughSkeleton = true; 

 

  pos[0] = res[3][0]; 

  pos[1] = res[3][1]; 

  pos[2] = res[3][2]; 

 

  skeletonMesh.AddBoneData(prevID, ID, startPosition, pos); 

 } 

 

 if (recThroughSkeleton) { 

  for (GLuint i = 0; i < pNode->mNumChildren; i++) { 

   GetSkeletonBonesRec(pNode->mChildren[i], res, pos, ID, rec-

ThroughSkeleton); 

  } 

 } 

 else { 

  mat4x4 I; 

  mat4x4_identity(I); 

  for (GLuint i = 0; i < pNode->mNumChildren; i++) { 

   GetSkeletonBonesRec(pNode->mChildren[i], I, pos, ID, rec-

ThroughSkeleton); 

  } 

 } 

 

} 

 

The GetSkeletonBonesRec is a recursive function that traverses the aiNode hierarchy. Once 

we find the root of the skeleton we start passing down the parentTransform pass (the roots 
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parentTransform is an identity matrix).  At each bone node, we calculate the transformation 

matrix, and extract the position which will be sent to the AddBoneData function. 

We build the skeleton by manually placing vertices where the location of the joints should 

be, we assign weights according to which bone they represent and we draw lines in between 

them to represent bones. 

We achieve this by using OpenGLs draw lines function. OpenGL draws lines by taking a vector 

of positions and grouping them two by two, so for each line we draw we must provide two 

positions, the head of the bone and the tail of the bone, which are actually joints of the 

skeleton. 

With this we are creating a bit of redundancy, needing to store a joint position twice, once 

as a head and once as a tail. However, this is an easy and effective method of drawing the 

skeleton. 

 

void SkeletonMesh::AddBoneData(GLint prevBoneID, GLuint BoneID, vec3 pos, 

vec3 pos2) 

{ 

 //bone head belongs to the previous bones transforms, tail belongs to 

current 

 VertexBoneData bd; 

 bd.boneID[0] = prevBoneID; 

 bd.weights[0] = 1.0f; 

 //if this is the root, it has no previous bone 

 if (prevBoneID == -1) { 

  //bd.weights[0] = 0.0f; 

  bd.boneID[0] = BoneID; 

 } 

 bones.push_back(bd); 

 

 //add the position 

 positions.push_back(pos[0]); 

 positions.push_back(pos[1]); 

 positions.push_back(pos[2]); 

 

 VertexBoneData bd2; 

 bd2.boneID[0] = BoneID; 

 bd2.weights[0] = 1.0f; 

 

 bones.push_back(bd2); 

 

 //should aslo add end position 

 //temp end position is pos + 1.0y 

 

 positions.push_back(pos2[0]); 

 positions.push_back(pos2[1]); 

 positions.push_back(pos2[2]); 

 

 //index of poisitons and index of bones is the vertexID 

 return; 

} 
 

The SkeletonMeshs’ AddBoneData function adds a single bone to the vector of bones. The 

head position is the position of the previous bone’s tail, and the tail position is the position 

of the current joint, calculated by multiplying the parent transform matrix and the node 

matrix, and extracting the position from the result. 
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The head of the bone is not controlled by the current bone, but by the previous one (as it is 

its tail), that’s why we assign it to the ID of the previous bone, while the tail is assigned to 

this bone. All weights are 1 as joints belong to one bone only. 

Sending the data to OpenGL buffers is done similarly to sending the data for a normal mesh, 

but without normal and uv coordinate info. 

The edge cases are the first bone aka the root bone, that does not have a previous bone, and 

the leaf bones that do not have tail information. The root bone will take ownership of both 

its tail and head. In the case of leaf bones, the problem is a bit bigger, explained in the 

following subchapter. 

 

4.7. The leaf bone problem 
 

We previously mentioned that most engines define a skeleton through bones, but  that is 

incorrect, it is defined through joints. The bones are implied connection between joints. 

