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Abstract — With increasing requirements for reliability, 

availability, efficiency, effectiveness, productivity, and security 
of the system, the importance of diagnostics and maintenance 
is also increasing. E-maintenance as a leading concept for 
maintenance management has so far primarily involved the use 
of domain-specific technical language processing (TLP) 
techniques on historical case data. Due to its popularity, 
generative AI (GAI) with large language models (LLMs) is 
starting to be used more and more in various technical areas, 
thus starting to take an increasingly important place in 
diagnostics and maintenance. Starting from the fact that the 
rapid development of information and communication 
technologies (ICT) was the main factor in the emergence and 
development of the concept of e-maintenance, the importance 
of the potential more serious application of all forms of 
generative AI in the context is clear. This is especially 
pronounced in cases of difficult or impossible access to the 
location of components or an uncertain situation related to the 
type of process (e.g., nuclear, aeronautical, space, offshore). 
Autonomous vehicles, vessels, and aircraft (as an indispensable 
part of today's intelligent transport systems) are certainly a 
leading example of these cases. Regardless of the level of 
autonomy, these systems are extremely complex and difficult to 
maintain and represent a clear challenge for the application of 
new approaches. Therefore, the authors of the paper propose 
the use of middleware that would enable the integration of 
various GAI tools, algorithms, and models to increase the 
effectiveness of diagnostics and maintenance as close as possible 
to real-time. However, the exact extent of the possibilities and 
limitations of this approach has yet to be determined.   
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I. INTRODUCTION 

In economy and industry, maintenance has always 
played an important role because it regularly represents a 
significant cost [1]. Effective maintenance concepts and 
strategies contributed to reducing such costs and mitigating 
business uncertainty. Malfunctions in the operation of 
devices and drives were primarily eliminated with the help 
of a corrective maintenance (CM) strategy, but this method 
did not affect the inevitability of work stoppages due to 

malfunctions and problems with the equipment. Therefore, 
it evolved into a much more proactive approach with the 
emergence of a preventive maintenance (PM) strategy that 
involved periodic inspections of devices and systems after a 
predefined period or a certain number of operating cycles. In 
this scenario, skilled technicians can proactively replace 
certain components prior to the occurrence of key faults or 
malfunctions in the system's operation that are likely to arise 
soon. Maintenance types based on EN 13306:2001 are 
shown on Fig. 1. 

 

 

Figure 1.  Maintenance types based on EN 13306:2001 
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With the development of primarily information and 
communication technologies (ICT) and sensors, a condition-
based maintenance approach (CBM) appears [2]. Devices 
and systems are beginning to be monitored by sensors 
capable of measuring and monitoring certain physical 
quantities (such as temperature, pressure, force, sound, 
vibration, etc.) and processing the results independently in 
real time or forwarding them to other systems for analysis 
and decision-making. Depending on the measurement 
results and preset limit parameters, the staff in charge of 
maintenance will receive appropriate information and take 
appropriate measures based on it. Further technological 
development, especially in areas such as "big data", "data 
mining", "cloud computing", and "internet of things", brings 
more complex and effective approaches such as predictive 
maintenance (PdM)  and remote maintenance (RM), 
respectively new strategies like e-maintenance. A PdM 
system is a cyber-physical system (CPS) in which networked 
assets can anticipate defects, identify their underlying 
causes, and autonomously detect problematic events [3]. 
Such a system can detect failures before they occur or predict 
the lifetime of a device component [4]. 

The need for a high level of automation and the transition 
to complete autonomy motivated engineers to create 
computer systems that enable remote maintenance and 
increasingly serious application of the e-maintenance 
strategy. Without such solutions, intelligent transport 
systems, such as partially or fully autonomous vehicles, 
vessels, or aircraft, would be impossible to maintain during 
their duties [5]. The lack of a crew or a small number of 
service and technical personnel is a serious problem in such 
systems. If there are even people in charge of maintenance 
(e.g. on semi-autonomous ships), their knowledge and skills 
are limited due to the diversity and complexity of the applied 
systems. A high-quality communication connection and a 
suitable computer system that will process the obtained 
information are required to quickly acquire professional and 
expert knowledge at a distance. Therefore, it is not unusual 
that soon after the appearance of the PdM system, various 
AI algorithms began to be used, further improving them [5], 
[7], [8].  

