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1. Introduction 
This thesis is based around a project aimed to enable real time 

holoportation of human models. The term holoportation defines 3D 

holograms, displayed in mixed reality, used for real time communication 

between remote users. Implementation of the system was based on 

usage of certain hardware components, namely the Microsoft Kinect v2 

depth camera and the Microsoft HoloLens mixed reality glasses. During 

the development the project was divided into sections, as each section 

required various methods to be researched before the optimal solution 

could be found.  The thesis describes the technological problem set by 

the task at hand, the solution that was determined to be the best, as well 

as the other considered options. Each phase of the project required 

research and implementation, and due to many unknown variables the 

development process was not concretely defined. The result is a proof of 

concept for a holographic communication platform, uniting a number of 

solutions and components which are easily expandable to a commercially 

usable product.  
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2. Background 
Many difficulties and complications arise when discussing real time 

communication between two remote components both of which have 

many responsibilities. The set requirements state one-way 

communication between a desktop machine with a depth sensor and 

portable smartglasses which would be used to display a user recorded by 

the depth sensor. It was estimated that at the current phase, one way 

communication would be easier to implement and sufficient to 

demonstrate the feasibility of the project and the efficiency of 

technological solutions used. Due to the nature of the task and the 

relative uncertainty of the implementation methods, it was not possible to 

enforce a rigid plan of development. There are several points of interest 

when it comes to dissecting the problem. The first and most obvious issue 

is the limited network communication bandwidth. In order to make the 

system usable in real world cases, the bandwidth requirement has to be 

tailored to meet real world expectations. Secondly, an important factor to 

be considered are the processing power of the server and client devices, 

namely the desktop computer used to record and the mobile 

smartglasses used to display the holoported user. These requirements 

lead to another issue to be considered: the latency of the system. In order 

to perceive a natural conversation, the client (using the smartglasses) has 

to receive real-time data with low latency, both for visual and audio data. 

Considering these requirements makes it possible to determine which 

methods are appropriate and which would cause these constraints to be 

violated. Since most of the ideas considered are quite novel and not 

tested in a use case appropriate for this system, many components had to 

be implemented so that they could be evaluated and potentially used in 

the final solution. The following chapters cover the initial project task and 

describe the hardware used in the implementation. 
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2.1 Project task 
Creating a system for real time holoportation of human models is a 

problem with many unknown variables, so a modular approach was selected 

to subdivide the components in development and enable independent testing 

of components. A project was designed, specifying that two programs should 

be developed: a data sender application run by a desktop computer with a 

depth camera recording a person, and a data receiver run by a mobile 

headset displaying a virtual object of the user in real space (mixed reality). 

This system must work real time and the latencies involved should not hinder 

the communication properties of the platform (i.e. the delay must not be 

noticeable when communicating in real time). The Unity3D engine was 

chosen as the base for the system, due to its versatility and a wide range of 

supported hardware and software. Unity3D also enables a dynamic 

environment for testing and agile development.  

Building the system that performs desirably requires finding the best 

components that fit the requirements. It was initially determined that those 

key components will be data capture, mesh construction, data compression, 

networking and data reconstruction on the client side. Some of those 

components were changed as development progressed and deviated from 

the original course. It was also anticipated that some third-party software 

would be used, in the form of dynamic libraries, static libraries or precompiled 

executables. 

 

2.2 System hardware 
The basic hardware of the system, in its one-way configuration, 

consists of the Microsoft Kinect V2 depth camera on the server side (data 

provider) and the Microsoft HoloLens smartglasses on the client side (data 

receiver). These devices were primarily selected because they are supported 

by the Unity3D engine development environment which allows easy 

integration and testing. Kinect v2 is supported by a Unity3D plugin since July 

2014 and HoloLens support came with Unity3D 5.5.0 released on Nov 30, 

2016 [1]. Kinect v2 is supported by an adapter plugin which makes the native 
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Kinect code available in Unity3D, for scripting in C#. This adapter is well built 

and thus little performance is lost when using it, which had proven to be 

crucial during the later stages of development, when performance became on 

the primary issues in the system. Some parts of the plugin had to be modified 

to better fit the needed use case in the system.  

Kinect v2 SDK support included in Unity3D offers access to raw data 

streams for the full HD resolution RGB camera, the depth image (resolution 

512x424 pixels) and the audio streams. It also provides processed data, such 

as skeleton tracking (with 25 joints per person) with position and orientation 

data, and allows this data to be used in Unity3D easily. Using the skeleton 

tracking and person recognition, it’s possible to perform efficient background 

removal that is more accurate than background removal done using RGB 

imaging alone. The API examples provided starting points for various 

components that were developed during the different phases of the project. 

There are several advantages to using a depth camera in contrast to one or 

more RGB cameras. Depth cameras enable simple mesh reconstruction and 

accurate background removal, which is required in order to reduce the 

amount of network traffic and render the user in augmented reality with a 

degree of precision. Furthermore, using multiple depth cameras to obtain a 

full 3D real time scan of the user is a possible upgrade of the system. Figure 

2.1 shows the Microsoft Kinect V2 depth sensor and its main components. 

 Kinect sensors use a space mapping technique called structured light 

which relies on an infrared matrix of predefined dimensions projected by a 

light source in the space. Once the infrared stereo cameras records an 

image, the infrared points are located and compared to the orthographically 

projected matrix, which tells how much each depth point is displaced from its 

neutral position. This is how the depth camera can define the distance of 

each point to the sensor, which produces the depth frame. The sampled data 

is fed into a classifier which determines where the person is located, relative 

to the depth camera. The person’s body position is stored as joint positions 

(for arms, legs, head and other joints) and their orientations, so that the body 

tracking does not depend on the person’s height and position. 
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The Microsoft HoloLens holographic device features multiple sensors 

