
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS no. 1371

HOLOPORTATION OF HUMAN MODELS

Oleg Jakovljev

Zagreb, June 2017.

SVEUČILIŠTE U ZAGREBU

FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

DIPLOMSKI RAD br. 1371

HOLOPORTACIJA MODELA LJUDI

Oleg Jakovljev

Zagreb, Lipanj 2017.

Contents

1. Introduction ... 1

2. Background ... 2

2.1 Project task ... 3

2.2 System hardware .. 3

3. System development ... 7

3.1 Researched methods .. 7

3.2 Developed components .. 14

3.2.1 Networking ... 16

3.2.2 Depth data processing .. 17

3.2.3 Color data processing... 20

3.2.4 Other components .. 22

4. Developed system ... 24

4.1 Video and audio data sender .. 25

4.1.1 Sender components ... 25

4.2 Data receiver and visualizer .. 33

5. Conclusion .. 38

Abstract ... 40

Bibliography ... 41

1

1. Introduction
This thesis is based around a project aimed to enable real time

holoportation of human models. The term holoportation defines 3D

holograms, displayed in mixed reality, used for real time communication

between remote users. Implementation of the system was based on

usage of certain hardware components, namely the Microsoft Kinect v2

depth camera and the Microsoft HoloLens mixed reality glasses. During

the development the project was divided into sections, as each section

required various methods to be researched before the optimal solution

could be found. The thesis describes the technological problem set by

the task at hand, the solution that was determined to be the best, as well

as the other considered options. Each phase of the project required

research and implementation, and due to many unknown variables the

development process was not concretely defined. The result is a proof of

concept for a holographic communication platform, uniting a number of

solutions and components which are easily expandable to a commercially

usable product.

2

2. Background
Many difficulties and complications arise when discussing real time

communication between two remote components both of which have

many responsibilities. The set requirements state one-way

communication between a desktop machine with a depth sensor and

portable smartglasses which would be used to display a user recorded by

the depth sensor. It was estimated that at the current phase, one way

communication would be easier to implement and sufficient to

demonstrate the feasibility of the project and the efficiency of

technological solutions used. Due to the nature of the task and the

relative uncertainty of the implementation methods, it was not possible to

enforce a rigid plan of development. There are several points of interest

when it comes to dissecting the problem. The first and most obvious issue

is the limited network communication bandwidth. In order to make the

system usable in real world cases, the bandwidth requirement has to be

tailored to meet real world expectations. Secondly, an important factor to

be considered are the processing power of the server and client devices,

namely the desktop computer used to record and the mobile

smartglasses used to display the holoported user. These requirements

lead to another issue to be considered: the latency of the system. In order

to perceive a natural conversation, the client (using the smartglasses) has

to receive real-time data with low latency, both for visual and audio data.

Considering these requirements makes it possible to determine which

methods are appropriate and which would cause these constraints to be

violated. Since most of the ideas considered are quite novel and not

tested in a use case appropriate for this system, many components had to

be implemented so that they could be evaluated and potentially used in

the final solution. The following chapters cover the initial project task and

describe the hardware used in the implementation.

3

2.1 Project task
Creating a system for real time holoportation of human models is a

problem with many unknown variables, so a modular approach was selected

to subdivide the components in development and enable independent testing

of components. A project was designed, specifying that two programs should

be developed: a data sender application run by a desktop computer with a

depth camera recording a person, and a data receiver run by a mobile

headset displaying a virtual object of the user in real space (mixed reality).

This system must work real time and the latencies involved should not hinder

the communication properties of the platform (i.e. the delay must not be

noticeable when communicating in real time). The Unity3D engine was

chosen as the base for the system, due to its versatility and a wide range of

supported hardware and software. Unity3D also enables a dynamic

environment for testing and agile development.

Building the system that performs desirably requires finding the best

components that fit the requirements. It was initially determined that those

key components will be data capture, mesh construction, data compression,

networking and data reconstruction on the client side. Some of those

components were changed as development progressed and deviated from

the original course. It was also anticipated that some third-party software

would be used, in the form of dynamic libraries, static libraries or precompiled

executables.

2.2 System hardware
The basic hardware of the system, in its one-way configuration,

consists of the Microsoft Kinect V2 depth camera on the server side (data

provider) and the Microsoft HoloLens smartglasses on the client side (data

receiver). These devices were primarily selected because they are supported

by the Unity3D engine development environment which allows easy

integration and testing. Kinect v2 is supported by a Unity3D plugin since July

2014 and HoloLens support came with Unity3D 5.5.0 released on Nov 30,

2016 [1]. Kinect v2 is supported by an adapter plugin which makes the native

4

Kinect code available in Unity3D, for scripting in C#. This adapter is well built

and thus little performance is lost when using it, which had proven to be

crucial during the later stages of development, when performance became on

the primary issues in the system. Some parts of the plugin had to be modified

to better fit the needed use case in the system.

Kinect v2 SDK support included in Unity3D offers access to raw data

streams for the full HD resolution RGB camera, the depth image (resolution

512x424 pixels) and the audio streams. It also provides processed data, such

as skeleton tracking (with 25 joints per person) with position and orientation

data, and allows this data to be used in Unity3D easily. Using the skeleton

tracking and person recognition, it’s possible to perform efficient background

removal that is more accurate than background removal done using RGB

imaging alone. The API examples provided starting points for various

components that were developed during the different phases of the project.

There are several advantages to using a depth camera in contrast to one or

more RGB cameras. Depth cameras enable simple mesh reconstruction and

accurate background removal, which is required in order to reduce the

amount of network traffic and render the user in augmented reality with a

degree of precision. Furthermore, using multiple depth cameras to obtain a

full 3D real time scan of the user is a possible upgrade of the system. Figure

2.1 shows the Microsoft Kinect V2 depth sensor and its main components.

 Kinect sensors use a space mapping technique called structured light

which relies on an infrared matrix of predefined dimensions projected by a

light source in the space. Once the infrared stereo cameras records an

image, the infrared points are located and compared to the orthographically

projected matrix, which tells how much each depth point is displaced from its

neutral position. This is how the depth camera can define the distance of

each point to the sensor, which produces the depth frame. The sampled data

is fed into a classifier which determines where the person is located, relative

to the depth camera. The person’s body position is stored as joint positions

(for arms, legs, head and other joints) and their orientations, so that the body

tracking does not depend on the person’s height and position.

