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A B S T R A C T

The need for sensitive data detection and identification has increased in recent years. Sensitive data detection
and identification are necessary steps for privacy protection. The focus in this field has been on unstructured
data detection using natural language processing (NLP) approaches, while there has been little progress in the
field of structured data. Most of the structured data approaches consider independent feature representations of
cells, without taking potentially relevant context into account. In this work, we introduce a novel context-based
approach named CASSED, which stands for Context-based Approach for Structured SEnsitive Data Detection.
CASSED addresses the problem of sensitive data detection in structured data through the lens of NLP, using
the transformer-based BERT method. Our approach aims to actively capture relations both within and between
cells in the same column as the assumption is that the data present in the same column in a table are
mostly very similar. CASSED works as a classifier for columns in database tables with the task of predicting
a label or multiple labels for different types of sensitive data that a column may represent. Since there is no
officially recognized dataset for the task, we compared CASSED on datasets used for similar tasks from related
work. Furthermore, we created our own dataset focused on sensitive data to evaluate CASSED. Our method
outperformed methods from related work both on their datasets and achieved significantly better results on
our own dataset compared to our baseline model as well as models from related work. Our research suggests
that treating structured data as context-rich is a viable strategy for sensitive data detection and identification.
1. Introduction

The protection of personal data features prominently both in aca-
demic and business circles. The General Data Protection Regulation
within EU (GDPR, 2016) sparked not only the widespread debate on
data privacy and protection but also the creation of many different
privacy acts and regulations worldwide, such as the California Con-
sumer Privacy Act (CCPA, 2018) in California, or the General Personal
Data Protection Law (LGPD, 2018) in Brasil. All of these regulations
aim to give individuals a relatively high degree of control over their
personal data and impose strict guidelines on the data collectors. As
a consequence of the application of these regulations, the need for
sensitive data detection and privacy protection has increased (Spector,
Norvig, Wiggins, & Wing, 2022). Privacy protection is challenging in
many ways, as companies collect vast amounts of data often without
knowing exactly what is being collected or how to effectively search
for or retrieve personal data. While some of the collected data are in
the form of unstructured text, the majority are in the form of structured
databases which contain multiple tables consisting of cells organized
into rows and columns.
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This paper addresses the challenges of detecting sensitive data in
structured databases. There is a need to automate this process because
the amount of data stored in structured databases is considerable
and the regulations about what is considered sensitive data are al-
ways changing (Quinn & Malgieri, 2021). Specifically, the problem
of structured sensitive data detection is going through the columns
in a database table and determining for each of them whether they
contain sensitive data or not, as well as what type(s) of sensitive
data they are. The formulation of the problem can be viewed as a
subtype of the semantic column labeling problem (Trabelsi, Cao, &
Heflin, 2021), which is a more general problem with strong similarities
to the named entity recognition problem (Marrero, Urbano, Sánchez-
Cuadrado, Morato, & Gómez-Berbís, 2013), since named entities must
be detected in the data.

For any solution tackling sensitive data detection to be successful,
it is imperative to correctly interpret the meaning of a cell, as well
as take the context from surrounding cells into account. In recent
years, different attempts have been made to solve this problem. The
initial approaches relied heavily on rule-based heuristics such as capital
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letters, regular expressions (regex), or lists of predefined entities (via
lookup tables). While rule-based methods can correctly identify some
of the sensitive data types, they become challenging to use in the
detection of certain data types (e.g., physical addresses or phone num-
bers) which have a large number of different formats (Ye, Chen, Wang,
Dillig, & Durrett, 2020). Furthermore, rule-based approaches inherently
lack context and understanding. Different machine learning methods
have been developed to address the latter problem. Most of these
approaches attempt to circumvent the aforementioned issues of context
and understanding for tabular data by either applying machine learning
methods directly to the cells, relying on column statistics or character
distributions, or considering other columns in the database to aid in
the classification. While these methods do work to some degree, in a
recent work (Wu, Wu, Qi, & Huang, 2020), it has been shown that the
solutions to the structured sensitive data detection could benefit from
using Natural Language Processing (NLP) and leveraging the context
inside of and between cells in the table to deduce embeddings of each
cell. Although some of the related approaches like SeLaB (Trabelsi
et al., 2021) and TaBERT (Yin, Neubig, Yih, & Riedel, 2020) do use NLP
and context by averaging cell embeddings over columns or generating
embeddings from the whole row, they do not allow the NLP models
to capture multiple cells from the same column at the same time, and
thereby directly use tabular context to deduce the appropriate label of
the whole column.

