
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 3043

3D PHYSICS ENGINE

Filip Husnjak

Zagreb, June 2022

UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

MASTER THESIS No. 3043

3D PHYSICS ENGINE

Filip Husnjak

Zagreb, June 2022

UNIVERSITY OF ZAGREB
FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

Zagreb, 11 March 2022

MASTER THESIS ASSIGNMENT No. 3043

Student: Filip Husnjak (0036506711)

Study: Computing

Profile: Computer Science

Mentor: prof. Željka Mihajlović

Title: 3D Physics Engine

Description:

Explore physical foundations of the dynamic behavior of a solid body. Explore various collision detection
techniques. Develop program implementation of 3D collision detection of objects and physically based
reactions to the collision. Implement a simulation model that demonstrates collisions of objects in a scene.
Provide testing on a series of examples. Discuss the influence of parameters of the models on the output.
Evaluate the results and the implemented algorithms. Implement the appropriate software solution. Use C++
programming language and graphics and computing API OpenGL. Make the results of the thesis available
online. Supply algorithms, source codes and results with appropriate explanations and documentation.
Reference the used literature and acknowledge received help.

Submission date: 27 June 2022

SVEUČILIŠTE U ZAGREBU
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 11. ožujka 2022.

DIPLOMSKI ZADATAK br. 3043

Pristupnik: Filip Husnjak (0036506711)

Studij: Računarstvo

Profil: Računarska znanost

Mentorica: prof. dr. sc. Željka Mihajlović

Zadatak: Fizikalni pogon za 3D objekte

Opis zadatka:

Proučiti fizikalne osnove dinamičkog ponašanja čvrstog tijela. Proučiti razne tehnike detekcije kolizije.
Razraditi programsku implementaciju ostvarivanja sudara čvrstih tijela te fizikalno temeljene reakcije na
sudar. Implementirati simulacijski model koji demonstrira sudare objekata u sceni. Načiniti testiranje na nizu
primjera. Analizirati i ocijeniti ostvarene rezultate. Diskutirati upotrebljivost ostvarenih rezultata kao i moguća
proširenja. Izraditi odgovarajući programski proizvod. Koristiti programski jezik C++ i grafičko programsko
sučelje OpenGL. Rezultate rada načiniti dostupne putem Interneta. Radu priložiti algoritme, izvorne kodove i
rezultate uz potrebna objašnjenja i dokumentaciju. Citirati korištenu literaturu i navesti dobivenu pomoć.

Rok za predaju rada: 27. lipnja 2022.

iii

CONTENTS

1. Introduction 1

2. Quaternions 3

2.1. Quaternion Math . 4

2.1.1. Addition and Subtraction . 4

2.1.2. Multiplication . 5

2.1.3. Multiplication by Scalar . 5

2.1.4. Real Quaternion . 5

2.1.5. Pure Quaternion . 6

2.1.6. Unit Quaternion . 6

2.1.7. Quaternion Conjugate . 6

2.1.8. Quaternion Norm . 6

2.1.9. Inverse . 6

2.2. Describing Rotations with Quaternions 7

2.2.1. Quaternion Derivative . 7

3. Rigid Body Dynamics 9

3.1. Center of Mass . 9

3.2. Equations of Motion . 10

3.2.1. Linear Motion . 10

3.2.2. Angular Motion . 11

3.3. Numerical Integration . 13

3.3.1. Semi-Implicit Euler Method 13

4. Collision Detection 15

4.1. Broad Phase . 15

4.1.1. Bounding Volumes . 16

4.1.2. Dynamic Bounding Volume Tree 17

iv

4.2. Narrow Phase . 21

4.2.1. Sphere - Sphere Collision Algorithm 22

4.2.2. Sphere - Box Collision Algorithm 23

4.2.3. Box - Box Collision Algorithm 24

5. Constrained Rigid Body Simulation 28

5.1. Force-Based Approach . 29

5.1.1. System of Constraints . 29

5.2. Impulse-Based Approach . 33

5.2.1. Gauss Seidel . 34

5.2.2. Projected Gauss Seidel . 34

5.3. Contact Constraint . 36

5.3.1. Handling Penetration . 37

5.4. Optimizations . 37

5.4.1. Warm Starting . 38

5.4.2. Body Islands . 38

5.4.3. Sleeping . 39

6. Results 40

7. Conclusion 43

Bibliography 44

List of Figures 45

List of Algorithms 46

v

1. Introduction

One of the essential characteristics of any video game is the ability of the user to inter-

act with the surrounding objects in the scene, which results in expected and somewhat

realistic behavior. In many cases, that can be achieved with custom-made animations

captured by motion trackers, which then transfer sensed data to an application for fur-

ther processing. Animations are saved as collections of snapshots, where each snapshot

stores the corresponding time stamp when it occurred, and the positions and rotations

of all the tracked objects in the scene at that particular time.

The first and obvious problem with that approach arises when the user’s interactions

with the objects are not predictable. Therefore, the animations cannot be prerecorded.

In that case, we need a robust system that will correctly simulate the behavior in all

scenarios. This is where the physics-based animation comes into play. It is an anima-

tion produced by numerical computations applied to the theoretical laws of physics.

There are many types of physics-based animations, of which the most notable ones

are: rigid body simulation, soft body simulation, fluid simulation and particle systems.

In this paper, the focus will be aimed towards rigid body simulation.

Physics Engine is the core software component that provides an approximate simu-

lation of specific physical systems. It receives a specification of the bodies that will be

simulated, as well as some additional configuration parameters, and steps the simula-

tion forward. Each step advances the simulation by a fraction of the second calculating

numerical solutions to equations of motion.

The following figure 1.1 gives a high-level overview of the phases the physics engine

goes through before the objects can be displayed.

1

Figure 1.1: Physics Engine Phases

This paper explores rigid body simulation and interactions between the bodies

through collisions and constraints. It covers the integration method and different colli-

sion algorithms and analyzes all the phases and optimization techniques that are com-

monly used in physics engines nowadays.

2

2. Quaternions

In computer graphics, we use transformation matrices to represent the translation, ro-

tation, and scale of the objects in the scene. However, there is an alternative way of

describing spatial rotations in three-dimensional space, which is more compact, effi-

cient, and numerically stable. We can represent three-dimensional rotations by using a

quaternion number system. Quaternions are a generalization of two dimensional com-

plex numbers to four dimensions and are represented in the form a + bi + cj + dk.

They encode the information about the axis of rotation and an angle around that axis.

The Irish mathematician Sir William Rowan Hamilton realized the concept of quater-

nions on Monday, October 16th, 1843, in Dublin, Ireland. He made an important

realisation that he immediately carved into the stone of the bridge: i2 = j2 = k2 =

ijk = −1[5].

Quaternions are an essential part of the physics engine since they avoid two sig-

nificant concerns surrounding the traditional approach of representing rotations with

Euler angles. Although Euler angles are more intuitive and easier to work with, they

can lead to a phenomenon called gimbal lock. Gimbal lock is usually the result of

rotating the object by 90 degrees around one of the axes, which causes the loss of one

degree of freedom, "locking" the system into rotation in a degenerate two-dimensional

space. Another problem that Euler angles struggle to deal with is interpolation. Instead

of linearly interpolating two rotations represented by three-dimensional vectors, which

results in a very unrealistic movement, quaternions introduce another way of rotation

interpolation called spherical linear interpolation (slerp). The difference between slerp

and lerp can be seen in the figure 2.1.