5

The Microsoft HoloLens holographic device features multiple sensors

and processing units, such as a depth camera, IMU (inertial measurement

unit), HD video camera, microphones and ambient light sensors. Unlike most

previous devices, it is completely independent of any other devices and does

not have to be in any way tethered or connected to a desktop computer. It

uses onboard processing units, more specifically a Holographic Processing

Unit and an Intel 32 bit architecture compatible processor [2]. It has 2

gigabytes of RAM memory and 64GB of flash memory for the OS and various

applications. The device is also compatible with Unity3D which enables

simple development of mixed reality applications. However, due to the fact

that its OS is based on the Universal Windows Platform, there are restrictions

in libraries and dependencies which can be used. For example, all Windows

compiled libraries need to be recompiled for use with the UWP, and some

libraries used in Unity3D are not available either. Although development was

significantly streamlined and simplified by HoloLens’ compatibility with

Unity3D, these restrictions also had to be taken into account. Figure 2.2

shows a mixed reality headset and its principle components. The HoloLens

device also has multiple sensors which help it display the user in mixed

reality and give its user the feeling of presence and realism. Among its

sensors it has a depth camera which is used to map the user’s surroundings

(usually the room that he is in) so that virtual objects could be placed in real

Figure 2.1 – Kinect v2 description

6

space and displayed relatively to the floor or some other part of the room,

and even allows the virtual objects to be (partially) occluded by objects such

as tables or chairs. The inertial measurement unit works together with other

sensors to make sure that the virtual objects are seamlessly blended with the

real mapped surroundings even in quick user or head movements. A

holographic headset such as the HoloLens most commonly uses a

transparent display to combine projected images and color with light from the

background in order to produce an overlay of the virtual item on the

background.

Figure 2.2 – Mixed reality headset components

The selected components are readily available; therefore the system

was designed to use them initially. It was, however, planned to develop the

system as a collection of abstract components which can be readily replaced

as new hardware needs to be supported. However due to the nature of this

technology, the field of view is limited to less than 40 degrees, which limits

user immersion.

7

3. System development

Unity3D had been chosen as the platform for the project due to its

versatility and compatibility with available hardware. Unity3D is a game

engine with a game development platform built around it, allowing simple

development of games and graphical applications and their deployment to

many desktop and mobile platforms. It allows implementation of complex

functionalities with relatively little additional work, because the existing

engine offers most of the base functionality. Many solutions already exist as

plugins or scripts for Unity3D because of its large user base and many useful

components can be used in a project without much adaptation. There are

similar engines and game development frameworks such as Unreal Engine,

however, existing plugins and support for the components used in this

system made Unity3D the more suitable choice. One of the main reasons for

using the Unity engine in this project was, however, the familiarity of the

development team with the platform and our experience with working with

Unity.

3.1 Researched methods

The following chapter gives a brief overview of the options that were

considered during the development, to explain how the final product was

developed and which decisions lead to the way components are

implemented in the final version. It was originally planned to use multiple

native plugins for the system as it was expected that these would offer the

needed interoperability with other existing components and better

performance. A wireframe application was built in Unity3D, with calls to

native plugin functions in dynamic link libraries written in C++, and several

plugin projects were prepared for use as native plugins (dynamic libraries).

Figure 3.1 shows the planned system operation flow with multiple

components integrated.

8

Figure 3.1 – Planned system layout

The planned plugins were Background Removal, Compression and

Networking, and these components were meant to be called sequentially,

pipelining data from one to the next one. Although some of these were used

during various research and development phases, none of them made it to

the final system. Let’s have a look at the problems encountered.

Data representation

When it comes to depth data, the first question is how to store and

transfer the data. One of the most popular methods of representing depth

sensor data is using point clouds, where each of the cloud elements

represents a point in the 3D space. This piece of space is defined by its

origin point and its bounds (if there are any). In the case of the Kinect V2

depth sensor, its precision allows for 11 bits of depth data per point, which is

interpreted as the distance from the sensor. This limits the precision and

maximum distance from the sensor. Its range for high quality tracking is

officially rated [1] at 0.5 to 4.5 meters, however the sensor still works at

longer distances, although sacrificing accuracy and reliability [3]. One of the

first ideas was using third party libraries for point cloud compression, such as

the Point Cloud Library [4]. This had proven to be inefficient due to the

complexity of those libraries and the low efficiency of the compression. The

9

image below shows the results produced by point cloud visualization with

each point coloured with its respective color texture pixel.

Though point clouds are an intuitive method of depth data representation,

they have certain considerable disadvantages. Firstly, this is the “raw”

representation of the data captured by the sensor, unprocessed and

unoptimized. This means that if data represented by point clouds are sent

over the network, all the processing has to be done by the receiver

(assuming that the receiver is tasked with displaying the data), in addition to

the potentially bigger data packet which has to travel over the network.

Another approach to data representation is using a mesh reconstructed

from the depth data. This delegates processing to the sender (assuming,

again, that the sender handles data recording and the received handles data

displaying, in our case) and allows the data to be stored in a Unity3D Mesh,

which can easily be applied to objects in scenes. Unity’s Mesh objects

contain data such as vertice arrays, normals, UV texture maps, triangles and

even tangets. This format is used to display general 3D objects in scenes. An

additional advantage of this method is the possibility of applying background

removal, which reduces the amount of data that needs to be sent over the

Figure 3.2 – Point cloud visualization

10

network. The quality and speed of mesh reconstruction from depth data

varies greatly on the algorithm used. For this system, the method used for

mesh creation is the simple triangle mesh creation found in the Unity3D

Kinect v2 SDK Samples which can be obtained from the Unity Asset Store.

The third method of data representation is using a conventional image to

represent the depth data (most intuitively represented by a grayscale image).

Many algorithms exist for handling images, streaming them in real time and

compressing them. This approach favorizes network transfer optimization

and combines some of the perks of the other two methods listed above.

Image 1 shows the depth and color frames encoded into bitmaps with the

depth sensor resolution of 512x424 pixels. Using bitmaps for depth images it

is possible to perform background removal on the server side, as soon as the

image is captured, and send a compressed video stream over the network,

further reducing the amount of sent data. Image 3.3 shows the depth frame

represented by a grayscale image, with darker tones meaning that the point

is sampled close to the sensor and lighter tones mean that the point is

sampled at a longer distance from the depth camera.