and processing units, such as a depth camera, IMU (inertial measurement 

unit), HD video camera, microphones and ambient light sensors. Unlike most 

previous devices, it is completely independent of any other devices and does 

not have to be in any way tethered or connected to a desktop computer. It 

uses onboard processing units, more specifically a Holographic Processing 

Unit and an Intel 32 bit architecture compatible processor [2]. It has 2 

gigabytes of RAM memory and 64GB of flash memory for the OS and various 

applications. The device is also compatible with Unity3D which enables 

simple development of mixed reality applications. However, due to the fact 

that its OS is based on the Universal Windows Platform, there are restrictions 

in libraries and dependencies which can be used. For example, all Windows 

compiled libraries need to be recompiled for use with the UWP, and some 

libraries used in Unity3D are not available either. Although development was 

significantly streamlined and simplified by HoloLens’ compatibility with 

Unity3D, these restrictions also had to be taken into account. Figure 2.2 

shows a mixed reality headset and its principle components. The HoloLens 

device also has multiple sensors which help it display the user in mixed 

reality and give its user the feeling of presence and realism.  Among its 

sensors it has a depth camera which is used to map the user’s surroundings 

(usually the room that he is in) so that virtual objects could be placed in real 

Figure 2.1 – Kinect v2 description  
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space and displayed relatively to the floor or some other part of the room, 

and even allows the virtual objects to be (partially) occluded by objects such 

as tables or chairs. The inertial measurement unit works together with other 

sensors to make sure that the virtual objects are seamlessly blended with the 

real mapped surroundings even in quick user or head movements. A 

holographic headset such as the HoloLens most commonly uses a 

transparent display to combine projected images and color with light from the 

background in order to produce an overlay of the virtual item on the 

background. 

 

Figure 2.2 – Mixed reality headset components 

The selected components are readily available; therefore the system 

was designed to use them initially. It was, however, planned to develop the 

system as a collection of abstract components which can be readily replaced 

as new hardware needs to be supported. However due to the nature of this 

technology, the field of view is limited to less than 40 degrees, which limits 

user immersion.  
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3.  System development 

Unity3D had been chosen as the platform for the project due to its 

versatility and compatibility with available hardware. Unity3D is a game 

engine with a game development platform built around it, allowing simple 

development of games and graphical applications and their deployment to 

many desktop and mobile platforms. It allows implementation of complex 

functionalities with relatively little additional work, because the existing 

engine offers most of the base functionality. Many solutions already exist as 

plugins or scripts for Unity3D because of its large user base and many useful 

components can be used in a project without much adaptation. There are 

similar engines and game development frameworks such as Unreal Engine, 

however, existing plugins and support for the components used in this 

system made Unity3D the more suitable choice. One of the main reasons for 

using the Unity engine in this project was, however, the familiarity of the 

development team with the platform and our experience with working with 

Unity.  

 

3.1 Researched methods 

The following chapter gives a brief overview of the options that were 

considered during the development, to explain how the final product was 

developed and which decisions lead to the way components are 

implemented in the final version. It was originally planned to use multiple 

native plugins for the system as it was expected that these would offer the 

needed interoperability with other existing components and better 

performance. A wireframe application was built in Unity3D, with calls to 

native plugin functions in dynamic link libraries written in C++, and several 

plugin projects were prepared for use as native plugins (dynamic libraries). 

Figure 3.1 shows the planned system operation flow with multiple 

components integrated.  
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Figure 3.1 – Planned system layout 

The planned plugins were Background Removal, Compression and 

Networking, and these components were meant to be called sequentially, 

pipelining data from one to the next one. Although some of these were used 

during various research and development phases, none of them made it to 

the final system. Let’s have a look at the problems encountered. 

 

Data representation 

When it comes to depth data, the first question is how to store and 

transfer the data. One of the most popular methods of representing depth 

sensor data is using point clouds, where each of the cloud elements 

represents a point in the 3D space. This piece of space is defined by its 

origin point and its bounds (if there are any). In the case of the Kinect V2 

depth sensor, its precision allows for 11 bits of depth data per point, which is 

interpreted as the distance from the sensor. This limits the precision and 

maximum distance from the sensor. Its range for high quality tracking is 

officially rated [1] at 0.5 to 4.5 meters, however the sensor still works at 

longer distances, although sacrificing accuracy and reliability [3]. One of the 

first ideas was using third party libraries for point cloud compression, such as 

the Point Cloud Library [4]. This had proven to be inefficient due to the 

complexity of those libraries and the low efficiency of the compression. The 
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image below shows the results produced by point cloud visualization with 

each point coloured with its respective color texture pixel. 

 

Though point clouds are an intuitive method of depth data representation, 

they have certain considerable disadvantages. Firstly, this is the “raw” 

representation of the data captured by the sensor, unprocessed and 

unoptimized. This means that if data represented by point clouds are sent 

over the network, all the processing has to be done by the receiver 

(assuming that the receiver is tasked with displaying the data), in addition to 

the potentially bigger data packet which has to travel over the network.  

Another approach to data representation is using a mesh reconstructed 

from the depth data. This delegates processing to the sender (assuming, 

again, that the sender handles data recording and the received handles data 

displaying, in our case) and allows the data to be stored in a Unity3D Mesh, 

which can easily be applied to objects in scenes. Unity’s Mesh objects 

contain data such as vertice arrays, normals, UV texture maps, triangles and 

even tangets. This format is used to display general 3D objects in scenes. An 

additional advantage of this method is the possibility of applying background 

removal, which reduces the amount of data that needs to be sent over the 

Figure 3.2 – Point cloud visualization 
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network. The quality and speed of mesh reconstruction from depth data 

varies greatly on the algorithm used. For this system, the method used for 

mesh creation is the simple triangle mesh creation found in the Unity3D 

Kinect v2 SDK Samples which can be obtained from the Unity Asset Store. 

The third method of data representation is using a conventional image to 

represent the depth data (most intuitively represented by a grayscale image). 

Many algorithms exist for handling images, streaming them in real time and 

compressing them. This approach favorizes network transfer optimization 

and combines some of the perks of the other two methods listed above. 

Image 1 shows the depth and color frames encoded into bitmaps with the 

depth sensor resolution of 512x424 pixels. Using bitmaps for depth images it 

is possible to perform background removal on the server side, as soon as the 

image is captured, and send a compressed video stream over the network, 

further reducing the amount of sent data. Image 3.3 shows the depth frame 

represented by a grayscale image, with darker tones meaning that the point 

is sampled close to the sensor and lighter tones mean that the point is 

sampled at a longer distance from the depth camera. 