When looking at it that way we realize there’s no bone extending pass the leaf joint, aka 

leaf bones have no length. And yet some programs do display the leaf bone (Figure 11) with 

a length and orientation. 

 

 

Figure 7 A leaf bone, the head (left sphere) is the actual joint position, while the tail (right sphere) visualizes 
movement, but is not necessary, and its information is not saved in most file formats. 

 

When importing through Assimp there is no data that specifies length of the bones, we simply 

draw bones as connections between joints, this is why in our application and in many others 

bones that are offset (Figure 12) (aka appear disconnected from the parent) actually are 

displayed with a bone connecting them (Figure 13). 
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Figure 8 A rig displayed in blender 

 

Figure 9 Rig from Figure10 displayed in Open3mod, assimps model viewer 

Because of the way skeletons are defined there’s no usual way for us to display the leaf bone 

as displayed in the modeling application (Figure 14), this is why to display the leaf bone the 
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application exporting the skeleton should also have a way of adding a joint in the place of the 

tail of the leaf bones. 

In the case of blender, the fbx exporter has an “add leaf bones” option, which adds another 

joint that has no animation and is not controlling any part of the mesh at the ends of the 

skeleton (Figure 15). 

 

Figure 10 Before adding leaf joints 
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Figure 11 After adding leaf joints 

In our application, we then can use these joints to display the leaf bones (Figure 16). Since 

they are not controlling any mesh we recognize them and add them by name (they are 

suffixed with “_end”). 

 

Figure 12 Final visualization in our application, this mesh has added leaf bones. 
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4.8. Animating and interpolation 
 

Once the application starts the OpenGL loop and displays loaded assets on the screen, the 

user can choose to playback an animation, and control the playback of that animation. 

The OpenGL render loop draws a scene into a buffer and then displays that buffer on the 

users’ screen, we continually repeat this process until exiting the application. This one drawn 

image is called a frame, the length of time in between drawing of frames is called delta time, 

and the number of frames drawn in one second is called framerate. 

To properly playback the animations we need to make it independent of our applications 

framerate, in other words it shouldn’t be faster or slower if our applications framerate is 

faster or slower. Animations have their own internal framerate which we refer to as 

animation framerate; an animation can be created as a 25 frame per second animation but 

played back in any chosen framerate. Playing back the animation at higher framerates is 

possible by interpolating in between frames of the original animation. 

 

To determine the transformation of bones when drawing a frame, we must find the time 

since the start of the application. The running time of the animation is the current time minus 

the time at which the animation started. Other controls like pausing or moving the animation 

by frame are achieved by manipulating the start time of the animation; in case of pausing we 

move the start and current time further in time by adding the delta time, while iterating 

frames, we subtract or add the time of one frame to the start and current times. 

 

fsec RunningTime = (tAnimationCurrent - tAnimationStart); 

timeInSeconds = RunningTime.count(); 

 

 

float ticksPerSecond = scene->mAnimations[animation]->mTicksPerSecond != 0 ? 

 scene->mAnimations[animation]->mTicksPerSecond : 25.0f; 

 

float timeInTicks = timeInSeconds * ticksPerSecond; 

//loops the animation 

float animationTime = fmod(timeInTicks, scene->mAnimations[animation]-

>mDuration); 
 

ticksPerSecond is the animations predefined framerate, timeInTicks is how much ticks have 

passed since the start of the animation, finally animationTime is timeInTicks but modded by 

the duration, modding the time by its duration makes the animation loop. 

 

Once the time of the animation is determined we have to calculate the transformation of 

all the bones in the hierarchy. This is done in the recursive function ReadNodeHierarchy 
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void Model::ReadNodeHeirarchy(float animationTime, const aiNode * pNode, 

mat4x4 parentTransform, int animation) 

{ 

 std::string NodeName(pNode->mName.data); 

 

 int animationBuffer = animation; 

 float animationTimeBuffer = animationTime; 

 

 aiAnimation* pAnimation = scene->mAnimations[animation]; 

 

 mat4x4 nodeTransformation; 

 mat4x4_identity(nodeTransformation); 

 aiMatTolinMat(nodeTransformation, pNode->mTransformation); 