Artificial intelligence algorithms can detect patterns 
associated with faults and failures or detect degradation early 
to implement appropriate countermeasures [4], [6]. 
Commonly used AI algorithms in PdM, Fig. 2, are from the 
machine learning (ML) and deep learning (DL) families. 

ML provides machines with the ability to automatically 
learn, and act based on previous experience. The main types 
of machine learning algorithms are supervised, semi-
supervised, unsupervised, and reinforcement-based 
learning. From the mentioned groups of algorithms for the 

PdM context, the following representatives can be singled 
out: artificial neural network (ANN) [7–9], decision tree 
(DT) [10], [11], support vector machine (SVM) [12], [13], 
k-nearest neighbors (k-NN) [14], [15], particle filter [16], 
principle component analysis [17], adaptive resonance 
theory [18] and self-organizing maps [19]. 

DL is a subset of ML that uses a neural network like the 
human neural system to mine data and analyze various 
factors. DL models outperform statistical and traditional ML 
models in many fields, including PdM, when sufficient 
historical data exists. DL has demonstrated its dominance in 
the field of PdM through its exceptional proficiency in 
feature learning, fault classification, and fault prediction 
using multilayer nonlinear transformations.  

In the PdM field, DL models such as Feed-forward/MLP 
[20], convolutional neural network (CNN) [21], recurrent 
neural network (RNN) [22], [23], deep belief network 
(DBN) [24], restricted Boltzmann machine (RBM) [25], 
auto-encoder (AE) [26] with its adaptations denoising auto-
encoder (DAE) [27] and sparse auto-encoder (SAE) [28], 
variational auto-encoder (VAE) [29] and generative 
adversarial network (GAN) [30] are most commonly used. 

At the beginning of the 21st century, Generative AI 
(GAI) was developed from ML, representing a class of 
algorithms capable of generating new data. The previously 
mentioned GAN and large language models (LLM) 
represent an important subset of GAI. While GANs consist 
of two neural networks, a generator that produces synthetic 
data and a discriminator that distinguishes that data from real 
instances, LLMs generate human-like text by predicting the 
probability of a word given previous words used in the text. 
A special type of LLM is the globally known generative pre-
trained transformer (GPT). GPT models are trained on 
massive amounts of textual data and can generate coherent, 
contextually relevant sentences. 

Although LLM is key to GAI, it is important to mention 
that it is only a part of natural language processing (NLP), 
representing a broader field within artificial intelligence and 
computational linguistics. It focuses on enabling machines 
to understand, interpret, and create human language. NLP 
encompasses tasks such as sentiment analysis, machine 
translation, text mining, text summarization, named entity 
recognition, part-of-speech (POS) tagging, etc. Although 
NLP models trained on general language may not be directly 
applied to industrial text, promising progress was made in 
adapting NLP techniques to technical domains, which 
caused special interest in the industry. It was also reflected 
in the maintenance itself. This is primarily due to the 
technical language processing (TLP) engineering approach, 
which intelligently and selectively uses NLP tools for 
technical language data [31]. In this way, serious 
preconditions were created for using GAI within the 
framework of PdM and the e-maintenance concept. 

II. OPPORTUNITIES AND CHALLENGES  
OF E-MAINTENANCE 

Over the past few decades, numerous organizational 
strategies have been established to optimize the efficiency of 
maintenance operations. Several approaches, such as total 
productive maintenance (TPM), reliability-centered Figure 2.  Commonly used AI algorithms in PdM 



maintenance (RCM), and condition-based maintenance, 
have been identified by researchers [32]. The previously 
mentioned approaches have been successfully adopted in the 
industry, yielding predominantly favorable outcomes. 

Further technological development, especially in ICT, 
ensured the prerequisites for adopting new approaches and 
concepts in maintenance. The most effective approach 
involves maintaining constant awareness of the state of the 
property and its components and carrying out repair and 
servicing measures only when necessary. New wireless 
techniques and the Internet offer the possibility of using 
mobile devices to access large information globally and 
online [33], [34], [35]. 