Figure 3.3 – Depth frame shown as a grayscale image

11

For the color texture, both the full HD (1920x1080 pixels) resolution and

the depth image resolution (512x424 pixels) color texture are best stored in a

Texture2D, Unity3D’s texture format. This container format provides many

useful functions for handling image textures and applying them to meshes.

Some of these functions include: texture compression, serialization (to a byte

array), JPG and PNG format encoding, a pointer to the raw texture data, a

method to obtain or change the color of an individual pixel and many other.

Data Processing

Once the initial idea with using an external point cloud management

library was abandoned due to complexity and low modularity, one of the

ideas was to abandon real-time data transfer entirely and perform a pre-scan

of the user to create a (rough) mesh which can be transferred once to the

receiver. This, however, is less intuitive and brings more problems into the

equation. More concretely, this means the recorded user is shown to the

receiver as an avatar, which is difficult to animate if the animations should

look natural. One of the most important unanswered questions here is how to

actually rig and animate the user’s avatar, because no reliable methods for

real time rigging have been developed yet. Facial expressions are also

almost impossible to mimic with avatars, which is why a plain mesh is much

easier to work with and has a much more natural feel.

There are several operations that need to be performed on the data

before it can be displayed on the receiver mixed reality headset. In order to

keep the network traffic down, the data needs to be compressed, and the

user needs to be segregated from the background in the recording, to place

him in the viewer’s environment in a realistic manner. For the background

removal, the script UserMeshVisualizer from the “Kinect v2 Examples with

MS-SDK” Unity package was utilized. This script obtains the depth data and

color data, creates the mesh and displays the mesh with the texture applied

in the scene. Figure 3.4 shows the scene view of the main sender scene with

the user’s mesh visualized. The script showed performance issues so

optimizations were added, these are discussed in section 4 of this thesis.

12

Figure 3.4 – Scene view of the sender-side visualization

When discussing compression methods, an efficient way of compressing

both mesh or depth data and color textures is needed. For the depth data,

many generic compression algorithms were considered, all of them lossless

however. Among them it’s worth to point out run-length encoding (which

would be very inefficient with mesh data which is stored in a standard way

(because x, y, and z coordinates often differ), LZ78 and Deflate. The

compression algorithms are required to run quickly in real time and reduce

the size of the data significantly to meet the requirements of the system.

Color data compression methods include JPG and PNG format encoding,

methods for encoding Texture2D objects to these formats are included in

Unity3D’s API.

Another course of development was to use an external program to form

an encoded video stream which could be streamed efficiently. This works in

conjunction with depth data represented as bitmaps, because thus both the

color and depth data can be streamed as two (or even one) video stream.

13

The considered program in question is FFmpeg, a free framework that

provides media processing and handling libraries [5]. FFmpeg offers many

solutions for working with audio and video data, such as codecs, multiplexing

and demultiplexing, transcoding and many options such as hardware

acceleration. The project is distributed in several variants: the complete OS-

dependent executable build, a dynamic link library build and a development

project containing the source code. Arguably the most popular of these is the

executable build, due to the fact that it is the best documented form of the

framework and that it has a relatively large user base. The FFmpeg

framework is suitable because it offers a “black box” solution [6] for encoding

and decoding video data, as well as streaming it over the network. It also

supports hardware acceleration methods such as Intel Quick Sync Video and

Nvidia NVEnc, which are available for most of the frequently used CPUs and

GPUs. Although FFmpeg was ultimately not used in the system, some

components and solutions were developed during the research phase, and

these are further described in chapter 3.2. Data delivery became the next

focus of the project.

Soon, two general approaches to data delivery were considered: network

transfer of point clouds and network depth image stream. The second

method offered an advantage because the depth image stream can be

represented as a 512x424 grayscale video (8 bits per pixel) along with the

color stream which can use the same resolution and 32 bits per pixel. This

allows the usage of well-established video streaming protocols and codecs,

such as the mpeg-4 codec which supports delta compression. The downside

of this method is that only one depth camera can be used per stream, so the

system is not easily upgradable to use multiple depth cameras. Also, this

configuration requires the usage of at least two video streams, unless depth

data is packed into the alpha channel of the RGB texture stream. When using

more than one depth camera, it is better to stream a 3D mesh or point cloud,

although there is a potential problem with network traffic then. When it comes

to real time stream encoding, the open source software FFmpeg was used,

invoked from Unity3D scripts in its Windows executable form. This program

14

provides, along with mpeg-4 codecs, the possibility of hardware encoding

using Nvidia NV-ENC or Intel QuickSync Video encoders.

Figure 3.5 – Scene view showing a local networking test with depth and color

3.2 Developed components

Many components developed were replaced by different solutions or were

not used in the final version of the system because a different approach was

deemed more appropriate. Initially the system was used as shown in section

2 Figure 3.1. The sender component cyclically called its three components;

data reading from a source (hard drive, Kinect device, video recording, etc.),

data processing (compression, background removal, optimizations, etc.) and

data sending (using UNet, a TCP or UDP connection). The receiver worked

in a similar way, calling its own three components sequentially: data receiving

(UNet, TCP/UDP, hard drive, video, etc.), data processing (decompression,

15

decoding) and data visualization (point cloud, mesh reconstruction, 2D

texture visualization, etc.). This organization of the system was beneficial in

the research phases because individual components could be easily

swapped out or locked down without influencing the other ones. For example,

during network transfer testing, a dummy video recording was used as the

data source, with literally no processing done, so that any eventual failures

could be attributed to the networking component itself. Similarly, while testing

data processing on the receiver side, a 2D quad visualization method was

used for the sake of simplicity, as shown in Figure 3.5. The HoloLens device

was, however, introduced only in the later stages of development. This

changed the approach somewhat, however the knowledge and methods

obtained during research proved to be very valuable nevertheless.

Several options were considered for the implementation of network

communication between clients. The Unity3D engine offers built in

networking in two forms, the low-level API and the high-level API (also known

as UNet) which are interchangeable and offer some pre-built network data

transfer solutions. Scripts were written using the low-level API to test the

ability to transfer large amounts of data in real time. Used in conjunction with

depth and color frames, these amounts correspond to about 512x424x4

bytes transferred 30 times per second, not including the audio stream, as the

worst case scenario. This approach, however, didn’t produce the required

bandwidth traffic, and thus Unity engine’s built in networking was given up

on.