Figure 3.3 – Depth frame shown as a grayscale image 
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For the color texture, both the full HD (1920x1080 pixels) resolution and 

the depth image resolution (512x424 pixels) color texture are best stored in a 

Texture2D, Unity3D’s texture format. This container format provides many 

useful functions for handling image textures and applying them to meshes. 

Some of these functions include: texture compression, serialization (to a byte 

array), JPG and PNG format encoding, a pointer to the raw texture data, a 

method to obtain or change the color of an individual pixel and many other. 

Data Processing 

Once the initial idea with using an external point cloud management 

library was abandoned due to complexity and low modularity, one of the 

ideas was to abandon real-time data transfer entirely and perform a pre-scan 

of the user to create a (rough) mesh which can be transferred once to the 

receiver. This, however, is less intuitive and brings more problems into the 

equation. More concretely, this means the recorded user is shown to the 

receiver as an avatar, which is difficult to animate if the animations should 

look natural. One of the most important unanswered questions here is how to 

actually rig and animate the user’s avatar, because no reliable methods for 

real time rigging have been developed yet. Facial expressions are also 

almost impossible to mimic with avatars, which is why a plain mesh is much 

easier to work with and has a much more natural feel. 

There are several operations that need to be performed on the data 

before it can be displayed on the receiver mixed reality headset. In order to 

keep the network traffic down, the data needs to be compressed, and the 

user needs to be segregated from the background in the recording, to place 

him in the viewer’s environment in a realistic manner. For the background 

removal, the script UserMeshVisualizer from the “Kinect v2 Examples with 

MS-SDK” Unity package was utilized. This script obtains the depth data and 

color data, creates the mesh and displays the mesh with the texture applied 

in the scene. Figure 3.4 shows the scene view of the main sender scene with 

the user’s mesh visualized. The script showed performance issues so 

optimizations were added, these are discussed in section 4 of this thesis. 
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Figure 3.4 – Scene view of the sender-side visualization 

When discussing compression methods, an efficient way of compressing 

both mesh or depth data and color textures is needed. For the depth data, 

many generic compression algorithms were considered, all of them lossless 

however. Among them it’s worth to point out run-length encoding (which 

would be very inefficient with mesh data which is stored in a standard way 

(because x, y, and z coordinates often differ), LZ78 and Deflate. The 

compression algorithms are required to run quickly in real time and reduce 

the size of the data significantly to meet the requirements of the system. 

Color data compression methods include JPG and PNG format encoding, 

methods for encoding Texture2D objects to these formats are included in 

Unity3D’s API.  

Another course of development was to use an external program to form 

an encoded video stream which could be streamed efficiently. This works in 

conjunction with depth data represented as bitmaps, because thus both the 

color and depth data can be streamed as two (or even one) video stream. 
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The considered program in question is FFmpeg, a free framework that 

provides media processing and handling libraries [5]. FFmpeg offers many 

solutions for working with audio and video data, such as codecs, multiplexing 

and demultiplexing, transcoding and many options such as hardware 

acceleration. The project is distributed in several variants: the complete OS-

dependent executable build, a dynamic link library build and a development 

project containing the source code. Arguably the most popular of these is the 

executable build, due to the fact that it is the best documented form of the 

framework and that it has a relatively large user base. The FFmpeg 

framework is suitable because it offers a “black box” solution [6] for encoding 

and decoding video data, as well as streaming it over the network. It also 

supports hardware acceleration methods such as Intel Quick Sync Video and 

Nvidia NVEnc, which are available for most of the frequently used CPUs and 

GPUs. Although FFmpeg was ultimately not used in the system, some 

components and solutions were developed during the research phase, and 

these are further described in chapter 3.2. Data delivery became the next 

focus of the project. 

Soon, two general approaches to data delivery were considered: network 

transfer of point clouds and network depth image stream. The second 

method offered an advantage because the depth image stream can be 

represented as a 512x424 grayscale video (8 bits per pixel) along with the 

color stream which can use the same resolution and 32 bits per pixel. This 

allows the usage of well-established video streaming protocols and codecs, 

such as the mpeg-4 codec which supports delta compression. The downside 

of this method is that only one depth camera can be used per stream, so the 

system is not easily upgradable to use multiple depth cameras. Also, this 

configuration requires the usage of at least two video streams, unless depth 

data is packed into the alpha channel of the RGB texture stream. When using 

more than one depth camera, it is better to stream a 3D mesh or point cloud, 

although there is a potential problem with network traffic then. When it comes 

to real time stream encoding, the open source software FFmpeg was used, 

invoked from Unity3D scripts in its Windows executable form. This program 
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provides, along with mpeg-4 codecs, the possibility of hardware encoding 

using Nvidia NV-ENC or Intel QuickSync Video encoders. 

 

Figure 3.5 – Scene view showing a local networking test with depth and color 

 

3.2 Developed components 

Many components developed were replaced by different solutions or were 

not used in the final version of the system because a different approach was 

deemed more appropriate. Initially the system was used as shown in section 

2 Figure 3.1. The sender component cyclically called its three components; 

data reading from a source (hard drive, Kinect device, video recording, etc.), 

data processing (compression, background removal, optimizations, etc.) and 

data sending (using UNet, a TCP or UDP connection). The receiver worked 

in a similar way, calling its own three components sequentially: data receiving 

(UNet, TCP/UDP, hard drive, video, etc.), data processing (decompression, 
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decoding) and data visualization (point cloud, mesh reconstruction, 2D 

texture visualization, etc.). This organization of the system was beneficial in 

the research phases because individual components could be easily 

swapped out or locked down without influencing the other ones. For example, 

during network transfer testing, a dummy video recording was used as the 

data source, with literally no processing done, so that any eventual failures 

could be attributed to the networking component itself. Similarly, while testing 

data processing on the receiver side, a 2D quad visualization method was 

used for the sake of simplicity, as shown in Figure 3.5. The HoloLens device 

was, however, introduced only in the later stages of development. This 

changed the approach somewhat, however the knowledge and methods 

obtained during research proved to be very valuable nevertheless. 