3

Figure 2.1: Lerp vs Slerp

2.1. Quaternion Math

As already mentioned the general form to express quaternion is:

q = s+ xi+ yj + zk s, x, y, z ∈ R, (2.1)

where according to Hamilton’s famous expression:

i2 = j2 = k2 = ijk = −1
ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j.
(2.2)

Imaginary part of the quaternion can also be represented as a three dimensional vector

where i, j, k correspond to x, y, z axes in Cartesian coordinate system.

To expose similarities between complex numbers and quaternions we can also repre-

sent them as an ordered pair of the real and imaginary part:

q = [s,v] s ∈ R,v ∈ R
3,

q = [s, xi+ yj+ zk] s, x, y, z ∈ R.
(2.3)

2.1.1. Addition and Subtraction

qa = [sa, a]

ab = [sb,b]

qa + qb = [sa + sb, a+ b]

qa − qb = [sa − sb, a− b]

(2.4)

4

2.1.2. Multiplication

qa = [sa, a]

ab = [sb,b]

qaqb = [sa, a][sb,b]

= (sa + xai+ yaj + zak)(sb + xbi+ ybj + zbk)

= (sasb − xaxb − yayb − zazb)+

(saxb + sbxa + yazb − ybza)i+

(sayb + sbya + zaxb − zbxa)j+

(sazb + sbza + xayb − xbya)k

= [sasb − xaxb − yayb − zazb,

sa(xbi+ ybj + zbk) + sb(xai+ yaj + zak)+

(yazb − ybza)i+ (zaxb − zbxa)j + (xayb − xbya)k].

(2.5)

We can substitute:

a = xai+ yaj + zak

b = xbi+ ybj + zbk

a · b = xaxb + yayb + zazb

a× b = (yazb − ybza)i+ (zaxb − zbxa)j + (xayb − xbya)k,

(2.6)

so, we end up with:

[sa, a][sb,b] = [sasb − a · b, sab+ sba+ a× b]. (2.7)

2.1.3. Multiplication by Scalar

q = [s,v]

λq = λ[s,v]

= λ[s,v]

= [λs, λv].

(2.8)

2.1.4. Real Quaternion

Real quaternion is a quaternion with imaginary part equal to zero:

q = [s,0]. (2.9)

5

2.1.5. Pure Quaternion

Pure quaternion is a quaternion with its real part equal to zero:

q = [0,v]. (2.10)

2.1.6. Unit Quaternion

Unit quaternion is special case of pure quaternion where vector v is unit vector:

q = [0, v̂]. (2.11)

2.1.7. Quaternion Conjugate

Similar to complex numbers, quaternion conjugate is computed by negating the imag-

inary part:

q = [s,v].

q∗ = [s,−v].
(2.12)

2.1.8. Quaternion Norm

q = [s,v].

|q| =
√
s2 + v · v.

(2.13)

Normalized quaternion can be computed as:

q′ =
q

|q| . (2.14)

2.1.9. Inverse

From the definition of the inverse:

qq−1 = [1, 0] = 1. (2.15)

We can multiply both sides by conjugate of the quaternion to get the expression for the

inverse:

q∗qq−1 = q∗

|q|2q−1 = q∗

q−1 =
q∗

|q|2 .
(2.16)

6

2.2. Describing Rotations with Quaternions

In 2D we can use complex numbers to define rotors which can be used to rotate a point

in a 2D complex plane by angle φ:

z = cosφ+ i sinφ. (2.17)

If we have a point p with (x, y) coordinates, we can compute coordinates of a rotated

point p′ by multiplying those coordinates with that rotor:

p′ = (x+ yi) · z = (x+ yi) · (cosφ+ i sinφ)

= (x cosφ− y sinφ) + (x sinφ+ y cosφ)i

= (x cosφ− y sinφ, x sinφ+ y cosφ).

(2.18)

Similar to complex numbers, in 3D we can define rotors using quaternions that

describe the angle φ and unit axis v̂ around which we are rotating the point:

q = [cosφ, v̂ sinφ]. (2.19)

It can be shown that in order to rotate an arbitrary point p in a three dimensional space

by quaternion q, we have to use the following equation:

p′ = qpq−1. (2.20)

The rotation is clockwise if our line of sight points in the same direction as v̂.

2.2.1. Quaternion Derivative

An orientation is described by q(t+∆t) at a time t+∆t. This is after a rotation change

∆q during ∆t seconds is performed on the local frame. This rotation change about the

axis v = ω

||ω||
through the angle φ = ||ω||∆t can be described by a quaternion:

∆q = cos
φ

2
+ v sin

φ

2

= cos
||ω||∆t

2
+

ω

||ω|| sin
||ω||∆t

2
.

(2.21)

Since q(t+∆t) can be calculated as ∆qq(t) we can write:

q(t+∆t)− q(t) = (cos
φ

2
+ v sin

φ

2
)q − q

= (−2 sin2 ||ω||∆t

4
+

ω

||ω|| sin
||ω||∆t

2
)q.

(2.22)

7

while the derivative then equals to:

q̇ = lim
∆t→0

q(t+∆t)− q(t)

∆t

= lim
∆t→0

1

∆t
(−2 sin2 ||ω||∆t

4
+

ω

||ω|| sin
||ω||∆t

2
)q

=
ω

||ω|| lim∆t→0

1

∆t
sin (
||ω||∆t

2
)q

=
1

2
ωq.

(2.23)

8

3. Rigid Body Dynamics

A rigid body is an idealization of a body that does not deform or change shape. For-

mally it is defined as a collection of particles with the property that the distance be-

tween particles remains unchanged during the course of motions of the body [2].

The motion of the rigid bodies can be modeled using Newtonian mechanics, which is

founded upon Isaac Newton’s three laws of motion:

± inertia - every object in a state of uniform motion will remain in that state of

motion unless an external force acts on it,

± force, mass, and acceleration - force equals mass times acceleration,

± action and reaction - every action has an equal and opposite reaction.

By applying these three laws of motion, we can recreate the very realistic behavior of

the objects in a simulated scene.

3.1. Center of Mass

The Center of mass is a hypothetical point where the entire mass of an object may be

assumed to be concentrated. It is calculated as the mean location of a distribution of

mass in space:

R =
1

M

∫∫∫

V

ρ(r)rdV, (3.1)

where M is total mass of the object and ρ(r) is density of the body at the location r

[7].

With the definition of center of mass, we can define the state of the rigid body with the

following variables:

± p - location of the center of mass in world coordinates,

± q - rotation of the rigid body around its center of mass,

± v - linear velocity at the center of mass location,

± w - angular velocity of the body around its center of mass.

9

3.2. Equations of Motion

Equations of motion describe the body’s behavior in terms of its motion as a function

of time. The formulas define the body’s position, velocity, and acceleration relative to

a given frame of reference.

3.2.1. Linear Motion

Newton’s second law states that the force F acting on a body is equal to the mass

multiplied by the acceleration:

F = ma. (3.2)

This is the starting point from which all the other equations can be derived. Acceler-

ation describes the rate of change of velocity with respect to time, so the velocity can

be calculated by integrating the acceleration term:

a =
dv

dt
= v̇,

∫ v

v0

dv =

∫ t

0

adt.

(3.3)

We can derive the acceleration from the equation 3.2:

∫ v

v0

dv =

∫ t

0

F

m
dt

v − v0 =
F

m
t.

(3.4)

Finally, we end up with the first equation of motion which describes the velocity of a

rigid body:

v =
F

m
t+ v0. (3.5)

The second equation of motion describes the displacement and can be derived from

the first equation. Since velocity represents the derivative of displacement, we can

compute the position of a rigid body by integrating the velocity equation: 3.5:

∫ p

p0

dp =

∫ t

0

vdt

=

∫ t

0

(
F

m
t+ v0)dt

p− p0 =
F

2m
t2 + v0t.