 

 const aiNodeAnim* pNodeAnim = nullptr; 

 

 pNodeAnim = animations[pAnimation->mName.data][NodeName]; 

 

 if (BoneMasks.find(NodeName) != BoneMasks.end()) { // mask starts here 

  pAnimation = scene->mAnimations[BoneMasks[NodeName].animation]; 

  //switch out the animation 

  animation = BoneMasks[NodeName].animation; 

  animationTime = BoneMasks[NodeName].animationTime; 

 } 

 

 //if this node is an animated bone 

 if (pNodeAnim && animate == true) { 

 

  //interpolate scaling and generate scaling transformaion matrix 

  aiVector3D scaling; 

  CalcInterpolatedScaling(scaling, animationTime, pNodeAnim); 

 

  mat4x4 scalingM; 

  mat4x4_identity(scalingM); 

  mat4x4_scale_aniso(scalingM, scalingM, scaling[0], scaling[1], 

scaling[2]); 

 

  //interpolate rotation and generate scaling transfomration matrix 

 

  aiQuaternion rotationQ; 

  CalcInterpolatedRotation(rotationQ, animationTime, pNodeAnim); 

  aiMatrix3x3 rotationAiMat = rotationQ.GetMatrix(); 

  mat4x4 rotationM; 

  mat4x4_identity(rotationM); 

  quat rotQuat; 

  rotQuat[0] = rotationQ.x; 

  rotQuat[1] = rotationQ.y; 

  rotQuat[2] = rotationQ.z; 

  rotQuat[3] = rotationQ.w; 

  //quat_norm(rotQuat, rotQuat); 

  mat4x4_from_quat(rotationM, rotQuat); 

 

 

  //interpolate translation and generate translation transformation 

matrix 

  aiVector3D translation; 

  CalcIntrepolatedPosition(translation, animationTime, pNodeAnim); 
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For every node in the hierarchy that is not a bone we determine its transformation by 

multiplying its parents’ transformation matrix and its transformation matrix relative to the 

node parent, and pass that matrix to its children.  

If the node is a Bone the procedure differs. 

We need to determine the transformation of the bone defined by the animation. 

We calculate the scale, rotation and position of the bone and combine that into a 

transformation matrix. 

The bones total transformation is its transformation matrix defined by the animation that’s 

in its bone space, combined with all the transformation matrices of it parents, as bones are 

hierarchical and they influence their children with their own transformation. 

We left multiply the transformation with the bone offset matrix, which converts vertices to 

bone space to get the final transformation that we sent to the graphic pipeline. 

 

4.8.1 Interpolation 
 

First we need to obtain the transformations of the animation by interpolating the position, 

rotation and scale keyframes. 

If our animation time and our animation do not fall on any of the edge cases, like the time 

preceding or exceeding animation time, or having too few keyframes we will need to 

determine the transformation by interpolating keyframes.  

GLuint Model::FindPosition(float animationTime, const aiNodeAnim * pNodeAnim) 

{ 

 assert(pNodeAnim->mNumPositionKeys > 0); 

 

 for (GLuint i = 0; i < pNodeAnim->mNumPositionKeys; i++) { 

  if (animationTime < (float)pNodeAnim->mPositionKeys[i + 1].mTime) 

{ 

   return i; 

  } 

 } 

 assert(0); 

} 

 

To interpolate between keyframes first we need to find in between which two keyframes our 

current time lies. 