Increasing demands for reliability, availability and 
security and the need to obtain asset information at any place 
and at any time cause the creation of new solutions in asset 
maintenance. One of these solutions is precisely the e-
maintenance concept, which, among other things, provides a 
network that integrates and synchronizes various 
maintenance and reliability applications to collect and 
deliver asset information where it is needed [36]. 

The e-maintenance concept integrates telemetric 
maintenance principles with web services and modern e-
collaboration methods. This form of collaboration enables 
sharing and exchanging information, knowledge, and e-
intelligence [37], [38]. Starting from the fact that the rapid 
development of information and communication 
technologies was the main factor in the creation and 
development of the concept of e-maintenance, the 
importance of the potential more serious application of all 
forms of generative AI in the sense is recognizable. This is 
especially pronounced in cases of difficult or impossible 
access to the location of components or an uncertain 
situation related to the type of process (e.g., nuclear, 
aeronautical, space, offshore). Autonomous vehicles, 
vessels, and aircraft, an indispensable part of today's 
intelligent transport systems, are certainly a leading example 
of these cases [67]. Regardless of the level of autonomy, 
these systems are extremely complex and difficult to 
maintain and represent a clear challenge for the application 
of new approaches. 

The integration of e-maintenance in modern industry 
presents both opportunities and challenges. The need for 
effective communication, collaboration, and change 
management strategies to ensure the alignment of data-
driven solutions among stakeholders and users is 
emphasized [39]. These findings underscore the importance 
of a proficient workforce and appropriate tools and 
methodologies in successfully utilizing AI in e-maintenance. 

E-maintenance can help reduce maintenance costs by 
identifying potential problems before they become major 
problems, enabling proactive maintenance, and reducing 
downtime. It can increase efficiency and streamline existing 
maintenance processes by using data analytics to predict 
when maintenance will be needed, reducing the time and 
resources required to perform maintenance tasks. This will 
lead to optimal equipment utilization and reduced downtime, 
increasing productivity and efficiency. Moreover, having 
real-time equipment performance data will contribute to 
making better decisions about maintenance schedules and 
resource allocation. 

In addition to the wide range of opportunities e-
maintenance provides, attention should be paid to the 
accompanying challenges. The effectiveness of e-
maintenance relies heavily on the quality of data collected 
from the equipment's sensors. Poor data quality can lead to 
inaccurate predictions and unreliable decision-making. 
Interoperability caused by different standards and protocols 
and the need for integration with existing systems, 
infrastructure, and processes can create additional costs or 
completely limit functionality, so they need to be carefully 
planned. By changing business needs, e-maintenance 
systems must have the possibility of scalability without 
compromising reliability and stability. Very often, such 
systems for real-time analysis and high-quality and reliable 
processing of data sets also need powerful computer 
resources so that sophisticated algorithms can be executed 
quickly enough. Sometimes, very diverse technical and 
service personnel with different competencies, levels of 
knowledge, and skills must be ready to adapt to the 
upcoming new technologies and requirements, which 
certainly impacts their satisfaction level. 

III. ROLE OF GAI IN E-MAINTENANCE 

Generative AI (GAI or G-AI) is a form of "limited 
memory AI" trained on a specific dataset and produces 
predictions by employing statistical analysis on that corpus 
of data. ChatGPT-3, for example, is trained on all publicly 
available data collections on the internet through September 
2021. Generative AI algorithms are a class of AI algorithms 
that create new content in various forms (e.g., images, text, 
and music) by learning underlying patterns from training 
data. A much broader term than generative AI is AI-
generated content (AIGC), which includes generative AI 
algorithms and other AI techniques such as natural language 
processing and computer vision. A large AI model refers to 
any neural network architecture that has many parameters, 
such as a large visual model (LVM), a large language model 
(LLM), and a large multimodal model [40]. AIGC refers to 
using generative AI algorithms to assist or replace humans 
in creating rich, personalized, and high-quality content at a 
faster pace and lower cost based on user inputs or 
requirements [41], [42]. 