(3.6)

10

As a result we get a second equation of motion which refers to the position p of a rigid

body:

p =
F

2m
t2 + v0t+ p0. (3.7)

The third equation of motion relates velocity to position, and if the acceleration is

constant can be derived in a following way:

dv

dp
=

dv

dp

dt

dt

=
dv

dt

dt

dp

= a
1

v

(3.8)

We can further expand the expression:

∫ v

v0

vdv =

∫ s

s0

adp,

1

2
(v2 − v0

2) = a(p− p0),

(3.9)

finally, we have an expression for the third and last equation:

v2 = v0
2 + 2a(p− p0). (3.10)

3.2.2. Angular Motion

When dealing with particles, it is enough to define linear motion equations since all

their mass is concentrated in a single point. However, when simulating the motion

of a rigid body, we have to consider angular motion around its center of mass. Here,

we can introduce the angular properties of a rigid body, which are analogous to its

linear properties. In order to rotate, a body needs some angular velocity ω, which is

a three-dimensional vector that defines an axis of rotation and the rotation rate. To

gain angular velocity, the body needs to receive some rotational force called torque,

represented by the greek letter τ . Thus, the Newton’s Second Law applied to rotation

can be written as:

τ = Iα, (3.11)

where α represents angular acceleration and I is called moment of inertia [9].

Moment of inertia defines how hard it is to change the angular velocity of a rigid

body. For rotations, it is analogous to mass for linear motion. The moment of inertia is

11

defined as the product of mass m of the section and the square of the distance between

the reference axis and centroid of the section r [9]. For a single particle it has the

following form:

I = mr2. (3.12)

For a rigid body, we can calculate the moment of inertia by integrating the entire vol-

ume, effectively summing mir
2 for every infinitely small piece with mass mi:
∫∫∫

V

ρ(x, y, z)r2dV, (3.13)

where ρ(x, y, z) represents density of an rigid body at position with coordinates x, y, z,

while r is the distance between that point and axis of rotation.

For the same object, different axes of rotation will have different moments of inertia

around those axes if the object is not symmetric about all axes. For this reason, we

describe the rotational properties of a rigid body using the moment of inertia tensor. In

three-dimensional space, a moment of inertia tensor is given by:

I =









I11 I12 I13

I21 I22 I23

I31 I32 I33









. (3.14)

For a rigid object of N point masses mk, the components are defined as:

Iij =
N
∑

k=1

mk(rk
2δij − x

(k)
i x

(k)
j), (3.15)

where rk is the vector to the point mass mk from the point about which the tensor

is calculated and δij is Kronecker delta [4]. If the axes of the local reference frame

are aligned in such a way that the mass of the body is evenly distributed around the

axis, thus, the products of inertia all vanish, the off-diagonal elements become 0. In

that case, we can define the properties of a rigid body using only diagonal elements

of the matrix. The non-zero diagonal elements of the inertia tensor are then called the

principal moments of inertia.

Similar to linear motion, angular acceleration and angular velocity are related using

the following equation:

α =
dω

dt
, (3.16)

while the angular velocity represents the derivative of a rotation φ of a rigid body:

ω =
dφ

dt
. (3.17)

12

3.3. Numerical Integration

Now that we have defined all the equations necessary for simulating unconstrained

rigid body motion, we have to somehow translate that into a program that will step

the simulation in discrete time steps. The problem is that since we are operating on a

discrete domain, obtaining acceleration, velocity, and position values only at specific

points, we cannot use a standard analytical approach to find the antiderivative. How-

ever, some methods can operate on such data and give satisfactory approximations.

Those methods are collectively known as numerical integration. The different numeri-

cal integration algorithms assume different function behaviors in between discrete time

steps.

3.3.1. Semi-Implicit Euler Method

In most physics engines, the simplest numerical integration method is used, known as

semi-implicit Euler. It assumes that the value of a function we are integrating does not

change between discrete time steps tk and tk+1.

If we know the value of our function at time tk, then the value at a time tk+1 can be

calculated as:

f(tk+1) = f(tk) + ˙f(tk)(tk+1 − tk). (3.18)

Using the equation 3.18 we can solve equations of motion in the discrete domain.

Suppose we know the forces acting on a rigid body and the velocity and position at

time tk. In that case, we can calculate the new velocity and position at time tk+1 using

the following set of equations:

a(tk) =
F

m

v(tk+1) = v(tk) + a(tk)∆t

p(tk+1) = p(tk) + v(tk+1)∆t

∆t = tk+1 − tk,

(3.19)

where F represents the sum of all the forces acting on a rigid body at time tk.

Similar to the linear motion, we can calculate new angular velocity by calculating

the total torque τ acting on the body and numerically integrating it using the semi-

implicit Euler method:

α(tk) = I−1τ

ω(tk+1) = ω(tk) +α(tk)∆t.
(3.20)

13

Since we are representing the rotation of a rigid body with quaternions, we can

obtain the new rotation of a rigid body using the quaternion derivative equation 2.22:

q(tk+1) =
1

2
∆tω(tk+1)q(tk). (3.21)

The semi-implicit Euler is a first-order integrator, which means that it commits a

global error of the order of ∆t, which marks the importance of the size of a ∆t.

Another benefit of this integration method is that it almost conserves energy making it

far more accurate and stable than other methods.

14

4. Collision Detection

For now, we have discussed the simulation of unconstrained rigid body motion, mean-

ing we can simulate the bodies correctly by applying forces and calculating new ve-

locities and positions. However, in that discussion, objects did not interact with each

other, so, right now, nothing prevents bodies from going through each other, which

is undesirable in most cases. In order to realistically simulate rigid body motion, we

have to detect collisions between them and respond to those collisions by applying

additional forces or impulses which will move them apart.

In this section collision detection phase will be explained. It consists of finding

body pairs that are colliding as well as contact points of those colliding pairs. In rigid

body simulation, a collision occurs when two bodies intersect or when the distance

between those bodies falls below a certain tolerance. Since we have to find all the col-

liding pairs, the complexity of detecting collisions with pairwise tests would be kN2,

where N represents the number of rigid bodies in the simulation and k is the com-

plexity of detecting a collision between two shapes. Usually, there are many objects

in the scene, so the complexity of this naive approach is too expensive for real-time

simulations, and other methods have to be employed. In order to optimize the time

complexity of the collision detection step, the collision phase is separated into two

steps: the broad phase and the narrow phase.

The objective of the broad phase step is to find all the pairs that are potentially

colliding, excluding all the pairs that are certainly not colliding. On the other hand,

the narrow phase step operates on the resulting pairs and finds all the contact points

between those pairs.

4.1. Broad Phase

As already mentioned, the broad phase step finds all potentially colliding pairs out of

all simulated bodies. In order to optimize the complexity of the collision tests in this

phase, the bodies are approximated with bounding volumes. If the intersection be-

15

tween those volumes is not found, we know that the actual shapes also do not intersect.

However, if the intersection is found, then the bodies might intersect.

4.1.1. Bounding Volumes

Some popular bounding volumes typically used are spheres, axis-aligned bounding

boxes (AABB), and oriented bounding boxes (OBB). The differences can be seen in

the figure 4.1.

Figure 4.1: Bounding Volume Types

As one can observe, the most straightforward bounding volume is the sphere. The

benefit is that the algorithm for detecting if two spheres are overlapping is simple and

fast. At the same time, the tradeoff is that the approximation is not precise, meaning

we will have larger space around the actual object wasted. On the other hand, OBB

bounding volume type is the most complex out of the ones listed above, and the algo-

rithm for detecting if two OBBs overlap is not trivial. However, it results in the best

approximation of the actual shape.