To solve the structured sensitive data detection problem and its
automation, we propose a novel method named CASSED (Context-
based Approach for Structured SEnistive Data Detection), which creates
column context by combining column metadata and cell values and
integrates them into a single input for a natural language embedding
model (BERT). Subsequently, BERT (Devlin, Chang, Lee, & Toutanova,
2018) allows the classification of individual columns into one or more
labels in a way that the natural language embedding can consider mul-
tiple cells of the same column simultaneously. CASSED also employs
rule-based methods to aid in the classification of formulaic data types
such as social security numbers or credit card numbers.

The contribution of this work is the following:

• A novel method for structured sensitive data detection is proposed
that classifies columns into one or more labels using an ac-
tive context-based approach in addition to traditional rule-based
heuristics;

• A dataset is created for handling the problem that can be used as
a standard benchmark for the related methods due to a lack of
such a dataset for structured sensitive data detection;

• The proposed method’s classification model demonstrates clear
superiority when compared with a baseline model and with mod-
els from the related work on the novel dataset;

• The proposed method’s classification model outperforms models
from related work on their own published datasets that are used
to handle the more general problem of semantic column labeling.

The remainder of this paper is structured as follows. Section 2 provides
a brief overview of various approaches to the structured data inter-
pretation and labeling problem, with specific focus on the detection
of sensitive data. In Section 3, we first explain the dataset which we
created and used for training our model, as well as provide further
details about the model itself. Section 4 details the experiments we
conducted in order to correctly identify sensitive data. In Section 5, we
discuss the challenges encountered and the results obtained. Finally,
Section 6 concludes the paper.

2. Related work

As discussed, the main focus of our work is the efficient detection
of sensitive data in structured datasets. However, research and data for
this specific problem are not widely available. Therefore, we expanded
2

our search and included research into the related semantic column
labeling tasks as well as the creation of embeddings for structured data.
Namely, the interpretation and classification of structured datasets can
be achieved in a variety of ways, depending on both the task and the
approaches used to solve the task. The approaches include rule-based
and machine-learning methods which analyze the data stored in the
structured datasets and aid in solving the considered task.

Besides the basic differentiation between using rule-based and
machine-learning approaches for detection problems in structured
datasets, there are several other ways to differentiate approaches
(Vušak, Kužina, & Jović, 2021). The first separation looks into the
way machine learning models use the values inside the cells, which is
also called intra-cellular context. In this sense, some machine-learning
approaches such as character or word embeddings look at characters
or words separately and encode them without considering other char-
acters or words in the cell, and later join or average them to create
the final embeddings. Other machine learning approaches, such as
BERT, use contextualized word embeddings and consider all words
inside the cell simultaneously, and pay attention to what is important
while looking at the whole input. The second way of differentiation of
approaches looks at the way the approaches use inter-cellular context
when identifying sensitive information contained within a cell. Inter-
cellular context refers to the use of other cells inside the table to create
the embeddings of cells. The most often used inter-cellular context
approaches are shown in Fig. 1. In theory, the detection results would
be optimal if the models employ the approach shown under (6) in
Fig. 1, namely taking the whole table as context and using all the avail-
able information for the detection of sensitive data types in each cell.
However, for practical purposes, this approach is not computationally
feasible for now due to its high time and space requirements, especially
for large database tables. Thus, the approaches from related work
implement different ways of taking context into account, depending
on what is considered to be the most useful or computationally the
least demanding for their task. The third differentiation is in the
way inter-cellular context is used, namely either passively or actively,
where active context refers to the creation of embeddings with insight
into multiple cells directly, and the passive context approach which
generates cell embeddings separately and later joins or averages them.

In Table 1, we provide an overview of the related work along with
the methods used and limitations observed.

Some commercial approaches like Trifacta (Trifacta, 2014) and
Power BI (Microsoft, 2016) mostly use rule-based methods, while other
approaches such as Cloud DLP (Google, 2018) and PII Catcher (PII,
2018) use both rule-based and machine learning methods on database
cells. These approaches fall under the simplest category (1) in Fig. 1,
with none of them taking any inter-cellular context into account.

SIMON (Azunre et al., 2019) attempts to solve the semantic col-
umn labeling problem by employing a character-level convolutional
neural network (CNN) together with a long short-term memory (LSTM)
network (Hochreiter & Schmidhuber, 1997) to produce embeddings of
individual cells, combine them into a singular embedding and subse-
quently classify the column into one of the possible labels. SIMON,
however, does not use any kind of context and only averages the cell
values of each column to predict the final label.