Generative AI models are designed to acquire 
knowledge from extensive datasets, creating fresh content 
that closely resembles the original dataset. These models go 
beyond simple classification or forecasting jobs and create 
novel instances demonstrating artistic, intellectual, or other 
valuable attributes. Various categories of generative AI 
models exist, each specifically engineered to generate 
distinct forms of content: 

• Variational Autoencoders (VAEs) are a class of 
generative models characterized by an encoder-decoder 
architecture [42], [43]. This approach employs a process 
of transforming input data into a latent space and 
subsequently reverts it to its original data domain. VAEs 
are characterized by the ability to achieve a trade-off 
between accurately reconstructing data and applying 
regularization techniques to generate new samples that 
conform to the learned data distribution. 

The training process of VAEs aims to optimize the 
model's parameters to reduce reconstruction errors and 



regularize the distribution of the latent space. The latent 
space representation enables the generation of unique 
and varied samples by changing the points inside it. 

VAEs are utilized in diverse domains, including picture 
generation, anomaly detection, and data compression. 
They facilitate the creation of realistic visuals, artwork, 
and interactive exploration of latent regions. For 
instance, by training on real-time sensor readings, VAEs 
can capture complex data distributions and generate 
more robust predictions on future equipment conditions 
than traditional AI methods. 

• Generative Adversarial Networks (GANs) operate 
through an adversarial process that consists of two 
primary elements: a generator network and a 
discriminator network. The primary goal of the generator 
is to provide data samples that are very persuasive, 
whereas the discriminator's role is to differentiate 
between authentic and artificially generated samples 
[44]. 

The training process of GANs involves the generator 
attempting to confuse the discriminator while the 
discriminator aims to accurately classify the samples. 
During this dynamic competition, both networks 
enhance their performance over consecutive iterations. 

GANs have established a specialized position for 
themselves due to their exceptional contribution to 
picture synthesis. They enabled the creation of very 
realistic images, the alteration of artistic style, and the 
production of painted pictures. GANs have been utilized 
for generating images and transforming text into images, 
producing films, and generating realistic simulations for 
virtual environments. 

As the advancement and refinement of these generative 
models progress, one can anticipate the production of 
increasingly realistic and superior-quality AI-generated 
material. Nevertheless, using such models also gives rise 
to significant ethical and regulatory concerns, namely, 
copyright and data privacy matters. 

• Auto-regressive models (ARMs) are notable in artificial 
intelligence for their distinctive methodology in 
generating new samples. These models estimate the 
conditional probability of each data point by considering 
the preceding context and relying on past values [44]. 
They operate sequentially, allowing for the formation of 
complex sequences. 

These models have been extensively utilized in text 
production, language modeling, and music composition. 
They possess exceptional proficiency in identifying 
interdependencies within sequences, producing coherent 
and contextually suitable outcomes. 

• Flow-based models (FBMs) utilize the method of 
normalizing flows, which entails a series of reversible 
transformations, to accurately represent complex data 
distributions [44]. These changes facilitate efficient 
sampling and the computation of probabilities. 

They possess the capability to directly represent data 
distributions. They achieve this by establishing a 
reversible mapping between the input and output 

domains, enabling data production and efficient density 
estimation. 

Flow-based models are widely used in various domains, 
including picture production, density estimation, and 
anomaly detection. Notable strengths include the 
capacity to assess probability in a manageable manner, 
precise sampling, and the adaptability to represent the 
hidden space. 

• Generative Diffusion Models (GDMs) are taught to 
restore clarity to images that have been blurred by 
Gaussian noise by effectively reversing the diffusion 
process [42], [45]. Multiple generative models based on 
diffusion have been suggested, such as diffusion 
probabilistic models, noise-conditioned scoring 
networks, and denoising diffusion probabilistic models. 

• Transformer-based models (TBMs) are a distinct type of 
deep learning architecture that has gained significant 
popularity and effectiveness in Natural Language 
Processing (NLP). 

Transformer models are commonly used to construct 
language models, with one notable example being the 
Generative Pre-trained Transformer (GPT). The models 
in this line have demonstrated exceptional skill in 
producing contextually suitable and logically consistent 
language responses to a given instruction [46]. These 
models are extensively utilized in various NLP 
applications, including text completion, question 
answering, translation, and summarization. 

