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Abstract—Symbolic artificial intelligence (AI) reflects the
domain knowledge of experts and adheres to the logic of the
subject area, rules, or any relations between entities. Connec-
tionist (neuro) approaches based on artificial neural networks
are excellent for extracting abstract features, contextualizing,
and embedding interactions between features. When con-
nectionist and symbolic approaches are properly aligned in
a model, they benefit from complementary strengths; the
combination is referred to as a hybrid or neuro-symbolic
artificial intelligence (NSAI) model. The advantages that
NSAI brings to the field of natural language processing (NLP)
have received little attention from researchers in recent years.
Therefore, in this review, we focus on the impact of neuro-
symbolic approaches for NLP tasks, i.e. text classification,
information extraction, machine translation, and language
understanding. Relevant research articles from Scopus, Web
of Science, and Google Scholar were carefully examined
using appropriate keywords in the period from 2019 to
2024. The review aims to show the types of NSAI systems,
identify the motivation for using NSAI, evaluate the use of
additional annotations for content description, and briefly
describe how the neuro-symbolic connection improves the
methodology and enables trustworthy and explainable AI
systems in current NLP research. The review also highlights
areas of application and improvements achieved by NSAI
approaches in benchmarks.

Keywords—neuro-symbolic artificial intelligence, natural
language processing, knowledge representation, deep learning

I. INTRODUCTION

Existing knowledge is often represented using sym-
bols and rules, both readable by computers and largely
understandable by humans. This kind of representation
makes symbolic artificial intelligence (AI) interpretable
and explainable to users. Symbolic models usually form a
knowledge base (KB) and include ontologies, sets of rules,
and domain logic. They are created using the knowledge of
domain experts and require considerable effort. With high-
dimensional raw data, it is difficult to extract relevant rules
that are robust to noise and take into account interactions
between attributes. Unlike symbolic models, deep learning
(DL) models learn directly from high-dimensional data, by
automatically extracting features from data. Unfortunately,
DL models are mostly black-box models that can hardly be
interpreted. Integrating symbolic and DL models, neuro-
symbolic artificial intelligence (NSAI) leverages the sup-
porting strengths of both disciplines to compensate for
their imperfections.

Fig. 1: Categorization of common tasks in NLP, tasks in black color
are within the scope of this survey.

Neural language models (NLMs) based on DL repre-
sent tokens in a continuous vector space and were first
introduced by Mikolov et al. [1] in 2013. They proposed
learning unique word representations from a corpus while
retaining syntactic and semantic linguistic information;
this process is called pre-training. Since the meaning of
the word changes depending on the neighboring words,
i.e. the context of the text, newer NLMs such as ELMo
[2] or BERT [3] create context-dependent representations.
Larger and deeper pre-trained NLMs, also called large
language models (LLMs), contain representations with
high-quality features and exhibit emerging properties [4],
which is the ability of a model to learn specific knowledge
without specific training. Consequently, both scientists and
industry drivers increased the number of parameters in
NLMs, exceeding trillions of them [5]. However, pre-
training, domain adaptation, and fine-tuning of LLMs
require resources not available to most researchers.

Motivated by the above and with the high cost of
annotating data for building high-quality models, this work
aims to review NSAI methods for solving the following
NLP tasks: 1) named entity recognition (NER); 2) relation
extraction (RE); 3) question answering (QA); 4) natural
language inference (NLI); 5) sentiment analysis; 6) ma-
chine translation (MT); and 7) summarization (summ), as
depicted in Figure 1. The papers reviewed in this study
were published between 2019 and 2024 and were carefully
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selected based on sets of keywords1 from three sources:
Scopus, Web of Science, and Google Scholar, further
filtered for relevance.

We contribute by comparing the performance of each
NSAI method to the corresponding best-performing model
from an online resource2, although the score may not
necessarily be the intended goal of the surveyed NSAI
method. Another contribution is in summarizing the NSAI
applications to NLP tasks from the past 5 years and
aggregating them to a higher level of abstraction in a
following manner. We researched where knowledge was
introduced to a DL model (its regularization type), and the
effects of that fusion by several categories: data efficiency
(DE), performance, explainable AI (XAI), and parameter
efficiency (PE). We highlight the key point achieved by
an introduced NSAI method, and how it was developed.
In this way, we give the reader an objective insight into
the effort-reward ratio of NSAI for NLP.