We iterate over the keyframes via their indexes, and once the i-th + 1 keyframe in the 

iteration surpasses the animation time, we know our animation time lies in between 

keyframe i and i+1. 
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void Model::CalcIntrepolatedPosition(aiVector3D & out, float animationTime, 

const aiNodeAnim * pNodeAnim) 

{ 

 if (pNodeAnim->mNumPositionKeys == 0) { 

  out.x = 0.0f; 

  out.y = 0.0f; 

  out.z = 0.0f; 

  return; 

 } 

 

 if (pNodeAnim->mNumPositionKeys == 1) { 

  out = pNodeAnim->mPositionKeys[0].mValue; 

  return; 

 } 

 

 if (animationTime <= pNodeAnim->mPositionKeys[0].mTime) { 

  out = pNodeAnim->mPositionKeys[0].mValue; 

  return; 

 } 

 

 

 if (animationTime >= pNodeAnim->mPositionKeys[pNodeAnim-

>mNumPositionKeys - 1].mTime) { 

  out = pNodeAnim->mPositionKeys[pNodeAnim->mNumPositionKeys - 

1].mValue; 

  return; 

 } 

 

 GLuint positionIndex = FindPosition(animationTime, pNodeAnim); 

 GLuint nextPositionIndex = (positionIndex + 1); 

 assert(nextPositionIndex < pNodeAnim->mNumPositionKeys); 

 

 float factor = (animationTime - (float)pNodeAnim-

>mPositionKeys[positionIndex].mTime) / 

  ((float)pNodeAnim->mPositionKeys[nextPositionIndex].mTime - 

(float)pNodeAnim->mPositionKeys[positionIndex].mTime); 

 

 

 assert(factor >= 0.0f && factor <= 1.0f); 

 

 const aiVector3D& startPosition = pNodeAnim-

>mPositionKeys[positionIndex].mValue; 

 

 const aiVector3D& endPosition = pNodeAnim-

>mPositionKeys[nextPositionIndex].mValue; 

 

 //linearInterpolaiton LERP  

 out = startPosition * (1.0f - factor) + endPosition * factor; 

} 

 

 

To find calculate the interpolation we use linear interpolation for scale and position and 

spherical interpolation for rotation. 

The formula is such: 
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𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 − 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒[𝑖]. 𝑡𝑖𝑚𝑒

𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒[𝑖 + 1]. 𝑡𝑖𝑚𝑒 − 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒[𝑖]. 𝑡𝑖𝑚𝑒
 

 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒[𝑖]. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∗ (1 − 𝑓𝑎𝑐𝑡𝑜𝑟) + 𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒[𝑖 + 1]. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

∗ 𝑓𝑎𝑐𝑡𝑜𝑟 

 

Once we calculate the transformation matrix, we obtain the global transformation by 

multiplying with the parent transform, this is passed down to the children. 

𝑔𝑙𝑜𝑏𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ∗ 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

The final transformation of the bone is obtained 

𝑔𝑙𝑜𝑏𝑎𝑙𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑖𝑡𝑜𝑛 ∗ 𝑏𝑜𝑛𝑒𝑂𝑓𝑓𝑠𝑒𝑡 

This transformation will be passed to the shader to determine the final position of vertices. 

 

 

4.9. Adding masks 
 

Masking animations is the process of playing another animation on a designated part of the 

skeleton. For example, a character can be playing a walking animation, but we can mask the 

head and play the look around animation, or make the right hand hold an item. 

In the application, the user specifies a bone which will be the root of the mask, all children of 

that bone are also masked, for example picking the left shoulder will mask the entire left arm.  

For the masked bones, we simply use the masked animation instead of the original. The 

masked animation has its own playback time that should be independent from the original 

animation, for example a walk cycle can be shorter than the masked look around animation, 

so each animation should store its own start and current times. 

 

4.10. Blending animations 
 

Blending animations is the process of combining two animations in a way that results in an 

animation that is a mix of the two. 

This technique is used to create smooth transitions between animations such as transitioning 

from standing to walking or to create new animations that are a mix of two. 

In our application, we can combine two imported animations into a transition or a weighted 

blend. 
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4.10.1. Animation Blend 
 

A weighted blend is an animation that is a combination of two animation with a weight in 

range 0 to 1. 0 meaning the first animation is playing and 1 meaning the second is playing, 

any value in between will mix the two. 