Sherlock (Hulsebos et al., 2019) aims to consider relations between
cells and formulates more complex concepts of context. To this end,
Sherlock uses a deep neural network architecture that does not only use
the current cell in the table to generate its features but also incorporates
context by considering all other cells in the same column through a
modified version of Paragraph Vectors (Le & Mikolov, 2014) which are
generated beforehand. This approach is shown under (2) in Fig. 1, and
includes taking into account only the summary of the current cell’s
column. Together with the paragraph vectors, Sherlock also employs
statistical features of the current column such as character distributions

and average cell lengths.
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Fig. 1. Approaches to inter-cellular context representation. In all cases, the cell with the value ‘France’ is the currently looked-at cell. (1) Only the current cell is taken into
account, there is no context. (2) The current cell and the column of that cell are taken as context. (3) The current cell and the row of the cell are taken as context. (4) The
current cell, the row, and the column are taken as context. (5) Summaries for all columns are created a priori and they are given as context together with the current cell. (6)
All the cells in the table are given as context.
Table 1
The description of related work with the methods they are using, and what in our mind are the limiting factors or
shortcomings.
Description of related work approaches and limitations

Related work Methods Limitations

Trifacta (Trifacta, 2014),
Power-BI (Microsoft, 2016)

Rule-based methods No natural language
understanding
No context
No adaptability

Cloud DLP (Google, 2018), PII
catcher (PII, 2018)

Rule-based methods No intra-cellular context
Basic machine learning
methods on singular cells

No inter-cellular context

SIMON (Azunre et al., 2019) Character level embeddings of
individual cells

No intra-cellular context

No inter-cellular context

Sherlock (Hulsebos et al.,
2019)

Single cell embeddings No intra-cellular context
Static column embeddings No active inter-cellular context
Statistical column features

SATO (Zhang et al., 2019) Deep neural networks No intra-cellular context
understanding

Static context of other
columns and statistics

No inter-cellular context

SeLaB (Trabelsi et al., 2021) BERT for intra-cellular context No active inter-cellular context
Static inter-cellular column
context

TaBERT (Yin et al., 2020) BERT for intra-cellular context Created for question answering
task

Active inter-cellular context of
entire row

No context of other values in
column

TABBIE (Iida, Thai,
Manjunatha, & Iyyer, 2021)

BERT for intra-cellular context Created for corrupt cell
detection

Static inter-cellular context
from row and column

Not looking at multiple cells
while creating embedding with
natural language
SATO (Zhang et al., 2019) extends on Sherlock (Hulsebos et al.,
2019) by incorporating a Topic Prediction model which works on the
entire table. In such a way, SATO also uses other columns in the
database to extend the context of a cell, which can be seen under (5) in
Fig. 1. While both SATO and Sherlock consider table context, they do
so in a passive way, meaning that the context is generated beforehand
and the model is not allowed to actively look at other cell values while
creating an embedding for the current cell.
3

SeLaB (Trabelsi et al., 2021) approaches the semantic column label-
ing problem using a two-step processing. In the first step, the method
uses BERT to generate embeddings and classify each cell individually,
and subsequently calculating the most likely label from these. In the
second step, SeLaB repeats the first step with additional information
of other predicted column labels from the first step, thereby using the
context of all other columns to determine the label of each column.
This approach can be seen as a variation of the approach under (5) in
Fig. 1.
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TaBERT (Yin et al., 2020) tackles a slightly different problem as
it aims to answer the question in the form of a sentence and predict
which cells from the table give the best answer to the question. Its value
for the current problem is in giving a glimpse into a possible way to
incorporate dynamic context. TaBERT attempts to solve the question-
answering problem by calculating the similarity of the sentence to a
row in the table and then feeding both the sentence and the most
similar row into BERT (Devlin et al., 2018), as shown under (3) in
Fig. 1, thus allowing the model to consider all cells inside of the same
row at the same time, effectively allowing the model to learn what it
needs to pay attention to in its context.

TABBIE (Iida et al., 2021) is a recent method that first creates an
embedding for each cell separately with BERT. Afterwards, individual
embeddings of cells in the same row are taken as input into the
transformer. The process is repeated for each individual cell in the
column. In the end, the outputs are averaged to obtain the embedding
which takes into account the context of both current row and column.
This is a strategy depicted under (4) in Fig. 1.

Our idea to tackle the problem of structured sensitive data detection
through the lens of NLP was inspired in part by TABBIE’s idea of using
whole columns as context for BERT and by TaBERT’s idea to concate-
nate cells as input and give them straight to BERT in their tokenized
format, without creating embeddings for individual cells first, which is
an approach depicted in Fig. 1 under (2). This resulted in the removal
of an intermediary step of single-cell embedding creation. By removing
that step, the features of the input are entirely preserved for BERT and
its contextual embedding method. This is an active inclusion of context,
and is the main contribution of our proposed method with respect to
related work. Our approach concatenates the cell values of a whole
column and tokenizes them to create an input for BERT. Afterward,
BERT produces embeddings for each token of the input and later on
deduces the final classification of the column.