With the constraints imposed by the requirements of the project and the

platforms used, the simplest approach was to develop a network

communication component from the ground up, using C# native networking

libraries which are present in both x86 and Universal Windows Platform

environments. It was decided that a reliable TCP over IP was the best

solution to preserve the integrity of the data without compromising speed or

latency. The network communication scripts use a predefined header to

communicate the current frame’s length in bytes and other necessary data.

16

The implementation of this transport protocol, as well as the depth and color

multiplexing is described in section 4 of this thesis.

3.2.1 Networking

During development several methods of networking were attempted. One

of the first attempts was using Unity’s built-in networking, however it was

unfit for the purposes of this system. One of the problems with the built-in

system is that it is difficult to adapt to high bandwidth communication with a

requirement for reliable, sequenced data transfer in real time. The large data

structures had to be broken up to be sent in fragments using the

ReliableSequenced or ReliableFragmented channel configurations. This lead

to the need for multiple uses of array copying and preparing functions which

further slowed down the processing. Since much of the functionality

contained within Unity3D’s networking is encapsulated, it is sometimes hard

to identify the point of failure when unexpected complications occur. These

reasons lead to the abandonment of this method.

The second idea was using parts of the initial framework which uses C++

dynamic link libraries for additional functionality. A network data sending

component had been created, using Boost libraries for C++. Due to the

complexity of asynchronous communication with Boost, and the difficulties

concerning data transfer between Unity3D and the dynamic libraries, working

with large amounts of data requires careful use of buffers, which are difficult

to synchronize when working with data coming from Unity.

One of the considered options was to use Media Foundation, a

framework compatible with the Universal Windows Platform which is run by

the HoloLens device. Another advantage of the Media Foundation platform is

built in support for hardware encoders such as the Intel Quick Sync video

encoder. However this relies on the FFmpeg application for color and depth

image processing (here we are considering that the depth frame is encoded

17

as a bitmap). This is why when bitmap depth frames were abandoned, this

method was abandoned as well.

The ultimate solution was much simpler, a TCP server and client for

reliable sequenced communication written in C++ using the native

System.Net library. Data is read from a network stream using a TCP socket

for byte transfer. This code was optimized in later stages of the project.

Optimizations of the system will be described in section 4.1.2. This was

mostly inevitable due to the blocking functions used in network transfer. It is

important to notice that since this network transfer solution works with byte

arrays, it is invariant of the type of data which is sent, meaning that the same

component works for mesh, audio and color data.

3.2.2 Depth data processing

When raw data is captured on the Kinect V2 sensor, it is obtainable

from the Unity plugin SDK. This data needs to be processed before it can be

displayed on the other end of the system. Processing includes background

removal, mesh construction and data compression. Due to the fact that the

system is localized on two devices, each of these three tasks may either be

performed on the server or on the client side. Because the HoloLens is a

portable device with lower performance than a desktop computer, most of the

work was intended to be delegated to the server. For background removal

and mesh construction, samples from the Unity3D Kinect v2 samples pack

were used as a starting point. This code is fast enough and the quality is

satisfactory, both when it comes to background removal and mesh creation.

In the later phases, however, it had to be optimized further, in order to ensure

that all components work well with real time processing.

One course of development involved using the FFmpeg executable to

stream the data as an MP4 video stream via a direct connection from the

server to the client. This proved to be difficult to implement due to the fact

that the program interface is scarcely documented and the errors are non-

descriptive. The reason this method was abandoned is that Microsoft

18

HoloLens runs on the Universal Windows Platform, which is not compatible

with x86 architecture built binaries and libraries, which FFmpeg uses. The

FFmpeg executable is a console application which takes parameters telling it

which data should be processed and how it should be handled. Several Unity

scripts had been written, invoking the external program to research feasible

communication methods. The main problem was finding a way to send the

large amounts of data to the external executable and receive the processed

data in return. This was attempted in several ways which, most notably,

included passing the data written on the disk (a very slow method not

suitable for real-time applications but good for development) and passing the

data through a pipeline [7]. The executable takes several parameters, usually

these are: source and destination of the data, data formats and format

details, image or sample size, used codecs, etc. The input and output can be

specified as either files on the disk, sequences of files, web data streams or

pipelines. Most widespread formats and codecs are also supported. One of

the problems with using FFmpeg with grayscale represented depth frames is

that an 8 bit grayscale image reduces the precision of the depth data, as it is

conventionally stored in 11 bits. Using an unconventional 16 bit grayscale

image is a bit more difficult as Unity3D does not support such formats.

When it comes to the implementation of the Unity3D to FFmpeg

executable communication there are several things to address. The FFmpeg

process is started from the script using functions from the

Systems.Diagnostics namespace, with the following StartInfo settings:

UseShellExecute is false, CreateNoWindow is true, and we have redirected

the standard input, the standard output and the standard error of the process.

The executable uses the standard error stream to show info to the user, and

since we want no window to be displayed, the standard error stream should

be redirected and read. Displaying it with Debug.Log gives us the only insight

into what is happening within the FFmpeg program if processing fails. Input is

given to the process via the standard input and output is read from its

standard output. There was a lot of experimentation with arguments used for

starting the program [5]. Let’s see an example, starting FFmpeg.exe to

19

transcode a JPG image to an MP4 video (with one frame). Entering the

following line into the console produces the “test.mp4” output file in the same

folder where the input image “input.jpg” is located:

ffmpeg.exe –y –i input.jpg –c:v h264 test.mp4

The “-y” argument tells the program to overwrite any output files without

asking for permission. The “-i” denotes following input file(s) and here it is

possible to provide the image size or the format with the “-pix_fmt” option.

Then, the “-c:v” option is short for “codec:video” and tells the program which

codec should be used for transcoding. Finally, the output file is specified.

Similarly it is possible to use pipelines as input or output by writing “pipe:1”,

for example.