 

//interpolate scaling and generate scaling transformaion matrix 

aiVector3D scaling1; 

CalcInterpolatedScaling(scaling1, animationTime, pNodeAnim); 

 

aiVector3D scaling2; 

CalcInterpolatedScaling(scaling2, animationTime2, pNodeAnim2); 

 

aiVector3D scaling; 

//lin interpoalte scaling 

scaling = scaling1 * (1.0f - factor) + scaling2 * factor; 

 

mat4x4 scalingM; 

mat4x4_identity(scalingM); 

mat4x4_scale_aniso(scalingM, scalingM, scaling[0], scaling[1], scaling[2]); 

 

//interpolate rotation and generate rotation transfomration matrix 

aiQuaternion rotationQ1; 

CalcInterpolatedRotation(rotationQ1, animationTime, pNodeAnim); 

 

aiQuaternion rotationQ2; 

CalcInterpolatedRotation(rotationQ2, animationTime2, pNodeAnim2); 

 

aiQuaternion rotationQ; 

aiQuaternion::Interpolate(rotationQ, rotationQ1, rotationQ2, factor); 

rotationQ = rotationQ.Normalize(); 

 

aiMatrix3x3 rotationAiMat = rotationQ.GetMatrix(); 

mat4x4 rotationM; 

mat4x4_identity(rotationM); 

quat rotQuat; 

rotQuat[0] = rotationQ.x; 

rotQuat[1] = rotationQ.y; 

rotQuat[2] = rotationQ.z; 

rotQuat[3] = rotationQ.w; 

//quat_norm(rotQuat, rotQuat); 

mat4x4_from_quat(rotationM, rotQuat); 

 

//interpolate translation and generate translation transformation matrix 

aiVector3D translation1; 

CalcIntrepolatedPosition(translation1, animationTime, pNodeAnim); 

 

aiVector3D translation2; 

CalcIntrepolatedPosition(translation2, animationTime2, pNodeAnim2); 

 

aiVector3D translation; 

translation = translation1 * (1.0f - factor) + translation2 * factor; 

 

mat4x4 translationM; 

mat4x4_identity(translationM); 

mat4x4_translate(translationM, translation.x, translation.y, translation.z); 

 

mat4x4_scale_aniso(translationM, translationM, scaling[0], scaling[1], 

scaling[2]); 

mat4x4_mul(nodeTransformation, translationM, rotationM); 
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We achieve this by finding the interpolated transformation of both animations as we 

normally would. Then we interpolate their calculated position, scale and rotation using the 

user specified weight before combining them into a transformation matrix. 

The result should be a mix of the two animations, both animations are looped by their 

respective duration. 

 

4.10.2. Transitions  
 

Transitions are achieved much in a similar way as blends. 

The key difference is that instead of weight we specify the starting frame of the transition 

and the ending frame of the transition. Since animation durations are measured in frames it 

is easier to determine where we want the transition to begin and end by looking at the frames 

of an animation. 

The transition start and end frames do not need to be necessarily positioned inside the 

duration of the first animation, they can begin and end outside, though a general practice is 

to position the beginning during the first animation and the ending during, or after the first 

animation. 

fsec RunningTime = (transitions[animateSpecial].tAnimationCurrent - 

transitions[animateSpecial].tAnimationStart); 

timeInSeconds = RunningTime.count(); 

 

float ticksPerSecond1 = scene->mAnimations[anim1]->mTicksPerSecond != 0 ? 

 scene->mAnimations[anim1]->mTicksPerSecond : 25.0f; 

 

float ticksPerSecond2 = scene->mAnimations[anim2]->mTicksPerSecond != 0 ? 

 scene->mAnimations[anim2]->mTicksPerSecond : 25.0f; 

 

float transitionInTicks = frameEnd - frameStart; 

 

//animaitons should have the same ticks per second 

float ticksPerSecond = ticksPerSecond1; 

 

//total ticks per second aka duration is anim1 + anim2 - transition; 

float duraiton = scene->mAnimations[anim1]->mDuration + scene-

>mAnimations[anim2]->mDuration - (transitionInTicks); 

 

float timeInTicks = timeInSeconds * ticksPerSecond; 

//loops the animation 

float animationTime = fmod(timeInTicks, duraiton); 

 

We calculate the total duration as duration of the first animation + duration of the second 

animation – transition duration. 