Advanced behavioral analysis is applied by generative 
artificial intelligence to greatly enhance predictive 
maintenance in the manufacturing business [64], [65]. The 
procedure commences by conducting comprehensive data 
collection using many sensors put on the machines. These 
sensors continuously monitor several operational 
characteristics, including temperature, vibration, pressure, 
and acoustics. As a result, a substantial amount of data is 
gathered, providing valuable insights into the machine's 
operation and condition. The raw data is subjected to a 
feature extraction procedure, during which crucial patterns 
and characteristics are detected to provide significant 
insights into the performance and health of the system. A 
generative model, such as a Generative Adversarial Network 
(GAN) or Variation Autoencoder (VAE), is subsequently 
trained using these features. Training enables the model to 
comprehend the typical functioning patterns of the 
equipment, establishing a standard for identifying deviations 
from the norm. 

After training, the model consistently analyzes real-time 
operational data and conducts behavioral analysis by 
comparing the real-time data to the taught 'normal' behavior. 
Any substantial variation suggests potential equipment 
malfunction, emphasizing the necessity for repair. 

The system's capacity to identify prospective faults 
before equipment failure allows for implementing predictive 
maintenance strategies. Instead of following a conventional 
maintenance schedule, this technique schedules 
maintenance based on anticipated equipment failures, 
resulting in enhanced operational efficiency and optimal 
utilization of maintenance resources. 



Furthermore, as the system gathers data over time, the 
generative model consistently acquires knowledge and 
improves its forecasts. Continuous learning enhances the 
precision of predictive maintenance capabilities. 

Generative AI, with its behavior analysis and continuous 
learning, offers a novel and efficient method for predictive 
maintenance in production. This approach not only enhances 
productivity but also improves process transparency and 
product availability by greatly enhancing the overall 
efficiency and effectiveness of the production process. 

Generative artificial intelligence has emerged as a 
revolutionary technology that has completely changed the 
existing scene in the field of artificial intelligence in recent 
years. Its ability to create and synthesize data has opened 
many possibilities in various domains. Condition monitoring 
and predictive maintenance (PdM) enabled the change of 
existing approaches and the improvement of existing 
equipment monitoring and maintenance practices. 

In contrast to traditional artificial intelligence (AI) 
methodologies that rely on pre-established rules and labeled 
data to make predictions, Generative AI surpasses these 
approaches by generating novel data that adheres to similar 
patterns. By employing methodologies such as Generative 
Adversarial Networks (GANs), it comprehends and 
replicates the fundamental data patterns, facilitating the 
generation of innovative and previously unobserved data. 
This advanced technology has the potential to significantly 
transform maintenance methods, enabling a more proactive 
and efficient approach to equipment management. There 
exist numerous captivating uses of Generative AI, which 
encompass [66]: 

• Anomaly Detection: The process of anomaly 
identification using generative models entails training 
these models to effectively reconstruct typical data 
patterns. Anomalies are identified during the testing 
phase by observing substantial variances in the 
reconstruction error. Such an approach exhibits 
superiority over conventional predictive anomaly 
detection techniques due to its unsupervised nature, 
eliminating the need for labeled data. Moreover, it 
demonstrates exceptional proficiency in identifying 
novel anomalies that deviate substantially from 
established normal patterns. Consequently, this approach 
showcases enhanced adaptability in real-world situations 
characterized by a scarcity of labeled anomaly instances. 

• Data augmentation: involves the utilization of 
generative artificial intelligence models, such as 
Generative Adversarial Networks (GANs) or Variational 
Autoencoders (VAEs), to expand constrained datasets by 
generating additional samples that adhere to the 
fundamental patterns exhibited by the original data. This 
aspect holds significant value in scenarios where 
acquiring extensive labeled datasets poses difficulties. In 
the context of predictive maintenance, synthetic sensor 
data can be generated to mimic diverse equipment 
conditions and failure situations. This practice facilitates 
the thorough examination of algorithms and models 
through rigorous testing. Furthermore, the utilization of 
Generalized Artificial Intelligence (Gen AI) models has 
demonstrated its efficacy in effectively tackling the 
challenges associated with imbalanced data, particularly 

in scenarios of infrequent failures or anomalies. By 
synthesizing various instances of such scenarios, 
generative artificial intelligence (AI) effectively reduces 
bias within prediction models and improves their overall 
performance. 