Several options were considered for the implementation of network 

communication between clients. The Unity3D engine offers built in 

networking in two forms, the low-level API and the high-level API (also known 

as UNet) which are interchangeable and offer some pre-built network data 

transfer solutions. Scripts were written using the low-level API to test the 

ability to transfer large amounts of data in real time. Used in conjunction with 

depth and color frames, these amounts correspond to about 512x424x4 

bytes transferred 30 times per second, not including the audio stream, as the 

worst case scenario. This approach, however, didn’t produce the required 

bandwidth traffic, and thus Unity engine’s built in networking was given up 

on.  

With the constraints imposed by the requirements of the project and the 

platforms used, the simplest approach was to develop a network 

communication component from the ground up, using C# native networking 

libraries which are present in both x86 and Universal Windows Platform 

environments. It was decided that a reliable TCP over IP was the best 

solution to preserve the integrity of the data without compromising speed or 

latency. The network communication scripts use a predefined header to 

communicate the current frame’s length in bytes and other necessary data. 



 

16 

 

The implementation of this transport protocol, as well as the depth and color 

multiplexing is described in section 4 of this thesis. 

 

 

3.2.1 Networking 
 

During development several methods of networking were attempted. One 

of the first attempts was using Unity’s built-in networking, however it was 

unfit for the purposes of this system. One of the problems with the built-in 

system is that it is difficult to adapt to high bandwidth communication with a 

requirement for reliable, sequenced data transfer in real time. The large data 

structures had to be broken up to be sent in fragments using the 

ReliableSequenced or ReliableFragmented channel configurations. This lead 

to the need for multiple uses of array copying and preparing functions which 

further slowed down the processing. Since much of the functionality 

contained within Unity3D’s networking is encapsulated, it is sometimes hard 

to identify the point of failure when unexpected complications occur. These 

reasons lead to the abandonment of this method. 

The second idea was using parts of the initial framework which uses C++ 

dynamic link libraries for additional functionality. A network data sending 

component had been created, using Boost libraries for C++. Due to the 

complexity of asynchronous communication with Boost, and the difficulties 

concerning data transfer between Unity3D and the dynamic libraries, working 

with large amounts of data requires careful use of buffers, which are difficult 

to synchronize when working with data coming from Unity. 

One of the considered options was to use Media Foundation, a 

framework compatible with the Universal Windows Platform which is run by 

the HoloLens device. Another advantage of the Media Foundation platform is 

built in support for hardware encoders such as the Intel Quick Sync video 

encoder. However this relies on the FFmpeg application for color and depth 

image processing (here we are considering that the depth frame is encoded 
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as a bitmap). This is why when bitmap depth frames were abandoned, this 

method was abandoned as well. 

The ultimate solution was much simpler, a TCP server and client for 

reliable sequenced communication written in C++ using the native 

System.Net library. Data is read from a network stream using a TCP socket 

for byte transfer. This code was optimized in later stages of the project. 

Optimizations of the system will be described in section 4.1.2. This was 

mostly inevitable due to the blocking functions used in network transfer. It is 

important to notice that since this network transfer solution works with byte 

arrays, it is invariant of the type of data which is sent, meaning that the same 

component works for mesh, audio and color data. 

 

3.2.2 Depth data processing 

When raw data is captured on the Kinect V2 sensor, it is obtainable 

from the Unity plugin SDK. This data needs to be processed before it can be 

displayed on the other end of the system. Processing includes background 

removal, mesh construction and data compression. Due to the fact that the 

system is localized on two devices, each of these three tasks may either be 

performed on the server or on the client side. Because the HoloLens is a 

portable device with lower performance than a desktop computer, most of the 

work was intended to be delegated to the server. For background removal 

and mesh construction, samples from the Unity3D Kinect v2 samples pack 

were used as a starting point. This code is fast enough and the quality is 

satisfactory, both when it comes to background removal and mesh creation. 

In the later phases, however, it had to be optimized further, in order to ensure 

that all components work well with real time processing. 

One course of development involved using the FFmpeg executable to 

stream the data as an MP4 video stream via a direct connection from the 

server to the client. This proved to be difficult to implement due to the fact 

that the program interface is scarcely documented and the errors are non-

descriptive. The reason this method was abandoned is that Microsoft 
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HoloLens runs on the Universal Windows Platform, which is not compatible 

with x86 architecture built binaries and libraries, which FFmpeg uses. The 

FFmpeg executable is a console application which takes parameters telling it 

which data should be processed and how it should be handled. Several Unity 

scripts had been written, invoking the external program to research feasible 

communication methods. The main problem was finding a way to send the 

large amounts of data to the external executable and receive the processed 

data in return. This was attempted in several ways which, most notably, 

included passing the data written on the disk (a very slow method not 

suitable for real-time applications but good for development) and passing the 

data through a pipeline [7]. The executable takes several parameters, usually 

these are: source and destination of the data, data formats and format 

details, image or sample size, used codecs, etc. The input and output can be 

specified as either files on the disk, sequences of files, web data streams or 

pipelines. Most widespread formats and codecs are also supported. One of 

the problems with using FFmpeg with grayscale represented depth frames is 

that an 8 bit grayscale image reduces the precision of the depth data, as it is 

conventionally stored in 11 bits. Using an unconventional 16 bit grayscale 

image is a bit more difficult as Unity3D does not support such formats.  

When it comes to the implementation of the Unity3D to FFmpeg 

executable communication there are several things to address. The FFmpeg 

process is started from the script using functions from the 

Systems.Diagnostics namespace, with the following StartInfo settings: 

UseShellExecute is false, CreateNoWindow is true, and we have redirected 

the standard input, the standard output and the standard error of the process. 

The executable uses the standard error stream to show info to the user, and 

since we want no window to be displayed, the standard error stream should 

be redirected and read. Displaying it with Debug.Log gives us the only insight 

into what is happening within the FFmpeg program if processing fails. Input is 

given to the process via the standard input and output is read from its 

standard output. There was a lot of experimentation with arguments used for 

starting the program [5]. Let’s see an example, starting FFmpeg.exe to 
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transcode a JPG image to an MP4 video (with one frame). Entering the 

following line into the console produces the “test.mp4” output file in the same 

folder where the input image “input.jpg” is located: 

ffmpeg.exe –y –i input.jpg –c:v h264 test.mp4 

The “-y” argument tells the program to overwrite any output files without 

asking for permission. The “-i” denotes following input file(s) and here it is 

possible to provide the image size or the format with the “-pix_fmt” option. 