During playback of the transition we play three parts, the first animation, the transition itself, 

and the second animation. 

The result will be an animation that is gradually transitioning to the next at specified times. 
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The first part is straightforward; we simply play the original animation up until the start frame 

of the transition. 

During the transition, we blend the animations, our weight is in interpolated based on the 

duration of the transition. 

𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑎𝑛𝑖𝑚𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 − 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝐼𝑛𝑇𝑖𝑐𝑘𝑠
 

 

At the start of the transition the weight is 0, then it gradually increases until we reach the 

end of the transition where it becomes 1. 

The last part is also straightforward, we simply play the second animation, its start time is 

the start time of the transition. 
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5. Application Use 

5.1. Foreword on importing the model 
 

The developed application uses the Assimp import library to import various file types, and 

therefore should share the same format support as the Assimp importer. 

However this application has only been tested on .obj, .fbx and .dae (collada) files. 

Careful considerations should be taken when preparing a model to be imported.  

This application does not display materials with solid colors, it only displays textures, the 

imported model should be fully textured.  

If the model does not have any textures or fails to load them, it will appear black, however it 

is still possible to see it by changing the render mode to Weights or AllWeights. 

When exporting the model to a format supporting a skeleton system if it is not triangulated 

it is must be done in the application (.fbxs are likely to need this). Do this by calling the 

function LoadAssimp(path_to_file, true); in main. 

You should check the “apply modifies option”. 

You should check the “add leaf bones” option if available, said leaf bones should be suffixed 

with a “_end” by the exporter, otherwise do this manually or they will not display. However, 

the model should animate correctly without them. 

The model prior to exporting should be in its bind pose, as assimp takes the first frame 

currently playing as the bind pose of the skeleton. 

If the model is oriented wrongly consider changing the forward and up axises in the exporter 

of your choice as many programs define forward and up axises differently from OpenGL. 

If you find that the application lags and the animations reproduced are slower, consider 

whether you are running the application on a discrete GPU and whether its specifications are 

viable. 

 

5.2. Application Features 
 

Once the application loads there are several possible options to explore.  

There are 3 different render modes, an unshaded textured mode (Figure 7), a mode that 

displays the total of all weights on the mesh (Figure 8), and a mode that displays the weight 
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of a single bone and allows iteration over bones (Figure 9). The skeleton can be displayed in 

any mode (Figure 10). 

 

 

Figure 13 Unshaded render mode 

 

Figure 14 Total Weights of the model, displaying the highest value weight on the mesh, red being 1 and blue 
being 0 (no influence), the bluish parts of the mesh appear near joints where the values are mostly 0.5 due to 

being controlled by 2 bones. 
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Figure 15 Weights of a single bone 

 

Figure 16 Weights of a single bone with the skeleton displayed, the blue dot is the selected bone, or more 
accurately joint, transformations on this joint influence the red area, and the child bones. 

 

Animations that are imported through assimp can be played, paused, iterated frame by 

frame or by 10 frames backwards and forwards. 



36 

The application can be controlled through the console where it allows several features such 

as making animation Blends, Transitions and Masks, and other controls. 

 

5.3. Application manual 
 

The following controls can also be found in the main.cpp file 

Camera controls: 
W A S D – move 
SHIFT + mouse -> look around 
CTRL + mouse -> pan 
ALT + mouse -> orbit around look at point 
scroll -> zoom in/out 
 

Animation Controls: 
0 -> turn off animations 
1 -> turn on animations / play next animation 
P -> play / pause animation 
right arrow -> next frame (pauses the animation and advances a frame) 
left arrow -> previous frame 
CTRL + right arrow -> skip 10 frames 
CTRL + left arrow -> go back 10 frames 
B -> toggle playing blends or regular animations 
Up arrow – increase the weight when playing an animation blend 
Down arrow – decrease the weight when playing an animation blend 
 