• Uncertainty Estimation: The issue of uncertainty 
estimates in predictive AI algorithms has been addressed 
by generative models. In contrast to conventional 
approaches that face challenges in accurately measuring 
uncertainty, generative artificial intelligence (AI) offers 
a viable solution by leveraging the latent space to 
generate several credible iterations of the data, hence 
facilitating reliable quantification of uncertainty. In 
critical domains such as predictive maintenance, this 
functionality boosts the dependability of decisions, 
enabling organizations to make more knowledgeable and 
assured choices by relying on accurately calibrated 
estimations of uncertainty. 

• Interpretability: Certain generative models, such as 
Variational Autoencoders (VAEs), can generate a 
condensed representation of the input data, commonly 
known as the "latent space." This form of representation 
has the potential to offer valuable insights into the 
fundamental factors that contribute to anomalies, hence 
enhancing the interpretability of the results. 

• Multimodal-based Predictive Maintenance: The 
integration of varied data sources, including sensor 
measurements, images, and textual information from 
manuals, guides, handbooks and troubleshooters, 
inspection notes, and other sources within the framework 
of generative AI, has the potential to significantly 
enhance the field of predictive maintenance. Complex, 
multimodal models provide a more extensive 
comprehension of equipment health, facilitating 
innovative forecasts, expedited anomaly identification, 
and enhanced precision in maintenance 
recommendations in contrast to conventional single-
mode AI models. 

Table I. shows an overview of generative AI models that 
can be used in PdM for different application areas. 

TABLE I.  APPLICATIONS OF GENERATIVE AI IN PREDICTIVE 
MAINTENANCE 

Applications GAI models References 

Anomaly detection  
VAE, GAN 
RF*, ML, 
SVM, NN 

[30], [42], 
[43], [68], 
[69], [70] 

Data augmentation 
ML, DL, 

GAN, MLP, 
SVM, KNN 

 [71], [72], 
[73], [74], 
[12], [13], 
[14], [15], 

Uncertainty estimation 

CNN, 
LSTM*, 

QR*, KDE*, 
BNN 

[21], [22], 
[23], [75], [76] 

Interpretability VAE, ML, 
DT, GB* 

[10], [11], 
[77], [78] 

Multimodal-based 
predictive maintenance 

SVM, MKL*, 
DBN, RBM, 
DAE, CNN, 
RNN, GAN, 

MTL, MMTL 

[79], [24], 
[25], [27], 

* RF - random forest; LSTM - long short-term memory; QR - quantile regression;  
KDE - kernel density estimation; GB – gradient boosting; MKL – multi kernel learning; 

MTL – multitask learning; MMTL – multimodal transfer learning 



The introduction of generative artificial intelligence 
(AI) in preventive maintenance, particularly in condition 
monitoring and predictive maintenance, offers promising 
prospects. However, this integration also brings up distinct 
dangers and challenges. The intricate nature of generative 
artificial intelligence (AI) algorithms requires substantial 
computational resources, underscoring the importance of 
strategic planning and investments in infrastructure to 
ensure the effective implementation of these algorithms. 
Furthermore, ensuring the protection of data privacy and 
security assumes great importance, especially in the context 
of managing confidential equipment information and 
maintenance logs. In addition, it is imperative to consider 
and handle ethical and privacy considerations about 
sensitive data, as this plays a vital role in upholding trust 
and ensuring adherence to regulations during the entirety of 
the implementation procedure. 

IV. NEEDS FOR MIDDLEWARE 

Middleware facilitates smooth communication and 
interaction among various software components, operating 
systems, and devices. It offers a uniform platform that 
conceals the intricacy of the underlying systems and 
facilitates effective application development and integration. 
Middleware must tackle precise engineering obstacles, such 
as creating mobile applications and incorporating outdated 
technologies into novel services [47]. The system should 
possess several essential features, including the capacity to 
manage remote applications, compatibility with various 
communication protocols, effective memory management, 
and a high level of abstraction for application designers. 
Furthermore, the middleware must be able to expand and 
adjust to various settings, such as ad-hoc network setups. In 
addition, middleware must offer security protocols to 
safeguard confidential information shared between 
applications, guarantee dependable communication and 
resilience to errors, and facilitate compatibility across many 
platforms and technologies. Middleware requirements 
encompass the need for smooth communication and 
interaction, standardization, resolution of engineering 
challenges, support for distributed applications and diverse 
communication protocols, efficient memory management, a 
high level of abstraction, scalability and adaptability to 
different environments, security measures, reliable 
communication, and fault tolerance, as well as 
interoperability with various platforms and technologies. 