In physics engine programming most commonly used bounding volumes are axis-

aligned bounding boxes (AABB) because they are simple and offer good tradeoffs. In

three-dimensional space, AABB can be represented with two three-dimensional vec-

tors:

struct aabb {

vec3 min;

vec3 max;

}

16

The first vector represents the vertex of an AABB with the largest coordinates, while

the second vector represents the vertex with the smallest coordinates.

The algorithm 1 is used to detect if two AABBs overlap.

Algorithm 1 AABB Overlap Test

1: procedure TESTOVERLAP(a, b)

2: if a.max.x < b.min.x or a.min.x > b.max.x then

3: return false;

4: else if a.max.y < b.min.y or a.min.y > b.max.y then

5: return false;

6: else if a.max.z < b.min.z or a.min.z > b.max.z then

7: return false;

8: end if

9: return true;

10: end procedure

Even though the AABB overlap test is cheap, it will not help reduce the time com-

plexity of pairwise tests O(N2). To minimize the number of AABB overlap tests, the

broad phase step uses some kind of space partitioning, which has to be dynamically

updated since most of our AABBs are not stationary during the simulation. There are

many spatial partitioning data structures such as: uniform grids, octrees and spatial

hashing. The data structure discussed in this paper is called dynamic bounding volume

tree.

4.1.2. Dynamic Bounding Volume Tree

A dynamic bounding volume tree is a binary tree where each node bounds all of the

AABBs of its children. It consists of internal nodes and leaf nodes. The leaf nodes are

the collision objects, while the internal nodes are only used to accelerate the queries.

The 2D example of the dynamic bounding volume tree can be seen in the figure 4.2.

17

Figure 4.2: Dynamic Bounding Volume Tree

In order to understand the time complexity of the queries, we have to introduce

the term balanced tree. Balanced tree is a binary tree where the difference between

the heights of left and right sub-trees of each node never exceeds 1. It is an essential

property because if we keep the tree balanced, we can preserve the logarithmic time

complexity O(logN) for the queries.

The type of the self-balancing binary tree used in this paper is called AVL tree [6].

Every node has a balance factor which is defined by the height difference of its two

child sub-trees. When the balance factor of a node becomes greater than 1, the tree

is re-balanced using rotations [6]. As a result, all trivial operations such as insertion,

deletion, and search have logarithmic time complexity O(logN).

Finally we can represent the tree with the following structures:

struct node {

aabb aabb {};

int parent;

int left;

int right;

int height;

bool is_leaf;

};

struct tree {

node* nodes;

int node_count;

int root_index;

};

18

Insertion Algorithm

Insertion algorithm can be split into three stages:

± find the best sibling for the new leaf,

± create a new parent,

± walk back up the tree refitting AABBs.

The first stage is the most complex and the most important one. The method used

and explained here for choosing the best sibling for a new node is called surface area

heuristic (SAH). The idea is that the probability of our object overlapping with the

AABB of the node is proportional to the surface area of the AABB. We can define the

cost function of a tree as a sum of the surface areas of all AABBs:

C(T) =
∑

i∈Nodes

SA(i). (4.1)

The different BVH trees for the same rigid body simulation will only differ in inner

nodes since the leaves, and the root node will have the same surface area. For this

reason, we can adjust our cost function only to include the surface areas of the inner

nodes. This gives us an objective way to compare the quality of the two trees.

Figure 4.3 shows an example tree where the new node is to be inserted.

Figure 4.3: BVH Tree Before Insertion

Suppose we are inserting the new node L, and as the new sibling, we chose the

node H . The added cost of choosing H as the sibling for L can be calculated as:

CH = SA(11) + ∆SA(10) + ∆SA(8) + ∆SA(7) + ∆SA(3) + ∆SA(1), (4.2)

19

where

∆SA(node) = SA(node ∪ L)− SA(node). (4.3)

The resulting tree is shown in the figure 4.4.

Figure 4.4: BVH Tree After Insertion

The naive approach of finding the best sibling by checking all the potential siblings

and calculating the cost is too expensive, so the algorithm called branch and bound is

used to improve the performance.

The main ideas behind the algorithm are:

± search through the tree recursively,

± skip sub-trees that cannot possibly be better.

In the example above, let us suppose we reach node 7 during the search. The algorithm

then calculates the cost of choosing the node 7 as the new sibling using the equation:

C7 = ∆SA(7) + ∆SA(3) + ∆SA(1). (4.4)

It compares this value with the costs of continuing the search through either left or the

right child. If the cost of choosing node 7 as the new sibling is the smallest, we stop

the algorithm, and node 7 becomes the sibling of the new node. Otherwise, depending

on their corresponding cost values, we continue the search through either the left or

the right sub-tree. When the new sibling is found, we have to rebalance the tree using

already mentioned tree rotations and refit the AABBs of all the ancestors of a new node.

Finally, the overall time complexity of the insertion algorithm is O(logN) where N is

the number of nodes in the tree.

20

Query Algorithm

We have to perform the tree query when detecting all the potentially colliding pairs for

a single object. It traverses the tree by visiting only nodes that overlap the AABB of

the queried object. When the leaf is reached, the body pair, consisting of the object

represented by the leaf and the queried body, is added to the list.

Rigid Body Movement

The tree structure might change when the body moves, and the optimal sibling for the

body might also change. For this reason, the best approach for handling object move-

ment is to remove and re-insert it back into the tree. To avoid frequent re-insertions

for every object, AABBs are usually slightly larger to accommodate minor movements

since the body will be re-inserted only when it moves outside the bounding volume.

When using the data structures explained above, the average time complexity of

detecting all the potentially colliding pairs for every object is O(N logN), where N

represents the number of bodies in the simulation.

4.2. Narrow Phase

Once we have found all the pairs as a result of the broad phase collision step, we have

to find out if they are, in fact, actually colliding and calculate the contact points and

collision normal in order to respond to the collision adequately. It is not trivial to

determine if the arbitrary two shapes collide, and it is even harder to find the contact

points between them. If the intersection is found, this phase results in a collision

manifold, which is represented by the following data structure:

21

struct contact {

vec3 rA; // Collision point within A’s local space

vec3 rB; // Collision point within B’s local space

float penetrationDepth;

}

struct manifold {

int contactCount;

contact* contacts;

vec3 normal;

vec3 tangents;

}

In this paper three collision algorithms are explained:

± sphere - sphere,

± sphere - box,

± box - box.

4.2.1. Sphere - Sphere Collision Algorithm

Sphere - sphere collision algorithm is the simplest and fastest. The spheres collide if

the distance between them is less than the sum of their radii. The collision algorithm

finds at most 1 contact point.

Algorithm 2 Sphere - Sphere Collision Algorithm

1: procedure SPHERESPHERE(sphereA, sphereB , outManifold)

2: normal ← sphereA.location − sphereB .location;

3: distance← normal.length()− (sphereA.radius + sphereB .radius);

4: if distance > 0 then

5: return false;

6: end if

7: outManifold .contactCount← 1;

8: outManifold .contacts[0].penetrationDepth← distance;

9: outManifold .contacts[0].rA← sphereA.radius ∗ normal;

10: outManifold .contacts[0].rB ← −sphereB .radius ∗ normal;

11: outManifold .normal ← normal;

12: end procedure

22

4.2.2. Sphere - Box Collision Algorithm

Sphere - box collision algorithm first finds the closest point on the box to the sphere

and afterward checks if the distance between that point and the sphere is less than the

sphere’s radius. This algorithm also finds at most one contact point.