Eventually several scripts were written to convert the depth data into a

grayscale bitmap with 24 bits per pixel, all three channels (red, green and

blue) populated by the same value for the purpose of testing. Although this

might sound like a terrible waste of resources, these bitmaps can actually be

compressed very efficiently, as if only one channel was used. They are easily

converted into byte arrays in Unity, which are then sent as a stream over the

network. Byte arrays can also be easily compressed in real time. For this,

C#’s Deflate class was used, as it provides quick byte stream compression

which is suitable for real-time applications. The Deflate algorithm found in the

namespace System.IO.Compression creates a DeflateStream from an

underlying MemoryStream, which is suitable for real time compression. It is a

lossless data compression algorithm [8] which uses LZ77 and Huffman

coding. The algorithm takes a byte array and replaces duplicate sequences

with pointers, and replaces normal symbols with weighted symbols based on

frequency of use. Specifically, Huffman coding replaces common longer byte

sequences with their short identifiers which take up less space in the stream.

The LZ77 algorithm replaces repeating sequences with a single copy, plus a

length-distance pair which denotes how many of the following characters are

equal to distance characters behind it.

20

Before sending the user’s mesh over the network, the mesh needs to

be serialized; converted into a byte array. For that purpose the system uses a

mesh serializer, which writes the individual mesh components (mesh header,

vertices, triangle indices, and UVs) to a data stream which is then saved to a

byte array. A complementary functionality is also contained within the mesh

serializer, so that deserialization could be done on the receiver. Since this is

a relatively programmatically simple (yet quite resource consuming)

operation, the same class could be used in the Windows Holographic build

with little adjustments. In the optimization phase of the sender development,

this class was revised so that the serialization could be parallelized. This

meant replacing the Unity’s non thread-safe Mesh class used in the serializer

with a custom MeshThreadsafe class which is basically just a holder for the

data of interest within the mesh itself.

3.2.3 Color data processing

Color data read from the Kinect V2 sensor can be either in full HD

(1920x1080 pixels) or in the same resolution as the depth image, which

simplifies texture mapping. It also reduces the network traffic of the system

greatly, due to the huge difference in data size of each frame. Most of the

methods used with depth image bitmaps work the same with color bitmaps,

so finding fast and efficient compression and encoding algorithms was an

important focus. Color data, however, due to the fact that it uses four

channels (32 bits, RGBA) instead of two used by depth data, generally takes

up a bigger percentage of the network traffic. This is the first reason why

using the full HD texture stream was eventually abandoned in favor of the

smaller depth resolution texture. The second reason is that using the full HD

texture requires additional processing to map the texture correctly to the

depth image. This is a consequence of the fact that the 1920x1080 resolution

image not only has a different aspect ratio than the 512x424 pixel resolution

image, but also has a different field of view.

21

A problematic segment of the color texture obtaining script is conversion

from a graphical memory stored RenderTexture to a RAM stored Texture2D,

and it cannot be parallelized because the ReadPixels function is a non

thread-safe Unity3D API function. The following code demonstrates the

problematic section of the SourceColor script.

renderTexture =

userMeshRenderer.material.GetTexture("_MainTex") as

RenderTexture;

RenderTexture.active = renderTexture;

// Copy data from GPU to RAM

finalTexture.ReadPixels(new Rect(0, 0,

renderTexture.width, renderTexture.height), 0, 0);

The call to GetTexture obtains a RenderTexture from the main renderer

which uses the texture from the KinectManager and the underlying API,

which is processed in the GPU memory. The texture has to be locked in the

GPU so that it could be safely copied to the RAM, which is a time-expensive

operation because data cannot be copied both ways simultaneously.

Additionally, a delta-encoding script was created to work with general

byte arrays, in order to maximize the compression. Delta encoding works by

storing data in the form of full and delta (difference) frames. Frames are

recorded in a fixed interval and stored as a difference relative to the full frame

which is refreshed periodically. This greatly reduces redundancy, since

adjacent frames often share much of their data. Instead of using an existing

delta compression library, a custom-tailored component has been developed

to best fit the requirements of this project. This component will be described

further in section four.

 The sender-side color processing script includes handling the loaded

texture, delta-encoding and compression of the data, as well as supplying the

data to the network sender component.

22

3.2.4 Other components

For the purpose of data sender project optimization a script was written

for threading efficiency testing. The script relies on tested functions to

report when they have reached a section which was determined problematic

(taking up a lot of time to be completed) and when they have left it. Each of

the threads calls a function of the ThreadDurationTest, as it is called, to

obtain a unique ID which will later be used to identify it. As a thread calls the

WriteCheckpoint function of the duration test script, a unique timestamp is

written to a file, identifying the start of the “critical” section or its end, if a start

was previously written. Once a file is produced, this data can be processed

and visualized. For that, we have developed a processor script which is

written in the Python language and uses several libraries from the SciPy

packages. It reads the checkpoint file and draws a graph from the data. An

example is shown in Figure 3.6. The different colors represent different

threads, and the spikes denote thread activity in the “critical” section of

interest. Similar graphs were used to determine which parts of code can be

parallelized and which parts the most important. The most time-consuming

processing was segregated into a new thread or further optimizations were

made to the code.

A session recorder has also been developed to record the user mesh and

texture data in a broadcasting session. This was found to be useful for

receiver-side testing and demonstrations. This recorder is further described

in section 4.1.1.

Figure 2.6 – Thread activity graph

23

Audio data is also streamed over the network, captured on the Kinect’s

microphones. An AudioClip is created so that it could be used for audio

capture from the microphone, as shown in the following line of code:

audioSource.clip = Microphone.Start(microphoneDevice,

true, 1, recordFrequency);

. Recording is initiated with the Microphone.Start function of Unity’s API

and the result is saved in our audio clip. Raw audio data is obtained from the

clip with the GetData function and saved in a buffer, which is later

compressed into a byte array (using VoiceUtils.Compress) and sent to the

network script. A circular buffer is used in the script to hold audio data frames

between sending intervals.

24

4. Developed system

This chapter covers the methods used in the communications platform,

for each of the previously discussed segments of the system: depth data

representation, background removal, mesh creation, data compression,

networking solutions and data displaying. One of the goals when building the

system was to keep as much processing as possible localized on the server,

so that the HoloLens device would handle only receiving and displaying the

data. The diagram below shows the basic operation scheme of the system.

These are the main components of the system and their order of execution.

Figure 4.1 – System component scheme

25

4.1 Video and audio data sender

A very important part of the sender is the UserMeshVisualizer script

taken from the KinectUserVisualizer scene of the Unity3D Kinect V2 SDK

Samples which can be found on the Asset Store. This script was modified

and parallelized to optimize its performance and to adapt it to this use case. It

takes the color and depth images and creates a 3d textured mesh of the user

with the background removed.