In Section II, the existing surveys regarding the use of
NSAI in NLP are listed and briefly described. Section III
provides fundamental information about NLP, symbolic
AI, and DL. Section IV contains the main insights of
the survey, presented in a condensed form within Table
I. Section V concludes the paper.

II. RELATED WORK

The usual focus of related work is on incorporating
symbolic domain knowledge into existing NLP models.
The classification of events in the biomedical domain by
Frisoni et al. [6] described knowledge-based informed (KI)
DL architectures. The study described datasets, KBs, and
machine learning models for event extraction (EE) with an
evaluation of performance. In contrast, the work of Oltra-
mari et al. [7] focused more on several knowledge injection
techniques for NLMs with a description of the KBs for
question-answering (QA) tasks. Yang et al. [8] distilled the
coupling methods for knowledge representation with pre-
trained NLMs using the attention mechanism [9]. Liu et
al. [10] discussed several NSAI methods optimized using
reinforcement learning for weakly supervised information
extraction. Hamilton et al. [11] described neuro-symbolic
models and their constituting parts and evaluated different
effects achieved without quantification. In addition, they
provided summary statistics on trends in industrial appli-
cations and the quality of research studies [11]. When
compared to [8], [10], [11], we simplify the overview
by extracting the methodology for coupling symbolic and
connectionist methods, and focus on evaluating the per-

1Neuro-symbolic: nsai, neuro-symbolic, neurosymbolic, knowledge-
injection, knowledge informed, prior knowledge, knowledge injection,
neural-symbolic and connectionist. NLP: natural language, nlp, language
processing, language mode*, machine translation, information extraction,
named entity, text classification, language understanding, aspect mining,
topic model* and summarization. Symbolic: symbolic, logic, predicate,
fol, syntax, morphology, pos, tagging, ontology and rdf.

2The best-performing models were retrieved on January 31 2024 from
https://paperswithcode.com/ leaderboard platform.

formance and different machine learning effects achieved
on text data3.

III. FUNDAMENTALS

Creating pragmatic NLP task-specific hybrid models
requires an understanding of knowledge representation
(KR) and representation learning. Therefore, this section
covers introductory methods and notions related to NLP
tasks, as well as symbolic and connectionist approaches
related to NLP.

A. Natural Language Processing Tasks

One of the oldest NLP tasks began in the 1940s when
a generative sequence-to-sequence mechanical translation
relying on syntactic features was pursued. Today, machine
translation (MT) still benefits from part-of-speech (POS)
tagging and parsing, where each word is tagged and the
structure of a sentence is created resembling different
linguistic levels: lexical, dependency, and syntactic. The
field of information extraction (IE) gained popularity after
1995, when Grishman and Sundhein [12] presented the
first NER challenges still burdened by inter-annotator
agreement and what the true gold standard labels are.
Presently, many NLP tasks benefit from specialized public
KBs, e.g., word polarity SenticNet [13], which specializes
in sentiment analysis, emotion detection, and stance de-
tection to reduce the influence of negations, sarcasm, and
cynicism occurring in texts.

Natural language inference (NLI) evaluates model lan-
guage understanding of the semantic and syntactic struc-
ture by having to classify the hypothesis concerning the
premise: entailment, contradiction, or neutral. Predictors
using DL for NLI tasks suffer from word co-occurrence
between premise and hypothesis, predetermined by DL
use of shortcuts. Gaining momentum lately, QA is used
to evaluate LLM stored knowledge and can be set up as
a classification or generation task, where the aim is to
select the correct label from a multiple-choice answer or
to generate an answer [14].

B. Symbolic Knowledge Representations

A symbolic AI system usually consists of a knowledge
base (KB), which contains symbolic terms and data, and an
execution engine. The engine reasons about data, where a
model satisfies a KB if it is consistent for all KB axioms.
KBs may consist of common knowledge, e.g. the CYC
project [15], or linguistic domain-specific knowledge as in
WordNet [16], or biological abnormalities in human dis-
ease knowledge as in Human phenotype ontology (HPO)
[17]. All these KBs are often used in NLP. Ontologies,
as a specific form of KB, are created with a predefined
formalization of the relations between concepts, namely
axioms of a description logic.