Algorithm 3 Sphere - Box Collision Algorithm

1: procedure SPHEREBOX(sphere, box , outManifold)

2: shereRelPos ← box .transform.inverseTransformLocation(sphere.location);

3: closestPoint ← shereRelPos;

4: closestPoint .x← min(box .halfExtents .x , closestPoint.x);

5: closestPoint .x← max(−box .halfExtents .x , closestPoint.x);

6: closestPoint .y ← min(box .halfExtents .y , closestPoint.y);

7: closestPoint .y ← max(−box .halfExtents .y , closestPoint.y);

8: closestPoint .z ← min(box .halfExtents .z , closestPoint.z);

9: closestPoint .z ← max(−box .halfExtents .z , closestPoint.z);

10: closestPoint ← box .transform.transformLocation(closestPoint);

11: normal ← closestPoint − sphere.location;

12: distance← normal.length()− sphere.radius;

13: if distance > 0 then

14: return false;

15: end if

16: outManifold .contactCount← 1;

17: outManifold .contacts[0].penetrationDepth← distance;

18: outManifold .contacts[0].rA← sphere.radius ∗ normal;

19: outManifold .contacts[0].rB ← closestPoint − box.location;

20: outManifold .normal ← normal;

21: end procedure

23

4.2.3. Box - Box Collision Algorithm

Box - box collision detection algorithm is the most complex of all of the above and

will be explained in more detail. The algorithm consists of two parts:

± separating axis theorem (SAT) - used to detect a collision between two boxes,

± clipping - used to find contact points after the collision was detected.

Separating Axis Theorem

Separating axis theorem says that two convex objects do not overlap if there exists an

axis onto which the two objects’ projections do not overlap. In terms of boxes, it can

be shown that we have to check 15 axes in total. If any of those axes are separating,

we know that two boxes do not intersect.

The first six axes are called face axes and represent face normals. To simplify the

problem of projecting box A onto the axes of box B, all computations can be done

within the space of A. We can define the translation vector t as:

t = rTa ∗ (cb − ca), (4.5)

where ci denotes the center of a box, and ra denoted the rotation of a box A. Vector t

points from the A′s center to B′s center within the space of A. The relative rotation

matrix to transform from B′s frame to A′s frame is defined as:

d = rTa ∗ rb. (4.6)

Matrix d can be used to transform B′s local axes into the frame of A.

To calculate the separation, s along the local axis l, the following equation can be used:

s = |t · l| − (|ea · l|+ |(d · eb) · l|), (4.7)

where vector ea represents half extents of the box A, while vector eb represents the

half extents of the box B. Due to the symmetry, a projection’s absolute value can be

used to calculate the value representing a projection along a given direction. In our

case, we are not interested in the sign of the projection and always want the projection

toward the other box.

In 2D, face axes are the only axes we have to check. However, in 3D, a new topo-

logical feature arises on the surface of geometry: edges. Since edge to edge collision

between two boxes cannot be detected using only face axes, we have to include edge

24

axes somehow. Given the two edges upon two boxes in 3D space, the vector perpen-

dicular to both represents the possible separation axis and can be computed using the

cross product. By calculating the cross product of all edge to edge axes combinations,

we can obtain all possible axes of separation. Since there are 3 unique edge axes per

box, the total count of additional axes we have to check is 9. Hence the total number

of possible axes of separation is 6 + 9 = 15.

Since matrix d is a linear operator and is composed of a concatenation between rTa

and rb, the columns of this matrix can be thought of as the local axes of B in a space

of A. Let us derive the cross product between A′s axis x and B′s axis z, all within the

space of A. The A′s x axis in the A′s local space can be written as {1, 0, 0}, while

the B′s z axis using the matrix d can be written as {d02, d12, d22}. The axis l is the

cross product between these two axes and can be calculated directly without using the

cross product formula as:

l = {0, −d22, d12}. (4.8)

The same approach can be used to derive all 9 separating edge axes.

If an axis l separates the two boxes, the equation 4.7 will result in a negative value.

Contact information can be generated once the axis of least penetration is found.

Contact Point Generation

Contact point generation is the second part of the collision detection algorithm. The

contact points are used to resolve the collision during the physical simulation. There

are only two cases of collision that should be handled: edge to edge and something to

face.

The edge to edge case is resolved by calculating the supporting edge which is the edge

most pointed to by a given axis of separation. Once the two supporting edges have

been found, the algorithm determines the point where the edges overlap, which results

in a single contact point.

Something to face case refers to either face to face or edge to face collision. It is a more

complicated case and can result in any number of contact points between 1 and 8. In

order to resolve this case, two faces from each box have to be calculated, which are

by convention named reference and incident face. Once the faces are determined, the

incident face is clipped to the side planes of the reference face. The process of clipping

can be seen in the figure 4.5.

25

Figure 4.5: Clipping

The clipping is performed using the Sutherland Hodgman algorithm. This algo-

rithm takes a list of vertices and planes as an input and outputs the new vertices that

exist purely within the set of planes. The clipping results in at most 8 contact points.

The function InFront returns true if the point is on the same side of the plane as

the plane normal, while the method Intersect finds the intersection point of the given

plane and line.

26

Algorithm 4 Sutherland Hodgman Clipping

1: procedure CLIP(startingPolygon, clippingPlanes)

2: output ← startingPolygon ;

3: for each plane in clippingPlanes do

4: input ← output ;

5: startingPoint ← input.last();

6: for each endPoint in input do

7: if INFRONT(startingPoint, plane) and INFRONT(endPoint, plane)

then

8: output.push(endPoint);

9: else if INFRONT(startingPoint, plane) then

10: output.push(INTERSECT(plane, startingPoint, endPoint));

11: else if not INFRONT(endPoint, plane) then

12: output.push(INTERSECT(plane, startingPoint, endPoint));

13: output.push(endPoint);

14: end if

15: endPoint = startingPoint;

16: end for

17: end for

18: return output;

19: end procedure

27

5. Constrained Rigid Body Simulation

Up to this point, we have discussed how to simulate rigid body motion and detect when

the objects are colliding. However, we still don’t have a way to respond to those colli-

sions so that the interactions between the objects can be observed. In other words, we

only discussed an unconstrained motion of rigid bodies. As a final step of realistically

simulating rigid body motion, we have to introduce constraints. Constraints enforce a

certain body behavior by defining a set of rules that must be satisfied during the simula-

tion. Some real-world examples of constraints that might be part of our simulation are

hinge joints and ball joints. However, the most important constraint, which prevents

bodies from interpenetrating, used to resolve collisions is known as non-penetration

constraint. In a physics engine, constraint is essentially a function that can take either

acceleration, velocity, or position of a body as an input.

A simple example of a constraint in our simulation might be the distance between

two bodies should be exactly 4. The equation with which we can define this constraint

could look like this:

C1(p1,p2) = ||p1 − p2||2 − 16, (5.1)

where p1 represents the position of a first body, while p2 represents the position of the

second body. There are three cases we have to inspect in order to determine if the rule

is satisfied or not:

± value of a function C1 is greater than 0 - the distance between the bodies is

greater than 4,

± value of a function C1 is equal to 0 - the distance between the bodies is exactly

4,

± value of a function C1 is less than 0 - the distance between the bodies is less

than 4.

Looking back at our definition of a constraint, we can conclude that only the second

28

case satisfies the rule, so our constraint becomes:

C1(p1,p2) = 0. (5.2)

There are two categories of constraints:

± equality constraints - the only acceptable value of a constraint function is 0,

± inequality constraints - the constraint function may take on a broader range of

values.

The constraint function in the example above belongs to the category of equality con-

straints. In order to satisfy the rule, we could directly set the positions of the bodies

to appropriate values so that their distance is exactly 4. However, that method is not

ideal because it may cause jittering and result in unrealistic behavior. There are two

approaches to resolving constraints typically used by physics engines:

± force-based approach - the constraints are satisfied by applying corrective forces,

± impulse-based approach - the constraints are satisfied using impulses.