Then, the “-c:v” option is short for “codec:video” and tells the program which 

codec should be used for transcoding. Finally, the output file is specified. 

Similarly it is possible to use pipelines as input or output by writing “pipe:1”, 

for example.  

Eventually several scripts were written to convert the depth data into a 

grayscale bitmap with 24 bits per pixel, all three channels (red, green and 

blue) populated by the same value for the purpose of testing. Although this 

might sound like a terrible waste of resources, these bitmaps can actually be 

compressed very efficiently, as if only one channel was used. They are easily 

converted into byte arrays in Unity, which are then sent as a stream over the 

network. Byte arrays can also be easily compressed in real time. For this, 

C#’s Deflate class was used, as it provides quick byte stream compression 

which is suitable for real-time applications. The Deflate algorithm found in the 

namespace System.IO.Compression creates a DeflateStream from an 

underlying MemoryStream, which is suitable for real time compression. It is a 

lossless data compression algorithm [8] which uses LZ77 and Huffman 

coding. The algorithm takes a byte array and replaces duplicate sequences 

with pointers, and replaces normal symbols with weighted symbols based on 

frequency of use. Specifically, Huffman coding replaces common longer byte 

sequences with their short identifiers which take up less space in the stream. 

The LZ77 algorithm replaces repeating sequences with a single copy, plus a 

length-distance pair which denotes how many of the following characters are 

equal to distance characters behind it. 
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Before sending the user’s mesh over the network, the mesh needs to 

be serialized; converted into a byte array. For that purpose the system uses a 

mesh serializer, which writes the individual mesh components (mesh header, 

vertices,  triangle indices, and UVs) to a data stream which is then saved to a 

byte array. A complementary functionality is also contained within the mesh 

serializer, so that deserialization could be done on the receiver. Since this is 

a relatively programmatically simple (yet quite resource consuming) 

operation, the same class could be used in the Windows Holographic build 

with little adjustments. In the optimization phase of the sender development, 

this class was revised so that the serialization could be parallelized. This 

meant replacing the Unity’s non thread-safe Mesh class used in the serializer 

with a custom MeshThreadsafe class which is basically just a holder for the 

data of interest within the mesh itself. 

 

3.2.3 Color data processing 

Color data read from the Kinect V2 sensor can be either in full HD 

(1920x1080 pixels) or in the same resolution as the depth image, which 

simplifies texture mapping. It also reduces the network traffic of the system 

greatly, due to the huge difference in data size of each frame. Most of the 

methods used with depth image bitmaps work the same with color bitmaps, 

so finding fast and efficient compression and encoding algorithms was an 

important focus. Color data, however, due to the fact that it uses four 

channels (32 bits, RGBA) instead of two used by depth data, generally takes 

up a bigger percentage of the network traffic. This is the first reason why 

using the full HD texture stream was eventually abandoned in favor of the 

smaller depth resolution texture. The second reason is that using the full HD 

texture requires additional processing to map the texture correctly to the 

depth image. This is a consequence of the fact that the 1920x1080 resolution 

image not only has a different aspect ratio than the 512x424 pixel resolution 

image, but also has a different field of view. 
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A problematic segment of the color texture obtaining script is conversion 

from a graphical memory stored RenderTexture to a RAM stored Texture2D, 

and it cannot be parallelized because the ReadPixels function is a non 

thread-safe Unity3D API function. The following code demonstrates the 

problematic section of the SourceColor script. 

renderTexture = 

userMeshRenderer.material.GetTexture("_MainTex") as 

RenderTexture; 

RenderTexture.active = renderTexture; 

// Copy data from GPU to RAM 

finalTexture.ReadPixels(new Rect(0, 0, 

renderTexture.width, renderTexture.height), 0, 0); 

The call to GetTexture obtains a RenderTexture from the main renderer 

which uses the texture from the KinectManager and the underlying API, 

which is processed in the GPU memory. The texture has to be locked in the 

GPU so that it could be safely copied to the RAM, which is a time-expensive 

operation because data cannot be copied both ways simultaneously. 

Additionally, a delta-encoding script was created to work with general 

byte arrays, in order to maximize the compression. Delta encoding works by 

storing data in the form of full and delta (difference) frames. Frames are 

recorded in a fixed interval and stored as a difference relative to the full frame 

which is refreshed periodically. This greatly reduces redundancy, since 

adjacent frames often share much of their data. Instead of using an existing 

delta compression library, a custom-tailored component has been developed 

to best fit the requirements of this project. This component will be described 

further in section four. 

 The sender-side color processing script includes handling the loaded 

texture, delta-encoding and compression of the data, as well as supplying the 

data to the network sender component.  
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3.2.4 Other components 

For the purpose of data sender project optimization a script was written 

for threading efficiency testing. The script relies on tested functions to 

report when they have reached a section which was determined problematic 

(taking up a lot of time to be completed) and when they have left it. Each of 

the threads calls a function of the ThreadDurationTest, as it is called, to 

obtain a unique ID which will later be used to identify it. As a thread calls the 

WriteCheckpoint function of the duration test script, a unique timestamp is 

written to a file, identifying the start of the “critical” section or its end, if a start 

was previously written. Once a file is produced, this data can be processed 

and visualized. For that, we have developed a processor script which is 

written in the Python language and uses several libraries from the SciPy 

packages. It reads the checkpoint file and draws a graph from the data. An 

example is shown in Figure 3.6. The different colors represent different 

threads, and the spikes denote thread activity in the “critical” section of 

interest. Similar graphs were used to determine which parts of code can be 

parallelized and which parts the  most important. The most time-consuming 

processing was segregated into a new thread or further optimizations were 

made to the code.  

A session recorder has also been developed to record the user mesh and 

texture data in a broadcasting session. This was found to be useful for 

receiver-side testing and demonstrations. This recorder is further described 

in section 4.1.1. 