Middleware plays a vital role in contemporary software 
architecture by enabling communication between diverse 
applications and systems. Given the growing utilization of 
AI in maintenance, middleware can have a crucial function 
in seamlessly incorporating AI models into current systems. 

Data processing and filtering are crucial functions of 
middleware in maintenance aided by AI. Middleware 
facilitates data preprocessing from diverse sources, 
including sensors and logs, to guarantee that only pertinent 
and refined data is supplied to AI models. Additionally, it 
can perform data transformation, which involves changing 
data from one format to another to fulfill the specifications 
of various AI models. 

Middleware cannot only process data but also carry out 
authentication and permission functions to guarantee that 
only authorized individuals may access AI models and their 
outputs. To optimize the utilization of AI models in 
maintenance, the middleware must possess the capability to 
efficiently process substantial amounts of data and handle 
multiple requests concurrently without experiencing 
substantial delays. 

Scalability is another important requirement for 
middleware in this context. It should be able to effectively 
manage growing volumes of data traffic as maintenance 
activities expand. To seamlessly interact with preexisting 
systems, middleware must possess standardized Application 
Programming Interfaces (APIs) and be compatible with 
various operating systems. Middleware solutions must 
provide the flexibility to adapt to evolving requirements in 
maintenance operations and scale proportionally. 

Middleware in maintenance backed by AI models must 
possess robust error-handling capabilities as a crucial 
requirement. Middleware should be developed to effectively 
handle such circumstances and offer informative error 
messages for technical support teams. To guarantee 
transparency and traceability of AI model's predictions and 
actions, the middleware must record all transactions and 
offer comprehensive analytics. To adhere to security 
standards and regulations, middleware must possess strong 
security attributes, including encryption, authentication 
systems, and input validation. 

Furthermore, as the system gathers data over time, the 
generative model consistently acquires knowledge and 
improves its forecasts. Continuous learning enhances the 
precision of predictive maintenance capabilities. 

Generative AI, with its behavior analysis and continuous 
learning, offers a novel and efficient method for predictive 
maintenance in production. This approach not only enhances 
productivity but also improves process transparency and 
product availability by greatly enhancing the overall 
efficiency and effectiveness of the production process. 

Middleware is crucial for optimizing data processing and 
facilitating the management of AI models in the context of 
predictive maintenance. Optimal utilization of AI models 
necessitates data processing in a manner that considers the 
specific context in which it is being used [48]. Collecting and 
managing data in real-time is a highly significant work in 
complex systems, and it can be made easier using 
middleware [49]. Additional authors [50], [51] also highlight 
the necessity of middleware to effectively link components 
and facilitate the development of intricate systems, a 
particularly crucial aspect in predictive maintenance. 
Collectively, these studies emphasize the crucial function of 
middleware in enhancing the efficiency of utilizing AI 
models in maintenance operations. 

V. FUTURE DIRECTIONS 

The future of AI in predictive maintenance is promising, 
with a focus on renewable energy systems [52], industrial 
systems monitoring [53], and intelligent maintenance 
frameworks [54]. Machine learning and deep learning 
algorithms are being explored for failure detection and 
classification in high-performance computing systems [55]. 



The shift from traditional maintenance to predictive 
maintenance is driven by smart manufacturing and IoT [56]. 
Quality management systems are being redefined in the 
Industry 4.0 era, leveraging AI and big data analytics for 
predictive quality management [57]. The application of AI 
in predictive maintenance is exemplified by the successful 
prediction of machine failure using an artificial neural 
network [58]. The use of deep learning models in predictive 
maintenance is also being explored, focusing on anomaly 
detection, root cause analysis, and remaining useful life 
estimation [59]. 