First-order logic (FOL) defines a logical language
as a tuple of predicates, functions, constraints, and

3We did not evaluate visual question answering. Instead, only different
modalities and views of textual data were considered.

https://paperswithcode.com/


variables. The FOL formulas can specify 1) sim-
ple axioms, e.g., if an entity is a person, then it
is not a number: ∀x, Person(x) ∧ ¬Number(x), un-
less we have a person named "One", or 2) gen-
eral rules like ∀Gene∃Locus(partOf(Gene, Locus) ∧
partOf(Locus, Chromosome)). NLP usually leans to-
wards fuzzy logic by allowing multiple semantics of words
and propositions knowing only the probability of being
True or False, thus allowing ambiguous meanings. NSAI
researchers often resort to the probabilistic soft logic (PSL)
models to adapt probabilistic graphical models (PGMs).

C. Deep Learning in NLP

Recurrent neural networks (RNNs) extract features from
arbitrary sequence lengths. The long short-term mem-
ory (LSTM) and gated recurrent unit (GRU) RNN cells
were introduced to avoid the gradient issues and create
high-capacity expressive RNNs, which eventually evolved
into bidirectional LSTMs (bi-LSTM) [18] and GRUs (bi-
GRU). In 2014, Bahdanu et al. [9] developed an encoder-
decoder MT model contextualizing input representations
to the decoder as attention-weighted aggregation of en-
coder outputs. A generalization of the former multi-head
attention (MHA) mechanism was introduced by Vaswani
et al. [19] in a transformer architecture. MHA creates an
attention matrix that can be interpreted as a weighted,
fully connected graph adjacency matrix to induce ordering
upon a graph-like structure. The inputs require a posi-
tional encoding, an absolute encoding [19], and a later-
suggested relative positional encoding within the MHA
[20]–[22]. Graph attention networks (GAT) [23] use an
attention mechanism between connected nodes and the
graph transformer network [24].

IV. IMPROVING NLP WITH NSAI

This section delves into efficient NSAI methods that
overcome distinct limitations of DL models in NLP tasks.

In the examined work, we identified three general paths
for improving NLP with NSAI that are elaborated in
subsection IV-A. The first path focuses on creating rules
that constrain the model, i.e. create a new KB for key
variables or features. The second path includes methods
focused on dataset preprocessing – establishing links to
existing KB terms. This includes the modifications to DL
architecture and data aggregations. The third path includes
methods based on incorporating the symbolic engine in
NLM prompt pipelines for some predefined features. All
these paths in NSAI leverage KBs to regularize the
DL model, accounting for the established domain expert
understanding and often necessary additional heuristics.
Some of the additional heuristics include the number of
neighbors to consider, and choosing a subset of relations
from a KB.

We compare the performance of the incorporated NSAI
method to the baseline state-of-the-art method, wherever
the performance data are available. We also categorize and
evaluate the effects that the NSAI method inclusion brings

in terms of DE, performance, XAI, and PE. Lastly, we
direct attention toward assessing the societal advantages
(human-centric AI) from the latest research, emphasizing
the workings of NSAI models in practice.

A. Symbolic KR for DL

In the Regularization column of Table I, we
summarize four types of regularization used to incorporate
symbolic KR in a DL model: 1) the model was constrained
with rules; 2) a modification (mod) of the DL architecture;
or 3) the input attributes or hidden representations were
aggregated (agg.) with symbolic KR; or 4) pipeline.

1) Rule-Constrained Model: The first methodology on
the rule-constrained model by Nandwani et al. introduced
a set of rules as constraints in the Lagrangian dual [25].
Other methods were realized based on teacher-student
methodology, distilling symbolic knowledge to a DL
model. One approach by Chen et al. used expectation
maximization (EM) optimization to distill PSL model
knowledge into an RNN [26] for weakly supervised learn-
ing, thus bringing about the best scoring model only some-
what weaker than the inter-annotator gold standard. The
approach rules out impossible outcomes, e.g. if a token
is labeled as inside-organization, then its previous token
must be either inside-organization or begin-organization.
This approach proposed by Aakur and Sarkar focuses on
reducing the fraction of labeled data required for training
a common-sense NLI model into a new task [27]. They
proposed a symbolic teacher from pattern theory using the
ConceptNet KB, which chooses the lowest energy con-
ceptualizations for NLI and QA based on semi-supervised
learning. The performance of rule-constrained models was
checked using NER [25], [26], [28], and all models were
aimed to improve data efficiency (DE).