Figure 2.6 – Thread activity graph 
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Audio data is also streamed over the network, captured on the Kinect’s 

microphones. An AudioClip is created so that it could be used for audio 

capture from the microphone, as shown in the following line of code: 

audioSource.clip = Microphone.Start(microphoneDevice, 

true, 1, recordFrequency); 

. Recording is initiated with the Microphone.Start function of Unity’s API 

and the result is saved in our audio clip. Raw audio data is obtained from the 

clip with the GetData function and saved in a buffer, which is later 

compressed into a byte array (using VoiceUtils.Compress) and sent to the 

network script. A circular buffer is used in the script to hold audio data frames 

between sending intervals.  
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4.  Developed system 

This chapter covers the methods used in the communications platform, 

for each of the previously discussed segments of the system: depth data 

representation, background removal, mesh creation, data compression, 

networking solutions and data displaying. One of the goals when building the 

system was to keep as much processing as possible localized on the server, 

so that the HoloLens device would handle only receiving and displaying the 

data. The diagram below shows the basic operation scheme of the system. 

These are the main components of the system and their order of execution.  

Figure 4.1 – System component scheme 
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4.1 Video and audio data sender 

A very important part of the sender is the UserMeshVisualizer script 

taken from the KinectUserVisualizer scene of the Unity3D Kinect V2 SDK 

Samples which can be found on the Asset Store. This script was modified 

and parallelized to optimize its performance and to adapt it to this use case. It 

takes the color and depth images and creates a 3d textured mesh of the user 

with the background removed. 

The transparent texture is fetched from the background removal manager 

and converted from a RenderTexture to a Texture2D using the already 

described procedure. This is all done in the main thread since the copying 

cannot be parallelized, unlike the mesh creation, runs in a separate thread. 

The previous mesh is cleared, and the newly computed vertices, uv array 

and triangles are assigned to the mesh that is being displayed in the scene. 

Thread synchronization is done by means of flags indicating when the 

created mesh is being copied from the buffer into the mesh used for network 

sending. Mesh updating is done in a function which passes through the 

whole depth frame sampling every sampleSize point (1, 2, 4 or 8, see section 

4.1.2 for mesh quality settings) and creates triangles from adjacent vertices. 

To reduce the size of buffer arrays allocated on each execution of the mesh 

creation function, the size of the arrays is estimated based on the distance 

between adjacent points. If a point is much farther away from the depth 

camera on the Z axis, which means it is probably not a part of the user’s 

point cloud. Also, points with the maximum distance (or distance zero) are 

automatically discarded as well. The function is time-expensive due to the 

numerous passes through the 512x424 point sized array. 

4.1.1 Sender components 

Data representation 

In the developed system, the depth data stream read from the sensor 

is interpreted as a point cloud. This allows expansion in terms of more depth 
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sensors used for a more complete and accurate 3D representation and 

enables the server to handle the computation-heavy processing related to 

mesh construction. 

Data compression 

There are two phases involved in reducing the amount of network 

traffic. The first is the delta-encoding of byte arrays, which works with 

general byte arrays, on the principle of sending a full frame and then sending 

only the difference byte array of the same length. The deltaEncode function 

receives three arguments; the serialized texture (a byte array), a flag telling 

whether the current frame will be a full frame or a delta frame and a desired 

loss percentage. If a full frame is about to be sent, the received texture is 

saved for the next calls of the function where it will be used to compute delta 

frames. Otherwise, the delta frame is computed by subtracting the previous 

frame from the current texture. Figure 4.1 shows a full frame and a delta 

frame following it.  
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The delta frame is then checked against the previous frame byte by 

byte, with each byte of the delta being equalized to the previous frame’s byte 

if the difference is less than the minimum difference allowed by the given loss 

factor. This frame is then returned to be processed and sent to the receiver. 

Similarly the decoding algorithm just adds the previous frame to the received 

data to obtain a full frame on the receiver side. This leaves very little 

processing to the portable HoloLens device. 

Although each of the sent dataframes has the same length and no 

size reduction is apparent, the effects become obvious when delta encoding 

is combined with a byte array compression algorithm, such as Deflate 

compression. Since most of the frames sent (all delta frames) only mark the 

difference between the previous and the current frame, most are filled with 

zeros, because most parts of the byte array are unaffected between adjacent 

frames. This allows for high compression factors, while keeping the 

compression lossless [9]. 

The delta encoder developed for this system uses a timer to determine 

when a full frame needs to be sent instead of a delta frame. It was found to 

be appropriate to set the full frame interval to 3 seconds, when using the 

system in a local area network. 

Figure 3.2 – Full frame and delta frame 
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Network data transfer 

To ensure all data was transferred correctly (it would be destructive if 

a descriptor or header was sent incorrectly or received partially) and to 

preserve the integrity of the client-side system [8], a reliable TCP connection 

was used between the server and the client. The TCP socket works on three 

connections, using different ports for each type of data. Therefore port 7777 

is reserved for color data, 7778 for mesh data and 7779 is for audio data. To 

enable the client to interpret data correctly, all data had to be packaged 

together with additional header data, describing the content of the network 

dataframe. This header defined the type of the data sent, color or mesh, the 

size of the network frame to be read from the network stream as well as the 

size of the decompressed dataframe (which happens to be a constant value 

when it comes to color data, exactly 512x424x4 bytes per color frame). 

The message preparation function in the SenderTCP script takes two 

arguments; the length of the inflated message and the data byte array itself. 

First, data is compressed using the Deflate algorithm. The length of the 

compressed data is saved and size of the entire message is computed as the 

compressed data length plus the compressed data header which tells the 

receiver how big the inflated data array is. Afterwards the network packet 

array is packed in the following order: first the size of the entire message (so 

that the receiver knows how many bytes to read from the stream), then the 

size of the inflated data array and then the compressed data itself. Figure 4.2 

shows the network message contents. 

 

Figure 4.3 – Network message header components 
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Data recording 

One of the features of the server side system is the recorder. This 

allows for playback of the depth, color and audio data which can be recorded 

during a session. The recorder uses data type flag to tell the receiver whether 

the packet received contains depth or color data. A timestamp is also written 

next to each frame, allowing the playback system to know when to play a 

frame, keeping the recording real-time. This is necessary due to the fact that 

spikes occur in the framerate, making it impossible to save frames in a 

regular interval. 

The recorder uses a script similar to the network sender, packing data 

with a header which is then streamed into a recording file. The data 

recorder’s PrepareMessage function takes four arguments: size of inflated 

data array, the actual data array, a timestamp and a flag telling the data type 

(color or mesh). Figure 4.3 below visualizes the structure of the recording 

packet. 