The transparent texture is fetched from the background removal manager

and converted from a RenderTexture to a Texture2D using the already

described procedure. This is all done in the main thread since the copying

cannot be parallelized, unlike the mesh creation, runs in a separate thread.

The previous mesh is cleared, and the newly computed vertices, uv array

and triangles are assigned to the mesh that is being displayed in the scene.

Thread synchronization is done by means of flags indicating when the

created mesh is being copied from the buffer into the mesh used for network

sending. Mesh updating is done in a function which passes through the

whole depth frame sampling every sampleSize point (1, 2, 4 or 8, see section

4.1.2 for mesh quality settings) and creates triangles from adjacent vertices.

To reduce the size of buffer arrays allocated on each execution of the mesh

creation function, the size of the arrays is estimated based on the distance

between adjacent points. If a point is much farther away from the depth

camera on the Z axis, which means it is probably not a part of the user’s

point cloud. Also, points with the maximum distance (or distance zero) are

automatically discarded as well. The function is time-expensive due to the

numerous passes through the 512x424 point sized array.

4.1.1 Sender components

Data representation

In the developed system, the depth data stream read from the sensor

is interpreted as a point cloud. This allows expansion in terms of more depth

26

sensors used for a more complete and accurate 3D representation and

enables the server to handle the computation-heavy processing related to

mesh construction.

Data compression

There are two phases involved in reducing the amount of network

traffic. The first is the delta-encoding of byte arrays, which works with

general byte arrays, on the principle of sending a full frame and then sending

only the difference byte array of the same length. The deltaEncode function

receives three arguments; the serialized texture (a byte array), a flag telling

whether the current frame will be a full frame or a delta frame and a desired

loss percentage. If a full frame is about to be sent, the received texture is

saved for the next calls of the function where it will be used to compute delta

frames. Otherwise, the delta frame is computed by subtracting the previous

frame from the current texture. Figure 4.1 shows a full frame and a delta

frame following it.

27

The delta frame is then checked against the previous frame byte by

byte, with each byte of the delta being equalized to the previous frame’s byte

if the difference is less than the minimum difference allowed by the given loss

factor. This frame is then returned to be processed and sent to the receiver.

Similarly the decoding algorithm just adds the previous frame to the received

data to obtain a full frame on the receiver side. This leaves very little

processing to the portable HoloLens device.

Although each of the sent dataframes has the same length and no

size reduction is apparent, the effects become obvious when delta encoding

is combined with a byte array compression algorithm, such as Deflate

compression. Since most of the frames sent (all delta frames) only mark the

difference between the previous and the current frame, most are filled with

zeros, because most parts of the byte array are unaffected between adjacent

frames. This allows for high compression factors, while keeping the

compression lossless [9].

The delta encoder developed for this system uses a timer to determine

when a full frame needs to be sent instead of a delta frame. It was found to

be appropriate to set the full frame interval to 3 seconds, when using the

system in a local area network.

Figure 3.2 – Full frame and delta frame

28

Network data transfer

To ensure all data was transferred correctly (it would be destructive if

a descriptor or header was sent incorrectly or received partially) and to

preserve the integrity of the client-side system [8], a reliable TCP connection

was used between the server and the client. The TCP socket works on three

connections, using different ports for each type of data. Therefore port 7777

is reserved for color data, 7778 for mesh data and 7779 is for audio data. To

enable the client to interpret data correctly, all data had to be packaged

together with additional header data, describing the content of the network

dataframe. This header defined the type of the data sent, color or mesh, the

size of the network frame to be read from the network stream as well as the

size of the decompressed dataframe (which happens to be a constant value

when it comes to color data, exactly 512x424x4 bytes per color frame).

The message preparation function in the SenderTCP script takes two

arguments; the length of the inflated message and the data byte array itself.

First, data is compressed using the Deflate algorithm. The length of the

compressed data is saved and size of the entire message is computed as the

compressed data length plus the compressed data header which tells the

receiver how big the inflated data array is. Afterwards the network packet

array is packed in the following order: first the size of the entire message (so

that the receiver knows how many bytes to read from the stream), then the

size of the inflated data array and then the compressed data itself. Figure 4.2

shows the network message contents.

Figure 4.3 – Network message header components

29

Data recording

One of the features of the server side system is the recorder. This

allows for playback of the depth, color and audio data which can be recorded

during a session. The recorder uses data type flag to tell the receiver whether

the packet received contains depth or color data. A timestamp is also written

next to each frame, allowing the playback system to know when to play a

frame, keeping the recording real-time. This is necessary due to the fact that

spikes occur in the framerate, making it impossible to save frames in a

regular interval.

The recorder uses a script similar to the network sender, packing data

with a header which is then streamed into a recording file. The data

recorder’s PrepareMessage function takes four arguments: size of inflated

data array, the actual data array, a timestamp and a flag telling the data type

(color or mesh). Figure 4.3 below visualizes the structure of the recording

packet.

Figure 4.4 – Recorder frame header contents

4.1.2. Sender side optimization

When many of the server side components are run together, performance

becomes a problem even though the hardware can be quite powerful. This is

why the program needs to be well optimized, multithreaded and smartly

organized. The application was decomposed into parts to see which ones

can be parallelized. Some parts of the program must be executed

sequentially, for example data must be first obtained, then processed and

30

finally sent. This is not trivial to parallelize. The system works in multiple

threads, with the main thread performing all the Unity3D related processing

(which cannot be parallelized as most Unity3D methods aren’t thread safe)

such as mesh creation, and other threads working on individual tasks such

as compression, encoding, networking and data obtaining from the Kinect

device. The synchronization of threads is done with simple flags which

determine when a critical section is in use by another thread. Figure 2.1

shows thread activities, in a small period of time.

The most important parallelization of the system occurs with the color and

depth data read from the Kinect V2 sensor. In one thread, raw depth data is

fetched and a mesh is created, to be converted into a Unity3D Mesh in the

main thread. It is then serialized, delta encoded and compressed. Another

thread takes care of the texture, converting the RenderTexture from the

sensor API to a Texture2D, serializing it, delta encoding and compressing the

data. The conversion from a RenderTexture to a Texture2D is an important

part of code to be optimized, because it requires the texture to be copied

from the GPU memory to the RAM, which can be costly as there is a

bottleneck when simultaneously reading from the GPU and writing to it (the

Kinect V2 drivers write to the texture). There is yet another thread tasked with

adding headers to data frames and sending them over the TCP connection,

as the network functions are blocking until the client reads them. Figure 4.4

shows the final parallelization diagram of the system.