Render Controls: 
Press K to toggle render modes -- UNSHADED, ALLWEIGHTS and WEIGHTS per bone 
SHIFT + . -- to iterate over bones only in render type WEIGHTS 
Press L to toggle armature 
 

Console Commands: 
F1 – start console 
"playAnimation" -- invoke an animation by name 
"selectBone" -- select a bone in bone weight render mode to display its weights 
"turnOnMask" – create a mask by choosing a Bone from which the animation plays, and 
then the animation that will Play 
"clearMasks" – removes the current mask 
“createAnimationBlend” – create and store an animation blend (indices start at 0) 
“createTransition” – create and store a transition (indices start at 0) 
“playAnimationBlend” – play an animation blend by its index 
“listAnimations” – lists imported animations by name (animations with the prefix “rig|” 
should be typed without it)  
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6. Conclusion 

Skeletal animation is a powerful 3D animation tool that is essential for creating 3D animation 

today. It is a primary tool for animation in the movie and game industry and many others and 

is often used in conjunction with other animation techniques. 

Skeletal animation is not supported by many file extensions, the most widespread extension 

.fbx is owned by Autodesk, made for Autodesk software and it is closed source, however it is 

also used by most other software that uses 3D objects, materials and skeletons, such as game 

engines, modeling software, 3D generative software. 

Another widespread file type is the collada (.dae) type, meant to be a true exchange format 

and open source, however it does not provide an SDK so applications are required to 

implement the specifications themselves. 

For both .fbx and .dae are extremely complex formats and no third party application has 

implemented the full specifications, resulting in a lot of bugs when exporting and importing 

files using these formats across applications. 

The program used to export the model and skeleton Blender has its own fbx and collada 

exporter/importer, however both are buggy and not quite complete, due to this fact when 

models exported from third party apps can have several unforeseen bugs. 

Due to the high complexity associated with file formats supporting skeletons, and the many 

problems with writing an importer, writing a file extension from scratch or writing an 

importer for an existing one wasn’t in the scope of this project, so we have chosen to use 

Assimp (Open Asset Import Library) to import various formats successfully.  

Our project was to create an application that can support skeletal rigs and their animations, 

reconstruct the skeleton in the application, create functions that use interpolation 

techniques to accurately reproduce animations in real time, explore techniques of masking 

and blending animations. 
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Human Skeleton Animation System 

Abstract 

In this paper, we explain the basics of skeletal animation, the representation and 

meaning of data it requires and the procedures for its reproduction and 

manipulation. We explain the structures and specifications of the Assimp library and 

the techniques for extracting necessary data and reorganizing it for further use. It 

details the implementation of algorithms for reproducing animation via 

interpolation, masking and blending animation, constructing a visual representation 

of the skeleton and other related algorithms. 

The purpose of this project is to explore and explain the behind the scenes 

algorithms of skeletal animation, and provide an OpenGL implementation of a 

skeleton system and support animation playback. 

Keywords: OpenGL, skeleton, rig, armature, Assimp, animation, interpolation, 

blending, masking, C++.  



 

Animacija skeletnog modela čovjeka 

Sažetak 

U ovom radu objašnjene su osnove skeletne animacije, reprezentacija i značenje 

potrebnih podataka i procedure za njegovu reprodukciju i manipulaciju. Objašnjene 

su strukture i specifikacija Assimp biblioteke i tehnike za ekstrahiranje potrebnih 

podataka i reorganizacija tih podataka za daljnje korištenje. Opisane su 

implementacije algoritma za reprodukciju animacije interpolacijom, maskiranje i 

miješanje animacija, konstrukcija vizualne reprezentacije kostura i ostali potrebni 

algoritmi. 

Svrha ovog projekta je istraživanje i objašnjenje prikrivenih algoritama skeletne 

animacije i pružanje OpenGL implementacije skeletnog sustava i podrška za 

reprodukciju animacija. 

Ključne riječi: OpenGL, kostur, Assimp, animacija, interpolacija, miješanje, maskiranje, 

C++. 
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