 

Figure 4.4 – Recorder frame header contents  

 

4.1.2. Sender side optimization 

When many of the server side components are run together, performance 

becomes a problem even though the hardware can be quite powerful. This is 

why the program needs to be well optimized, multithreaded and smartly 

organized. The application was decomposed into parts to see which ones 

can be parallelized. Some parts of the program must be executed 

sequentially, for example data must be first obtained, then processed and 
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finally sent. This is not trivial to parallelize. The system works in multiple 

threads, with the main thread performing all the Unity3D related processing 

(which cannot be parallelized as most Unity3D methods aren’t thread safe) 

such as mesh creation, and other threads working on individual tasks such 

as compression, encoding, networking and data obtaining from the Kinect 

device. The synchronization of threads is done with simple flags which 

determine when a critical section is in use by another thread. Figure 2.1 

shows thread activities, in a small period of time. 

The most important parallelization of the system occurs with the color and 

depth data read from the Kinect V2 sensor. In one thread, raw depth data is 

fetched and a mesh is created, to be converted into a Unity3D Mesh in the 

main thread. It is then serialized, delta encoded and compressed. Another 

thread takes care of the texture, converting the RenderTexture from the 

sensor API to a Texture2D, serializing it, delta encoding and compressing the 

data. The conversion from a RenderTexture to a Texture2D is an important 

part of code to be optimized, because it requires the texture to be copied 

from the GPU memory to the RAM, which can be costly as there is a 

bottleneck when simultaneously reading from the GPU and writing to it (the 

Kinect V2 drivers write to the texture). There is yet another thread tasked with 

adding headers to data frames and sending them over the TCP connection, 

as the network functions are blocking until the client reads them. Figure 4.4 

shows the final parallelization diagram of the system. 

Figure 4.5 – Sender-side parallelization diagram 

First, the raw depth and color data is obtained from the Kinect Manager, 

which provides an API to access raw and processed data from the Kinect V2 
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device in Unity3D. This data is then fed into the mesh construction code in 

the UserMeshVisualizer script, while at the same time, the main thread 

displays the created mesh with the texture applied to it. The created textured 

mesh of the recorded user is already filtered, the background is removed 

from the data and thus it is ready to be sent over the network. However, it 

has to be processed before it can be sent to the receiver side. Since the 

mesh and color components are sent separately, they can also be processed 

separately. Therefore two threads perform mesh and color processing in 

parallel. The color texture is serialized into a byte array before being delta 

encoded. After the encoder it is fed into the deflate compressor and sent over 

the TCP connection. Meanwhile, the mesh is serialized (it is a time-

consuming operation, just as is delta encoding) and, just like the color data, 

fed into the compressor before being sent to the receiver. 

All these steps, along with optimization of the individual components, 

ensure that the server can deliver the data to the HoloLens device in real 

time. There are several options which can reduce the network traffic or the 

processing complexity by sacrificing quality. These options can be set when 

the server program is run, in the Setup scene. Image 4.5 below shows the 

sender-side menu screen. 

 

Figure 4.6 – Setup scene menu screen 



 

32 

 

 Mesh quality can be selected between the Low, Medium, High and 

Unstable High settings, which are manifested by the sample size in the mesh 

creation script. Lower the quality and less depth points will be sampled when 

the mesh is created. For the Unstable High setting, every depth point is 

taken, for the High setting, every second is taken, for the Medium setting 

every fourth and so on. This causes the vertex count in the mesh to vary 

greatly, and thus reduces not only network traffic but processing complexity 

at the expense of quality. The Unstable High setting may cause the mesh to 

break due to a constraint in the Unity3D engine stating that the maximum 

vertex count of one mesh can be 65 000, hence the name.  

Another quality setting is the send interval, which can be set to send data to 

the receiver at either 15, 24 or 30 times per second. Delta encoding can be 

set to incorporate a loss factor, which can also be changed in the menu. 

This allows to redefine the minimum amount of pixel difference between two 

adjacent frames in order to reduce the amount of data populated delta 

frames. The loss in quality is, however, quite obvious when using larger loss 

percentages. It was also planned to incorporate texture quality selection, due 

to the fact that the Kinect V2 sensor provides a full-HD RGB image. This 

Figure 4.7 – Mapping the full HD texture to the depth frame produces an 
offset in the mesh texture 
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resolution brings several problems when it comes to mapping the texture to a 

512x424 resolution depth image, because its aspect ratio, field of view and 

other parameters are different, and for these reasons this feature was 

ultimately not implemented. Image 4.6 visualizes the problems related with 

mapping the full HD texture to the depth frame. 

Measuring the performance of the data sender process is certainly not a 

very simple task. Apart from depending greatly on the hardware that runs the 

program, performance also varies on many factors, such as room lighting, 

user’s distance to the depth camera and his position as well. Certain 

measurements have been made despite these factors, to compare between 

the mesh quality settings and to see how they influence the framerate. The 

test machine runs an Intel Core i7-4702MQ 2.2 GHz CPU with 16 GB DDR3 

L RAM, and has an NVIDIA GeForce GTX 850M graphics processing unit.  

On both the low and medium mesh quality settings the framerate was roughly 

the same, about 26 frames per second (with the network sender set to send 

data 24 times per second for all quality settings). On the high setting, 21 

frames per second was the average, and on the unstable high setting this is 

reduced to only ten frames per second. The performance in the first three 

settings was primarily influenced by the color texture conversion and 

obtaining code (it caused the most notable delay in the system) but in the 

unstable setting the massive framerate drop is caused by the KinectManager 

script, which needs to allocate much more space for data processing. This 

allocation, together with the need to process much more data, causes large 

delays, and is one of the reasons it is not recommended to use the unstable 

high setting in the current system build. 

4.2 Data receiver and visualizer 

This chapter briefly describes the data receiver, run on the Microsoft 

HoloLens device. The receiver side of the system is not the focus of this 

thesis, and will therefore be covered with less detail. The base for integrating 

HoloLens functionality in Unity3D is a collection of scripts and components 

aimed at simplifying development of holographic applications for Windows 
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Holographic (the platform run by the HoloLens device). This is supported in 

Unity3D since version 5.6.1f1 and provides access to HoloLens input 

management, sharing, spatial management and building applications for the 

platform. There are three main components in the receiver build scene, so 

let’s describe them one by one. 
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PlayerHoloTalk is a prefab object used to represent a person in the 

HoloLens visualization. It allows user interaction with the hologram displayed 

in mixed reality, more precisely it allows scaling, rotation and movement of 

the visualization using HoloLens specific commands from the HoloToolKit. 