5.1. Force-Based Approach

Since in our simulation, we are moving rigid bodies by applying forces, we could use

the same approach to satisfy the constraints. We know that only the forces acting in

the direction parallel to the gradient of a constraint function can break the constraint

[3]. Thus, the corrective forces must also be parallel to that gradient.

The gradient of the function C1 can be calculated as:

∇C1(p1,p2) = {
∂C1

∂p1
ṗ1,

∂C1

∂p2
ṗ2}

= {2p1(p1 − p2)ṗ1,−2p2(p1 − p2)ṗ2}.
(5.3)

In order to ensure that the constraint function will be equal to 0, and remain unchanged

throughout the simulation, the gradient has to be 0 as well [3]. Likewise, the gradient

will not change if the second derivative of a constraint function is also 0. This is

where our constraint forces will be applied, so we do not have to calculate any further

derivatives.

5.1.1. System of Constraints

To generalize the equations above, we have to introduce the state vector, which con-

tains the state of all rigid bodies in the system [3]. Let us suppose we are simulating N

29

rigid bodies. The state of a rigid body contains the position p and rotation represented

with quaternion q. Thus, the state vector can be written as:

S =





























p1

q1

p2

q2
...

pN

qN





























=















s1

s2
...

sN















. (5.4)

Masses and moments of inertia for each rigid body can be defined with a following

matrix:

M =





























m1E3×3

I1

m2E3×3

I2
. . .

mNE3×3

IN





























, (5.5)

where E3×3 denotes 3 by 3 indentity matrix, while mi and Ii represent mass and inertia

tensor of the i-th body. Lastly, let’s define the force vector, which contains forces and

torques acting on each rigid body:

F =





























f1

τ1

f2

τ2
...

fN

τN





























. (5.6)

Each force in the vector is the sum of external and constraint forces, thus, the force

vector can be split into two parts:

F = Fext + Fc, (5.7)

where Fext denotes external forces acting on the rigid bodies, while Fc represents con-

straint forces.

30

Now the Newton’s second law applied to the whole system can be written as:

F = M S̈. (5.8)

Finally, let’s introduce M constraints in our system. We can group them into a

single function that takes the state vector S as an input:

C(S) =















C1(S)

C2(S)
...

CM(S)















. (5.9)

As already mentioned, to keep the constraint functions as close to 0, we have to cal-

culate the first and second derivatives with respect to time. The first derivative can be

calculated as:

Ċ =
∂C

∂S
Ṡ. (5.10)

We can simplify the equation by introducing the Jacobian matrix J . Jacobian matrix is

a generalization of a gradient and contains all first order partial derivatives of a function

[8]:

J =
∂C

∂S
=















∂C1

∂s1

∂C1

∂s2
. . . ∂C1

∂sN
∂C2

∂s1

∂C2

∂s2
. . . ∂C2

∂sN
...

...
. . .

...

∂CM

∂s1

∂CM

∂s2
. . . ∂CM

∂sN















. (5.11)

Now equation 5.10 becomes:

Ċ = JṠ. (5.12)

The derivative of a state vector Ṡ can be thought of as velocity vector representing

linear and angular velocities of all bodies in the system:

Ṡ = V =





























v1

ω1

v2

ω2

...

vN

ωN





























. (5.13)

31

The second derivative of a constraint function C can be calculated using the multi-

plication rule:

C̈ = J̇Ṡ+ JS̈, (5.14)

where

J̇ =
∂Ċ

∂S
. (5.15)

Combining the equations 5.8 and 5.14 we can derive the expression for the second

derivative of a constraint function:

C̈ = J̇Ṡ+ JM−1(Fext + Fc). (5.16)

Since we want the second derivative to be 0, we can set C̈ to 0 and rearrange the

equation:

JM−1Fc = −J̇Ṡ− JM−1Fext. (5.17)

The only unknown here is the constraint force vector Fc, which we are trying to de-

termine. Since we know that our constraint force has to be parallel to the gradient, we

can write it as a multiple of J :

Fc = JTλ = ∇C1λ1 +∇C2λ2 + · · ·+∇CMλM . (5.18)

Now, we can substitute Fc in the original equation 5.17 with the expression above:

JM−1JTλ = −J̇Ṡ− JM−1Fext. (5.19)

This is the system of linear equations with M unknowns. There are plenty of well-

known methods which can be used to solve the system, such as: Gauss Seidel, Gauss

Jacobi etc.

However, this approach is not practical and is too expensive for most applications.

Since in our simulations, we will most likely have a lot of simulated objects, the ma-

trices we have to work with will grow rapidly. Hence, the space and time complexity

of this approach are not suited for real-time applications. One of the solutions to this

problem is to only use pairwise constraints, which significantly simplifies the matrices

and calculations. Another commonly used simplification is impulse based approach,

which is discussed in the next section. An impulse is the integral of a force with respect

to time and represents the change in momentum during that time:

P =

∫

Fdt. (5.20)

Since impulses are applied at the velocity level, we do not have to calculate the second

derivative of a constraint function. Thus, our equations are much easier to work with.

32

5.2. Impulse-Based Approach

With impulse based approach we can directly use the equation 5.12 to calculate the

final impulses we have to apply in order to satisfy the constraints [3]. This approach

can be divided into 4 steps:

1. compute all external forces,

2. apply external forces and compute the resulting velocities,

3. calculate corrective impulses to satisfy constraints,

4. apply constraint impulses and calculate new velocities.

Since here we are acting at velocity level, we can write an approximation of accel-

eration as the ratio between the velocity change and delta time for the current time

step:

S̈ ≈ Ṡ(t+∆t)− Ṡ(t)

∆t
. (5.21)

If we again use the Newton’s second law:

M S̈ = Fc + Fext, (5.22)

and substitute S̈ with the expression 5.21, while Fc = JTλ, we get the following

equation:

M(Ṡ(t+∆t)− Ṡ(t)) = ∆t(JTλ+ Fext). (5.23)

The only unknown is again vector λ, which has M components. Since we know that

the final velocity Ṡ(t + ∆t) has to be perpendicular to the gradient (we want Ċ to be

0), we can write JṠ(t+∆t) = 0. With that knowledge, we can rearrange the equation

and get the expression for λ:

JM−1JTλ = −J(1

∆t
Ṡ+M−1Fext). (5.24)

This is again the system of linear equations, but slightly different from what we got

using the force-based approach. When dealing with equality constraints, the value of

λ is not restricted, while for inequality constraints, we may want to clamp the final

impulse to a certain range {λ−, λ+}. Technically speaking, we are solving a Mixed

Linear Complementary Problem (MLCP). In this paper, the iterative approach is used

to solve the MLCP, known as Projected Gauss Seidel.

33

5.2.1. Gauss Seidel

Gauss Seidel algorithm is used to solve a n-dimensional generic linear equation Ax =

b. It is an iterative algorithm that initially guesses the result x0, and afterward iterates

through the rows, adjusting the elements of x corresponding to the diagonal element

of A. The criteria that is used to stop the algorithm is:

± fixed number of iterations is reached,

± ||Ax− b|| falls below a certain tolerance,

± ∆xi falls below a certain tolerance.

Algorithm 5 Gauss Seidel

1: procedure GAUSSSEIDEL(iterations)

2: x ← x0 ;

3: for iter ← 1 to iterations do

4: for i← 1 to n do

5: ∆xi ←
(bi−

∑n
j=1

Aijxj)

Aii
;

6: xi ← xi +∆xi;

7: end for

8: end for

9: end procedure

5.2.2. Projected Gauss Seidel

Projected Gauss Seidel is an extension of a basic Gauss Seidel algorithm that handles

bounds of the unknowns. In our case, there are bounds on λ for inequality constraints,

while for equality constraints, those bounds can be simply set to {−∞,∞} [1].