2) Modifications to DL Architecture: Demonstrating
that linguistic features are still a valuable resource for MT,
a constituency tree was applied by Nguyen et al. to modify
the MHA block into tree-structured attention [29] for the
transformer. Zhang et al. [30] identified redundant heads
of MHA and then added constituency tree information to
the local-phrasal position matrix, enabling better reflection
of syntactic relations between elements. On the other
hand, using Stanford’s CoreNLP, Li et al. [31] extract
factual relations and impose relations in the adjacency
matrix in a parallel branch of MHA. A factual relation
mask matrix was constructed by factual relation tuples
obtained from CoreNLP and was used in the encoding
procedure. Most MHA modifications were successful in
enhancing the performance effect of NSAI in MT [29]–
[31]. In the classification NLI and QA in medicine, Kang
et al. [32] first used NER and RE to connect entities
and relations with a medical evidence dependency KB.
With these dependency graphs, the authors modified the
MHA adjacency matrix of a pre-trained BioBERT. At the
time Kang et al. [32] provided best-performing model for
PubMedQA, yet two years later a significant performance
increase was achieved by Chen et al. [33]. Liang et al. used



Sentic GCN-BERT to construct an adjacency matrix from
the dependency tree with weights and a mask determined
by the SenticNet ontology to improve overall sentiment
prediction performance [34].

3) Aggregations: Input relations refer to the injection of
knowledge into a DL model by modifying its input. With
dependency POS tags, Chen et al. [35] generated rules
that are used as input to an LSTM cell. Using domain-
specific ontologies to create multi-modal (MM) free-text
representations with shortest dependency paths (SDP)
from ontologies resulted in an increased F1 for the RE
performance [36]. However, Wu et al. [37] recommended
using representations from different language models for
DE sentiment and NLI classification [37]. They used
BERT, ConceptNet-Numberbatch, and GloVe, where the
adjacency matrix was created from ConceptNet ontology
relations, and the final representation was optimized with
a GAT. Karpov et al. [38] aggregated data from a social
network graph using deep walk (DW), matrix factorization
(SVD), and a feed-forward network, once for an additional
input representation and a second time for aggregation of
a parallelized layer in BERT by generated weights for a
quicker convergence of perplexity.

4) Pipelines: Recent models used augmented prompts
to make API calls to obtain valuable proof-tested cal-
culations within the prompt pipeline [39], [40]. These
models were shown to be parameter-efficient (PE). With
the availability of LLMs, Tan et al. [41] created aspect-
based summaries using ConceptNet and WikipediaDB
using weakly-supervised learning. Using aspects and term
frequency - inverse document frequency (TF-IDF) for
word ranking from aspects, relevant Wikipedia KB prompt
tuning using the BART model [42] increased performance
when trained on 0.4% of labeled data [41]. Without tuning
the model Han et al. [43] used rules to inject a prefix
that dynamically influences the MHA into a prompt for
each shot at NER and RE. Showing validity of adding
context to each separate input, compared to DL end-to-
end trained model by Li et al. [44], exhibited lower F1
score on OntoNotes5.0 dataset. Another prompt-informing
approach with RoBERTa and concepts from ConceptGraph
for stance detection achieved a top score [45].

B. Effect Categories

Effect categories are focused on providing a list of tan-
gible benefits that NLP credits from NSAI. The following
subsections show why to use NSAI, while Table I reveals
how and for which NLP task NSAI was used.

1) Data Efficiency: DE refers to the ability of an NSAI
method to achieve better performance than the DL coun-
terpart when training the models on a fraction of training
data. For example, NSAI models for NER benefit from
PSL [25], [35], significantly enhancing model performance
when using only 1% of training data to update the weights.
BERT-type DE models [27], [37], [41] enhanced scores by
more than 20% when trained on less than 1% of labeled
data. Still, high efficiency and great results were obtained

with RNN architectures [25], [35] when less than 5% of
labeled data was used. A somewhat different DE-focused
method described in [26] used multiple annotator noisy
labels for NER and sentiment analysis with an estimation
of annotators’ reliability.