Current generative AI models are often considered black 
boxes because they lack transparency and interpretability, 
making it a challenge to understand their decision-making 
processes [40]. These concerns have raised worries about 
outcomes, security threats, and ethical problems. As a result, 
there is a growing need to create explanatory models for 
GAI. Designing explainable GAI models involves the 
utilization of various important technologies, such as 
interpretable artificial intelligence algorithms, model 
visualization tools [60], and human-in-the-loop (HITL) 
approaches [61]. Machine learning algorithms that are 
interpretable, such as decision trees and rule-based models, 
allow for capturing intricate correlations between input 
features and outputs. As a result, these algorithms explain 
the model's output. Furthermore, model visualization 
approaches [60], such as activation mapping, saliency maps, 
and feature visualization, provide a visual representation of 
the decision-making process of GAI models. This helps 
users comprehend how models classify, group, or connect 
various inputs. HITL approaches incorporate the 
participation of human specialists in the decision-making 
process. GAI models can enhance this by jointly designing 
interfaces and implementing interactive feedback 
mechanisms to get improved outcomes [61]. By integrating 
these technologies, the transparency and interpretability of 
GAI models can be enhanced [40]. 

One of the promising technologies is that a digital twin 
usually consists of a simulation model that will be 
continuously updated to reflect the state of their real-life 
twin. These emerging frameworks enable the acquisition of 
extensive data regarding the failure performance of crucial 
and pertinent components. Effective execution of error 
detection and prediction is highly advantageous and 
essential. A specific instance is a way of diagnosing faults in 
two phases, which digital twins facilitate through deep 
transfer learning [62]. 

Moreover, technologies like Virtual Reality (VR) and 
Augmented Reality (AR) can replicate essential procedures 
and conduct virtual assessments of manufacturing lines and 
machinery. This aids in identifying errors that may result in 
prospective interruptions and resolving them before 
impeding operations. VR/AR can be utilized to instruct 
maintenance technicians in a virtual setting and enable them 
to rehearse and acquire new proficiencies without the 
necessity of tangible apparatus or actual hazards. In addition, 
technicians can obtain immediate remote support from 
professionals situated in different locations, enhancing 
efficiency and minimizing the necessity for physical visits, 
which is particularly important in the ITS domain. 
Moreover, this technology can be employed to carry out 
virtual examinations of equipment and machinery, enabling 

technicians to detect prospective faults before they escalate 
into significant complications. VR/AR technology-enabled 
interactive manuals facilitate maintenance procedures by 
offering technicians clear and sequential instructions, 
simplifying the comprehension and execution of intricate 
jobs. VR/AR technology enables interactive manuals that 
offer technicians step-by-step instructions for maintenance 
operations, facilitating comprehension and completion of 
intricate jobs. It facilitates remote collaboration among 
technicians, allowing them to share information and work 
together more efficiently, enhancing teamwork and 
minimizing errors. Virtual reality (VR) and augmented 
reality (AR) technologies can decrease expenses related to 
maintenance training, inspections, and repairs by 
minimizing the requirement for physical prototypes, travel, 
and on-site visits. 

All mentioned future directions could be combined with 
appropriate middleware that simplifies the process of 
connecting applications that were not designed to connect 
and provides functionality to connect them intelligently, 
streamlining application development and speeding time to 
market. AI middleware is software that enables 
communication and connection between applications or 
application components in a distributed network [63]. All 
this implies its use in the field of GAI, whose potential 
should further improve the concept of e-maintenance, 
especially in the field of poorly accessible or inaccessible 
complex systems. 

VI. CONCLUSIONS 

The ability of intelligent transport systems to act 
adaptively in changing conditions and situations based on 
data collected and processed in real-time enables 
information transparency, controllability, and improved 
response of transport systems, which ultimately makes them 
intelligent. The complexity of such systems is usually very 
high, so it is understandable why they require special 
maintenance approaches. This is especially evident in the 
maintenance of dislocated and hard-to-reach systems. E-
maintenance and PdM have proven to be satisfactory 
solutions in such cases. 

The transition from the now traditional maintenance 
methods to the dynamic realm of GAI represents a 
significant leap in efficiency and effectiveness. GAI will 
only be better and more advanced in future versions, and 
with increasingly extensive TLP resources and the use of 
appropriate language models, the success of this approach 
will be guaranteed. Therefore, the future of maintenance lies 
in the adaptive learning capabilities of platforms and 
middleware powered by GAI. Although the use of GAI in e-
maintenance is becoming more certain every day, it must not 
be forgotten that AI decision-making comes with AI 
responsibility and that AI systems must also be maintained. 
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