Now we can express the problem defined by equation 5.24 as an MLCP. We can substi-

tute M−1JT with matrix B and η = −J(1
∆t
Ṡ+M−1Fext), so our problem becomes:

w = JBλ− η,

λ− ≤λi ≤ λ+, ∀i,
wi = 0↔ λ− ≤ λi ≤ λ+, ∀i,

λi = λ− ↔ wi ≥ 0, ∀i,
λi = λ+ ↔ wi ≤ 0, ∀i.

(5.25)

Since we are considering only pairwise constraints, matrix J can be significantly

simplified. In general Jacobian matrix J is M ×6N for M constraints and N bodies.

34

By considering only pairwise constraints, each row will have at most two non-zero

blocks of length 6 [1]. Thus, we can represent the matrix J with M × 12 matrix Jsp:

Jsp =















J11 J12

J21 J22

...
...

JM1 JM2















. (5.26)

However, we still have to store the information about the bodies that each row of the

matrix J represents, so an additional matrix Jmap is required. It has a size of M × 2

where each row stores two indices of the bodies represented by the corresponding row

in the matrix Jsp:

Jmap =















b11 b12

b21 b22
...

...

bM1 bM2















. (5.27)

We can finally introduce the pseudo-code of the Projected Gauss Seidel algorithm

using the matrices defined above.

35

Algorithm 6 Projected Gauss Seidel

1: procedure PROJECTEDGAUSSSEIDEL(iterations)

2: λ← λ0 ;

3: a← Bλ ;

4: for i← 1 to M do

5: di ← Jsp(i, 1)B(1, i) + Jsp(i, 2)Bsp(2, i);

6: end for

7: for iter ← 1 to iterations do

8: for i← 1 to M do

9: b1 ← Jmap(i, 1);

10: b2 ← Jmap(i, 2);

11: ∆λi ← ηi−Jsp(i,1)a(b1)−Jsp(i,2)a(b2)

di
;

12: λ0
i ← λi;

13: λ0
i ← max(λ−

i ,min(λ+
i , λ

0
i +∆λi));

14: ∆λi ← λi − λ0
i ;

15: a(b1)← a(b1) + ∆λiB(1, i);

16: a(b2)← a(b2) + ∆λiB(2, i);

17: end for

18: end for

19: end procedure

The only parameter where the multiple constraints differ is Jacobian matrix, so that

is the only thing we have to calculate per constraint. Now that we know how to solve

the MLCP defined by constraints, we can discuss how to resolve collisions and apply

friction.

5.3. Contact Constraint

Each colliding pair represents a new contact constraint in our system. It’s function

measures the object separation and can be written as:

Cn = (pb + rb − pa − ra) · n, (5.28)

where vector n represents collision normal pointing from body A to body B [1]. In or-

der to resolve the constraint we have to calculate the Jacobian matrix by differentiating

Cn with respect to time:

Ċn = (vb + ωb × rb − va − ωa × ra) · n+ (pb + rb − pa − ra) · ωa × n. (5.29)

36

Since penetration is usually very small, the second term in the equation can be ignored.

The Jacobian matrix can be determined by separating the velocities from the other

terms:

JnV =
[

−nT −(ra × n)T n (rb × n)T
]













va

ωa

vb

ωb













. (5.30)

This is an example of the inequality constraint, and the final impulse is bounded since

we want to push the bodies apart but not pull them together [1]:

0 ≤ λn <∞. (5.31)

5.3.1. Handling Penetration

Since we are using discrete collision detection, contact is not recognized until the bod-

ies suddenly overlap. The differential equations derived above are usually not enough

to prevent bodies from drifting into each other, so we need additional impulse which

will move the bodies apart. It has to be proportional to the penetration depth and can

be defined as [1]:

bias = −βCn. (5.32)

The scalar β is tunable and represents the speed of penetration resolution. If it is too

small, it will not be able to resolve the penetration, while too large values can cause

bounciness. We can add the bias parameter to our original equation for impulse based

approach 5.24, so we end up with the final equation for resolving contact constraints:

JM−1JTλ = − 1

∆t
βCn − J(

1

∆t
Ṡ+M−1Fext). (5.33)

5.4. Optimizations

There are several optimization techniques commonly used by physics engines when

dealing with constraints:

± warm-starting - used to speed up the convergence of Projected Gauss Seidel

algorithm,

± body islands - divides bodies into smaller systems that will converge faster,

± sleeping - avoids useless work and calculations for bodies that are at rest.

37

5.4.1. Warm Starting

Since the bodies don’t move much from step to step, we can use the information gener-

ated in the previous simulation step to speed up the convergence of the next step. The

contacts and generated impulses are cached and reused as a starting point of the Gauss

Siedel algorithm in the next simulation cycle. This is called warm starting, since we

"warm started" the contact by using the previously calculated λ as initial guess for the

next value of λ [1]. As a result, in majority of the cases the algorithm has to only adjust

the initial λ, instead of starting from completely random value, which speeds up the

convergence by a significant amount, and makes the simulation more stable.

5.4.2. Body Islands

During the simulation, one can observe that there may be distinct groups of bodies,

where only the bodies belonging to the same group impact each other movement. The

example can be seen in the figure 5.1. Since the blue platform represents the static

body, we can clearly observe two groups of bodies coloured green and red. Those

Figure 5.1: Body Islands

groups can be obtained by running a Depth first search algorithm where edges are

represented by contacts between bodies, while bodies itself represent the nodes of the

graph. Once we divide the bodies into groups, it allows us to simulate each group sep-

arately, instead of running the simulation for the whole system at once. It improves the

convergence and simplifies the calculations, reducing both space and time complexi-

ties.

38

5.4.3. Sleeping

By running the simulation for a longer period, we may end up in a situation where some

islands are at rest, meaning the bodies move by a negligible distance at each step. In

that scenario, we are wasting resources by calculating all the necessary parameters

of the simulation for the bodies belonging to that island. In order to save time and

resources, we can put the entire group to sleep when the linear and angular velocities of

all the bodies in that group stay below a certain tolerance. When the island is at sleep,

it is ignored during the simulation phase, and the bodies stay at the same location until

they are awakened. Once the new contacts or forces are introduced that impact certain

bodies inside the group, the whole group has to be awakened.

39

6. Results

As part of this paper, the algorithms and data structures discussed earlier are imple-

mented in software using C++ programming language and OpenGL graphics program-

ming interface. The library used for window creation is GLFW, while OpenGL context

was created with the help of GLUT. In order to compare the implementation with some

popular physics engines, Bullet and PhysX were integrated into the same graphics en-

gine.

The GPU used for testing the implementation was 2070 super, while the CPU was

i9-9900k. The resolution at which the application was rendered was 1920 x 1080.

Most common test for physics engines is box stacking. It consists of multiple boxes

stacked right on top of each other. This test case introduces a lot of contacts between

the bodies and each contact impacts the movement of all of the boxes in the stack,

directly or indirectly. If the physics engine is stable and the parameters are chosen

correctly, the structure should not fall apart, and the cubes should remain at the initial

locations. The table below shows the parameters used for the simulation.

β 0.05

interations 10

gravity scale 1

mass 10 kg

delta time 0.016

dimensions 1m x 1m x 1m

The result can be seen on the figure below. The red points represent contact points

in the simulation.

40

Figure 6.1: Box Stacking

The figure 6.2 shows the engine’s performance in terms of frames per second, sim-

ulating a different number of bodies in the scene. The performance of the custom-made

physics engine is roughly the same as compared to popular physics engines Bullet and

PhysX.