2) Performance: NSAI models achieve better perfor-
mance than pure DL approaches by significantly enhanc-
ing the existing DL architectures [29], [30], [32], [35],
[36], [38], [45], [46], which is visible in Table I column DL
Model and Improvement. As a part of a hybrid NSAI
method, Dai et al. [28] used domain-specific rules to create
a KB and populate the cancer registry table. Alternatively,
for social dialogue, the MT tree transformer [29] was
enhanced even further by adding factual knowledge to the
model [31]. It would appear, however, that DL end-to-
end cyclic parameter sharing showed the most promising
results for a transformer-based MT architecture [47].

3) XAI: Explainable AI uses NSAI models to provide
explanations through the use of a KB. Biomedical domain
EBRO ontology-generated explanations were judged by
human-in-the-loop for NER [48], where a person received
and evaluated both explanations and predictions from the
NER classifier. Also, an XLNet model in [49] used a
surrogate model to explain sentiment predictions with
POS constituency importance within a Yelp review. Siyaev
et al. [50] constructed a specific dataset from Boeing
manuals which was used to create an AI system enabling
virtual reality educational walk-throughs for maintenance
personnel.

4) Parameter Efficiency and External APIs: For in-
stance, the BERT KI model [46] can be competitive to
the three times bigger BioMegatron [51] by injecting rel-
evant knowledge from Reactome, SemMedDB, and other
biomedical ontologies for NER. Regrettably, most authors
did not provide the number of NLM parameters in the
studies for us to evaluate PE. The external API refers
to calling existing programs to produce facts, namely
using a calculator, python interface, or an MT model. As
we mentioned before, QA is one of the main tasks to
evaluate complex reasoning and LLM memory. To predict
on datasets involving mathematics or general knowledge
LLMs use external API calls to receive an exact result or
additional domain context and often do another inference
forward pass through the frozen LLM with the new knowl-
edge [52]. With the use of APIs, the number of necessary
parameters using GPT-J (6.7B) and CODEX (14.8B) were
efficiently reduced [39], [40]. Yet, some studies, e.g., [40]
cannot match the results when compared to a huge LLM
[53].

C. Human-centric AI

Unfortunately, LLMs are still lacking in explainability.
Contrary to this fact, human-centric AI requires fairness
and trustworthiness, which are crucial for high-stakes AI
system application [54], [55]. Computer-assisted diagnos-
tics in healthcare, as a longstanding and prospective way
to increase quality of life, demands ethical solutions and
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raises questions of team accountability. Several biomedical
use cases, such as a cancer registry pipeline with Bi-LSTM
and fact-checking KB [28], and COVID-19 clinical NER
with EBRO ontology and BERT LLM [48] were focused
on solving real-world problems contributing highly accu-
rate models. A different kind of use case NSAI solution
for aeronautic maintenance [50] demanded a creation of
dedicated dataset and compared GRU-based RNN and
transformer architectures to translate text into KB queries.
Producing human-centric AI application for learning and
inspecting Boeing aircraft parts and upkeep procedures.
Newer methods for LLM, often implemented as an NSAI
system, retrieval augmented generation (RAG) [56] re-
duced hallucinations, although they still carry the risk
of the frozen model missuses which demands dedicated
attention to bring about trustworthy AI systems.

V. CONCLUSION

Regularization of neural networks with existing do-
main expertise from KBs in NLP requires additional data
preprocessing and potentially a modification to the deep
learning architecture but shows measurable benefits to
algorithms. We have shown that NSAI methods exhibit the
greatest improvements for data-efficient (DE) AI systems,
providing robust solutions when there is little labeled
data; these models could be used in assisted annotation
tools for various NLP tasks. Additionally, most NSAI
methods improved the performance of the DL models for
which they were developed but some fell short of their
capabilities when compared to the best model.

Efficient fine-tuning of parameters, prompt tuning, and
reasoning structures attempt to overcome the cost of
training and using LLMs. We have shown that the com-
binations of symbolic structured information and connec-
tionist models offer a sound alternative that overcomes the
critical limitations of individual DL and symbolic models,
thus enabling trustworthy and accurate AI systems saving
precious limited resources for everyone.
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