Figure 4.5 – Sender-side parallelization diagram

First, the raw depth and color data is obtained from the Kinect Manager,

which provides an API to access raw and processed data from the Kinect V2

31

device in Unity3D. This data is then fed into the mesh construction code in

the UserMeshVisualizer script, while at the same time, the main thread

displays the created mesh with the texture applied to it. The created textured

mesh of the recorded user is already filtered, the background is removed

from the data and thus it is ready to be sent over the network. However, it

has to be processed before it can be sent to the receiver side. Since the

mesh and color components are sent separately, they can also be processed

separately. Therefore two threads perform mesh and color processing in

parallel. The color texture is serialized into a byte array before being delta

encoded. After the encoder it is fed into the deflate compressor and sent over

the TCP connection. Meanwhile, the mesh is serialized (it is a time-

consuming operation, just as is delta encoding) and, just like the color data,

fed into the compressor before being sent to the receiver.

All these steps, along with optimization of the individual components,

ensure that the server can deliver the data to the HoloLens device in real

time. There are several options which can reduce the network traffic or the

processing complexity by sacrificing quality. These options can be set when

the server program is run, in the Setup scene. Image 4.5 below shows the

sender-side menu screen.

Figure 4.6 – Setup scene menu screen

32

 Mesh quality can be selected between the Low, Medium, High and

Unstable High settings, which are manifested by the sample size in the mesh

creation script. Lower the quality and less depth points will be sampled when

the mesh is created. For the Unstable High setting, every depth point is

taken, for the High setting, every second is taken, for the Medium setting

every fourth and so on. This causes the vertex count in the mesh to vary

greatly, and thus reduces not only network traffic but processing complexity

at the expense of quality. The Unstable High setting may cause the mesh to

break due to a constraint in the Unity3D engine stating that the maximum

vertex count of one mesh can be 65 000, hence the name.

Another quality setting is the send interval, which can be set to send data to

the receiver at either 15, 24 or 30 times per second. Delta encoding can be

set to incorporate a loss factor, which can also be changed in the menu.

This allows to redefine the minimum amount of pixel difference between two

adjacent frames in order to reduce the amount of data populated delta

frames. The loss in quality is, however, quite obvious when using larger loss

percentages. It was also planned to incorporate texture quality selection, due

to the fact that the Kinect V2 sensor provides a full-HD RGB image. This

Figure 4.7 – Mapping the full HD texture to the depth frame produces an
offset in the mesh texture

33

resolution brings several problems when it comes to mapping the texture to a

512x424 resolution depth image, because its aspect ratio, field of view and

other parameters are different, and for these reasons this feature was

ultimately not implemented. Image 4.6 visualizes the problems related with

mapping the full HD texture to the depth frame.

Measuring the performance of the data sender process is certainly not a

very simple task. Apart from depending greatly on the hardware that runs the

program, performance also varies on many factors, such as room lighting,

user’s distance to the depth camera and his position as well. Certain

measurements have been made despite these factors, to compare between

the mesh quality settings and to see how they influence the framerate. The

test machine runs an Intel Core i7-4702MQ 2.2 GHz CPU with 16 GB DDR3

L RAM, and has an NVIDIA GeForce GTX 850M graphics processing unit.

On both the low and medium mesh quality settings the framerate was roughly

the same, about 26 frames per second (with the network sender set to send

data 24 times per second for all quality settings). On the high setting, 21

frames per second was the average, and on the unstable high setting this is

reduced to only ten frames per second. The performance in the first three

settings was primarily influenced by the color texture conversion and

obtaining code (it caused the most notable delay in the system) but in the

unstable setting the massive framerate drop is caused by the KinectManager

script, which needs to allocate much more space for data processing. This

allocation, together with the need to process much more data, causes large

delays, and is one of the reasons it is not recommended to use the unstable

high setting in the current system build.

4.2 Data receiver and visualizer

This chapter briefly describes the data receiver, run on the Microsoft

HoloLens device. The receiver side of the system is not the focus of this

thesis, and will therefore be covered with less detail. The base for integrating

HoloLens functionality in Unity3D is a collection of scripts and components

aimed at simplifying development of holographic applications for Windows

34

Holographic (the platform run by the HoloLens device). This is supported in

Unity3D since version 5.6.1f1 and provides access to HoloLens input

management, sharing, spatial management and building applications for the

platform. There are three main components in the receiver build scene, so

let’s describe them one by one.

35

PlayerHoloTalk is a prefab object used to represent a person in the

HoloLens visualization. It allows user interaction with the hologram displayed

in mixed reality, more precisely it allows scaling, rotation and movement of

the visualization using HoloLens specific commands from the HoloToolKit.

Image 4.7 shows the HoloLens UI as seen in the Unity scene view.

PersonHologram is the object responsible for converting the received byte

arrays to the final Mesh and Texture2D color data. This conversion process

is similar to the sender’s process, and includes inflating (decompressing) the

data, deserializing the Mesh and running the color texture through the delta

encoder to obtain the original. This object also holds the visualizer script,

which uses a buffer to display the data. This buffer saves several frames

before visualizing them in real time. The Network component is also

analogue to the sender’s component, receiving data on three ports (7777 for

color, 7778 for mesh and 7779 for audio data) via the TCP socket.

HoloLens development in Unity3D is, despite the numerous aids

available, still quite a challenging task. Deploying projects to the device is

Figure 4.8 – HoloLens Unity3D graphical user interface for object movement and
scaling

36

tedious and takes a lot of time (a few minutes), so it is not possible to make

quick tests after changing a small part of code. Windows Holographic does

not support some of the libraries and namespaces used in the sender side

[10], so two versions of the code need to be developed: one for testing on the

desktop computer running Windows (the development machine for the

HoloLens) and the other for the Windows Holographic platform (a subset of

the Universal Windows Platform). Development is also hampered by the fact

that it’s impossible to access some useful features of the HoloLens device on

a lower level, for example there is no way to access raw depth data (access

is only possible through the Spatial Perception component). The camera can

only be accessed by one application at any given moment and its live feed is

not obtainable (it either has to be saved as a video file or accessed image by

image). HoloLens API doesn’t enable developers to add new hand gestures

[10] or even to access raw hand tracking data. The lack of these functions

somewhat restricts the possibilities of the device in conjunction with Unity3D.