41

Figure 6.2: Performance Comparison

42

7. Conclusion

We have discussed how physics can be simulated within the game or any other applica-

tion which requires realistic simulation of physical phenomena. This thesis is focused

on rigid body motion, collision detection, and modeling the interaction between the

bodies.

The physics engine is the core software component of all popular game engines.

The quality of the simulation greatly impacts the player experience and immersion.

Thanks to continuous development over the years, many clever simplifications and

improvements have been made, especially regarding constrained dynamics, collision

detection, and MLCP resolution. The techniques discussed in this paper are widely

used in popular physics engines such as Box2D, Bullet Physics, PhysX etc. Other

than games, physics simulations have a great impact on scientific research. One of

the examples is computational fluid dynamics modeling, where particles are assigned

force vectors combined to show circulation.

With the rising importance of physics simulations in many areas, new specialized

hardware was developed to speed up the computations. Physics processing unit is a

good example of hardware acceleration for physics engines. It is a dedicated micro-

processor designed to handle the common calculations of physics. One of the more

recent approaches to physics calculations is exploiting the GPU advantages in a highly

parallelized environment. With the introduction of Nvidia RTX graphics cards, the

broad-phase collision detection step can be completely offloaded to the GPU.

43

BIBLIOGRAPHY

[1] E. Catto. Iterative Dynamics with Temporal Coherence. Crystal Dynamics, 2005.

[2] B. U. Division of Engineering. Dynamics and Vibrations. https://www.br

own.edu/Departments/Engineering/Courses/En4/notes_old

/RigidKinematics/rigkin.htm#:~:text=A%20rigid%20body%

20is%20an,of%20motions%20of%20the%20body.

[3] N. Souto. Video Game Physics Tutorial, 2015. https://www.toptal.com

/game/video-game-physics-part-i-an-introduction-to-r

igid-body-dynamics.

[4] Wikipedia, the free encyclopedia. Kronecker Delta, February 2022. https:

//en.wikipedia.org/wiki/Kronecker_delta.

[5] Wikipedia, the free encyclopedia. Quaternion, January 2022. https://en.w

ikipedia.org/wiki/Quaternion.

[6] Wikipedia, the free encyclopedia. AVL Tree, June 2022. https://en.wikip

edia.org/wiki/AVL_tree.

[7] Wikipedia, the free encyclopedia. Center of mass, June 2022. https://en.w

ikipedia.org/wiki/Center_of_mass.

[8] Wikipedia, the free encyclopedia. Jacobian matrix and determinant, June 2022.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_det

erminant.

[9] Wikipedia, the free encyclopedia. Moment of Inertia, June 2022. https://en

.wikipedia.org/wiki/Moment_of_inertia.

44

https://www.brown.edu/Departments/Engineering/Courses/En4/notes_old/RigidKinematics/rigkin.htm#:~:text=A%20rigid%20body%20is%20an,of%20motions%20of%20the%20body.
https://www.brown.edu/Departments/Engineering/Courses/En4/notes_old/RigidKinematics/rigkin.htm#:~:text=A%20rigid%20body%20is%20an,of%20motions%20of%20the%20body.
https://www.brown.edu/Departments/Engineering/Courses/En4/notes_old/RigidKinematics/rigkin.htm#:~:text=A%20rigid%20body%20is%20an,of%20motions%20of%20the%20body.
https://www.brown.edu/Departments/Engineering/Courses/En4/notes_old/RigidKinematics/rigkin.htm#:~:text=A%20rigid%20body%20is%20an,of%20motions%20of%20the%20body.
https://www.toptal.com/game/video-game-physics-part-i-an-introduction-to-rigid-body-dynamics
https://www.toptal.com/game/video-game-physics-part-i-an-introduction-to-rigid-body-dynamics
https://www.toptal.com/game/video-game-physics-part-i-an-introduction-to-rigid-body-dynamics
https://en.wikipedia.org/wiki/Kronecker_delta
https://en.wikipedia.org/wiki/Kronecker_delta
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Center_of_mass
https://en.wikipedia.org/wiki/Center_of_mass
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Moment_of_inertia
https://en.wikipedia.org/wiki/Moment_of_inertia

LIST OF FIGURES

1.1. Physics Engine Phases . 2

2.1. Lerp vs Slerp . 4

4.1. Bounding Volume Types . 16

4.2. Dynamic Bounding Volume Tree . 18

4.3. BVH Tree Before Insertion . 19

4.4. BVH Tree After Insertion . 20

4.5. Clipping . 26

5.1. Body Islands . 38

6.1. Box Stacking . 41

6.2. Performance Comparison . 42

45

LIST OF ALGORITHMS

1. AABB Overlap Test . 17

2. Sphere - Sphere Collision Algorithm 22

3. Sphere - Box Collision Algorithm 23

4. Sutherland Hodgman Clipping . 27

5. Gauss Seidel . 34

6. Projected Gauss Seidel . 36

46

3D Physics Engine

Abstract

This thesis explores all the fundamental concepts implemented in modern physics

engines. It covers rigid body dynamics, collision detection and constraint solvers.

Optimization techniques and special data structures necessary for real-time simula-

tions are discussed. The algorithms and data structures presented are implemented in

software using the C++ programming language and OpenGL graphics programming

interface. The final results are presented and compared to popular physics engines in

terms of stability and performance.

Keywords: physics engine, rigid body, collision detection, dynamic bounding volume

tree, constraints, contraint solver, Gauss-Seidel algorithm.

Fizikalni pogon za 3D objekte

Sažetak

U sklopu ovog rada obra Ådeni su temeljni koncepti koji su sastavni dio modernih

fizikalnih pogona. Objašnjeni su algoritmi vezani uz dinamiku krutog tijela, detek-

ciju kolizije i rješavače ograničenja. Predstavljene su optimizacijske tehnike koje

omoguÂcavaju izvo Ådenje fizikalnih simulacija u stvarnom vremenu. Obra Ådeni algoritmi

i strukture podataka implementirani su koristeÂci programski jezik C++ i grafičko pro-

gramsko sučelje OpenGL. Prezentirani su rezultati u pogledu stabilnosti i performansi,

te je dana usporedba s drugim popularnim fizikalnim pogonima.

Ključne riječi: fizikalni pogon, kruto tijelo, detekcija kolizije, dinamičko stablo ome ÅdjuÂcih

volumena, ograničenja, rješavač ograničenja, Gauss-Seidel algoritam.

	Introduction
	Quaternions
	Quaternion Math
	Addition and Subtraction
	Multiplication
	Multiplication by Scalar
	Real Quaternion
	Pure Quaternion
	Unit Quaternion
	Quaternion Conjugate
	Quaternion Norm
	Inverse

	Describing Rotations with Quaternions
	Quaternion Derivative

	Rigid Body Dynamics
	Center of Mass
	Equations of Motion
	Linear Motion
	Angular Motion

	Numerical Integration
	Semi-Implicit Euler Method

	Collision Detection
	Broad Phase
	Bounding Volumes
	Dynamic Bounding Volume Tree

	Narrow Phase
	Sphere - Sphere Collision Algorithm
	Sphere - Box Collision Algorithm
	Box - Box Collision Algorithm

	Constrained Rigid Body Simulation
	Force-Based Approach
	System of Constraints

	Impulse-Based Approach
	Gauss Seidel
	Projected Gauss Seidel

	Contact Constraint
	Handling Penetration

	Optimizations
	Warm Starting
	Body Islands
	Sleeping

	Results
	Conclusion
	Bibliography
	List of Figures
	List of Algorithms