Image 4.7 shows the HoloLens UI as seen in the Unity scene view. 

PersonHologram is the object responsible for converting the received byte 

arrays to the final Mesh and Texture2D color data. This conversion process 

is similar to the sender’s process, and includes inflating (decompressing) the 

data, deserializing the Mesh and running the color texture through the delta 

encoder to obtain the original. This object also holds the visualizer script, 

which uses a buffer to display the data. This buffer saves several frames 

before visualizing them in real time. The Network component is also 

analogue to the sender’s component, receiving data on three ports (7777 for 

color, 7778 for mesh and 7779 for audio data) via the TCP socket. 

HoloLens development in Unity3D is, despite the numerous aids 

available, still quite a challenging task. Deploying projects to the device is 

Figure 4.8 – HoloLens Unity3D graphical user interface for object movement and 
scaling 
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tedious and takes a lot of time (a few minutes), so it is not possible to make 

quick tests after changing a small part of code. Windows Holographic does 

not support some of the libraries and namespaces used in the sender side 

[10], so two versions of the code need to be developed: one for testing on the 

desktop computer running Windows (the development machine for the 

HoloLens) and the other for the Windows Holographic platform (a subset of 

the Universal Windows Platform). Development is also hampered by the fact 

that it’s impossible to access some useful features of the HoloLens device on 

a lower level, for example there is no way to access raw depth data (access 

is only possible through the Spatial Perception component). The camera can 

only be accessed by one application at any given moment and its live feed is 

not obtainable (it either has to be saved as a video file or accessed image by 

image). HoloLens API doesn’t enable developers to add new hand gestures 

[10] or even to access raw hand tracking data. The lack of these functions 

somewhat restricts the possibilities of the device in conjunction with Unity3D. 

Several methods of data visualization were used on the receiver side, 

most of which were also used on the sender side in various phases of testing 

and development. The three which saw most use are: point cloud 

visualization (see Figure 3.2 in section 3.1), mesh visualization (used in the 

final system because it provided the most realistic and accurate results) and 

2D sprite visualization (used in the early phases because of its simplicity and 

possibility to rule out errors). The image below shows the depth frame 

rendered with the point cloud method and visualized as a grayscale texture 

on a 2D quad. The HoloLens device had no performance issues running the 

decompression, deserialization and mesh visualization because all of the 

remaining processing was done on the more powerful data provider device. 

The mesh deserialization still had to be parallelized to maximize performance 

since HoloLens devices possess a dedicated GPU and a multi-core 

processor. 
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Image 4.9 – Point cloud and 2D texture methods of visualization 
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5. Conclusion 

This system provides a proof of concept and a technology demonstration 

for real time holographic communication. With some additional optimizations 

it will be possible to implement two way communication and one way 

communication with multiple receivers (broadcasting; which was the basic 

intended purpose of the system). Many of the solutions found during various 

research phases of the project may prove useful in similar systems even if 

they were deemed unsuitable for this project. The system can also be 

upgraded to use multiple depth cameras for a more accurate representation 

of the recorded person, to give the users a better feel of presence. With 

multiple depth cameras recording from all angles, a full 3D model of a person 

could be rendered in real time on the receiver side, unlike the current mesh 

produced by one camera, as shown in Figure 5.1. More complex mesh 

reconstruction methods [11] which use machine learning can also be 

implemented to further reduce network traffic and make the application more 

accessible. To show more detail of the user’s face, his mesh may be split into 

two parts with the head having a more accurate depth sampling and the 

body, which requires less detail, being subsampled in lower quality. Finally, 

although the system was built for current generation depth cameras and 

holographic headsets, different hardware can be used to provide more 

accurate visualizations or application-specific advantages. Even if the system 

is revamped to an entirely different configuration, for example using a mobile 

phone instead of a holographic headset or a RGB camera for background 

removal instead of a depth camera, many developed components can be 

reused with some modifications. 

This thesis gives a high level overview of the methods that were 

considered to solve individual problems encountered in designing a real time 

communication platform, as well as the solutions that have been created as a 

result of the research. It sums up the difficulties that have been encountered 

as well as their solutions in the form of concrete components designed 

around the Unity3D engine. The focus of the thesis is on used methods 

rather than on the specific components. 
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Figure 5.1 – 3D user mesh visualization viewed from the side 
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Sažetak 

Holoportacija modela čovjeka 

U ovom radu implementiran je sustav za udaljenu jednosmjernu mrežnu 

komunikaciju u stvarnom vremenu koristeći prijenos holografske slike koji 

uključuje prijenos modela, teksture i zvuka. Koristeći grafički pogon Unity3D 

kao podlogu, razvijen je sustav koji koristi Microsoft Kinect v2 i HoloLens 

uređaje za prijenos podataka preko mreže od  poslužitelja prema klijentu. 

Ovaj sustav predstavlja dokaz koncepta holografske komunikacijske 

platforme. Rad također pokriva razvijene koncepte i komponente, i pruža 

pregled raznih faza razvoja projekta kako bi pokazao kako je konačan sustav 

oblikovan. 

Ključne riječi: miješana stvarnost, holoportacija, hologram čovjeka, 

komunikacija, stvarno vrijeme, Unity3D, C#, dubinska kamera 

Abstract 
Holoportation of human models 

This thesis implements a system for remote, end-to-end, one way, real time 

holographic streaming, which includes audio, mesh and texture streams. 

Using the Unity3D engine as the base, a system was developed, using the 

Microsoft Kinect v2 and HoloLens devices for server to client streaming over 

the network. This system provides a proof of concept for a holographic 

communication software platform. The thesis also covers the developed 

concepts and components, and provides an overview of the various stages of 

development to demonstrate how the final system was formed. 

Keywords: mixed reality, holoportation, human hologram, communication, 

real time, Unity3D, C#, depth camera 
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