Several methods of data visualization were used on the receiver side,

most of which were also used on the sender side in various phases of testing

and development. The three which saw most use are: point cloud

visualization (see Figure 3.2 in section 3.1), mesh visualization (used in the

final system because it provided the most realistic and accurate results) and

2D sprite visualization (used in the early phases because of its simplicity and

possibility to rule out errors). The image below shows the depth frame

rendered with the point cloud method and visualized as a grayscale texture

on a 2D quad. The HoloLens device had no performance issues running the

decompression, deserialization and mesh visualization because all of the

remaining processing was done on the more powerful data provider device.

The mesh deserialization still had to be parallelized to maximize performance

since HoloLens devices possess a dedicated GPU and a multi-core

processor.

37

Image 4.9 – Point cloud and 2D texture methods of visualization

38

5. Conclusion

This system provides a proof of concept and a technology demonstration

for real time holographic communication. With some additional optimizations

it will be possible to implement two way communication and one way

communication with multiple receivers (broadcasting; which was the basic

intended purpose of the system). Many of the solutions found during various

research phases of the project may prove useful in similar systems even if

they were deemed unsuitable for this project. The system can also be

upgraded to use multiple depth cameras for a more accurate representation

of the recorded person, to give the users a better feel of presence. With

multiple depth cameras recording from all angles, a full 3D model of a person

could be rendered in real time on the receiver side, unlike the current mesh

produced by one camera, as shown in Figure 5.1. More complex mesh

reconstruction methods [11] which use machine learning can also be

implemented to further reduce network traffic and make the application more

accessible. To show more detail of the user’s face, his mesh may be split into

two parts with the head having a more accurate depth sampling and the

body, which requires less detail, being subsampled in lower quality. Finally,

although the system was built for current generation depth cameras and

holographic headsets, different hardware can be used to provide more

accurate visualizations or application-specific advantages. Even if the system

is revamped to an entirely different configuration, for example using a mobile

phone instead of a holographic headset or a RGB camera for background

removal instead of a depth camera, many developed components can be

reused with some modifications.

This thesis gives a high level overview of the methods that were

considered to solve individual problems encountered in designing a real time

communication platform, as well as the solutions that have been created as a

result of the research. It sums up the difficulties that have been encountered

as well as their solutions in the form of concrete components designed

around the Unity3D engine. The focus of the thesis is on used methods

rather than on the specific components.

39

Figure 5.1 – 3D user mesh visualization viewed from the side

40

Sažetak

Holoportacija modela čovjeka

U ovom radu implementiran je sustav za udaljenu jednosmjernu mrežnu

komunikaciju u stvarnom vremenu koristeći prijenos holografske slike koji

uključuje prijenos modela, teksture i zvuka. Koristeći grafički pogon Unity3D

kao podlogu, razvijen je sustav koji koristi Microsoft Kinect v2 i HoloLens

uređaje za prijenos podataka preko mreže od poslužitelja prema klijentu.

Ovaj sustav predstavlja dokaz koncepta holografske komunikacijske

platforme. Rad također pokriva razvijene koncepte i komponente, i pruža

pregled raznih faza razvoja projekta kako bi pokazao kako je konačan sustav

oblikovan.

Ključne riječi: miješana stvarnost, holoportacija, hologram čovjeka,

komunikacija, stvarno vrijeme, Unity3D, C#, dubinska kamera

Abstract
Holoportation of human models

This thesis implements a system for remote, end-to-end, one way, real time

holographic streaming, which includes audio, mesh and texture streams.

Using the Unity3D engine as the base, a system was developed, using the

Microsoft Kinect v2 and HoloLens devices for server to client streaming over

the network. This system provides a proof of concept for a holographic

communication software platform. The thesis also covers the developed

concepts and components, and provides an overview of the various stages of

development to demonstrate how the final system was formed.

Keywords: mixed reality, holoportation, human hologram, communication,

real time, Unity3D, C#, depth camera

41

Bibliography

[1] Microsoft Developer Network, “Kinect V2 Preview SDK now available

includes UNITY3D plugin”,

https://blogs.msdn.microsoft.com/uk_faculty_connection/2014/07/17/kinect-

v2-preview-sdk-now-available-includes-unity3d-plugin/, July 2014

[2] HoloLens hardware details, Microsoft Windows Dev Center,

https://developer.microsoft.com/en-us/windows/mixed-

reality/hololens_hardware_details

[3] E. Lachat, H. Macher, M.-A. Mittet, T. Landes, P. Grussenmeyer, “First

experiences with Kinect v2 sensor for close range 3D modeling”, The

International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, Volume XL-5/W4, 2015 3D Virtual Reconstruction and

Visualization of Complex Architectures, Avila, Spain, 25-27 February 2015

[4] Radu Bogdan Rusu ; Steve Cousins, “3D is here: Point Cloud Library

(PCL)”, Robotics and Automation (ICRA), 2011 IEEE International

Conference on, 2011

[5] ffmpeg Documentation, FFmpeg Web site, FFmpeg.org, May, 2017,

https://www.ffmpeg.org/ffmpeg.html

 [6] Dapeng Oliver Wu, University of Florida, “FFmpeg real time

encoding/decoding, x264 codec”,

http://www.wu.ece.ufl.edu/projects/wirelessVideo/project/realTimeCoding/

download/doc/howto.pdf

[7] Pipes, Interprocess Communication, Microsoft Windows Dev Center,

https://msdn.microsoft.com/en-

us/library/windows/desktop/aa365780(v=vs.85).aspx

42

[8] Wai-Tian Tan ; A. Zakhor, “Real-time Internet video using error resilient

scalable compression and TCP-friendly transport protocol”, IEEE

Transactions on Multimedia, vol. 1, No. 2, pages 172-186, June 1999

[9] S. Mehrotra, “Lossless depth frame coding”, Microsoft Research Redmod,

2011, https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/depthcode-final.pdf

[10] Windows Mixed Reality Developer Forum,

https://forums.hololens.com, 2017

[11] Remondino Fabio, “From point cloud to surface: the modeling and

visualization problem”, International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, Vol. XXXIV-5/W10,

January 2003.