3. Materials and methods

The datasets created and used by aforementioned methods tackle
a very broad problem of semantic column labeling. While CASSED
can solve tasks of this nature, the idea behind creating it is to tackle
the specific challenge of sensitive data detection in structured datasets
for which there is no widely available dataset. To confront the lack
of a relevant dataset, we opted to create a hybrid dataset, consisting
of both synthetic (generated) data and pseudo-anonymized real-world
data, which incorporates a wide array of sensitive data types. In the
continuation of this section, we will first describe the data challenges
we faced, then proceed with the description of our created dataset, and
finally elaborate on the CASSED method.

3.1. Data

3.1.1. Challenges in sensitive data detection datasets
Building a machine learning model to recognize sensitive data relies

heavily on the availability of real-world datasets containing personal
information. However, these datasets are, by definition, not readily
available to the public. Furthermore, the use of real-world datasets
in training and testing machine learning models can lead to poten-
tial security issues, such as the extraction of sensitive data from the
classifier itself (Ateniese et al., 2013) or the possibility of extracting
the information from the neural networks through statistical inference,
as described in Dwork, Smith, Steinke, and Ullman (2017). These
considerations necessitate the creation of synthetic datasets. Synthetic
datasets are commonly used in disciplines where privacy is a concern,
such as medicine (Chen, Lu, Chen, Williamson, & Mahmood, 2021) and
computer vision (Nikolenko, 2019). Synthetic data can be used both to
train the model and to augment a real-world dataset. In related work,
synthetic datasets were created by either a direct use of tools such as
Faker (Faker, 2021) or by taking columns from other datasets such as
4

VizNet (Hu et al., 2019) and refining them to take a subset of columns
matched to DBpedia column types. While these datasets can be decent
as a comparison for machine learning models in general, they do not
represent sensitive data types, and therefore are not the best possible
representation of data to handle our problem.

Furthermore, the datasets from related work do not seem to incor-
porate column headers for various reasons. Most of the related work,
such as Sherlock (Hulsebos et al., 2019) or SIMON (Azunre et al., 2019),
either state that column headers are not reliable sources of information
or they use column header data to generate the column labels. While
we acknowledge that column headers can sometimes be empty, provide
useless or even misguiding information and that models should not
rely solely on them, we strongly disagree with the notion that they are
useless in most cases. Instead, we argue that column headers very often
carry substantial information about the column data type. Additionally,
column headers are almost always present in real-world data in some
form and should be incorporated into synthetic datasets and used by
models for context creation.

We also draw attention to the problem of VizNet (Hu et al., 2019)
and Faker (Faker, 2021) datasets, which have only one label for each
column. This is different from real-world data sets, where it is often
quite possible for one column to contain multiple types of sensitive data
labels.

Lastly, there are multiple other challenges in real-world structured
data, which can potentially limit the efficiencies of machine learning
models and require careful data preparation. Some of these challenges
include input errors, inconsistent column headers, human errors, the
use of shorthand or business-specific labels for columns, etc.

3.1.2. DeSSI dataset description
To counter these obstacles and to facilitate the use of CASSED in

relational databases for sensitive data detection, we created our own
relational data models to train and test the approach. These mod-
els aim to simulate the real-world environment. The aforementioned
structured data challenges of missing or misleading column headers
were simulated in our dataset so that the model would not have to
rely heavily on column headers. The constructed dataset consists of
snippets of personal data aggregated from various open-source datasets
(e.g., from Kaggle), synthetic data generated by Python packages such
as Faker (Faker, 2021), and pseudo-anonymized real-world data pro-
vided to us by an organization under a strict third-party confidentiality
agreement.

The sensitive data types in question can be seen in Table 2 with
all the remaining information, which is not sensitive, being labeled
as ‘Other data’. While the dataset incorporates column headers, we
made sure that they are sometimes randomized strings which give
no information, or even give misleading information, to account for
possible bad practices or errors observed in real-world datasets. The
dataset consists of over 31,000 database columns with 100 rows,
together with column headers. The data are presented in the format
of comma-separated values and published on Kaggle (DeSSI, 2022).
The dataset, which we named DeSSI (Dataset for Structured Sensitive
Information), is randomly split in ratios of 60/20/20 percent among
training/validation/test datasets. The labels in our dataset are manually
labeled columns with either a single label if the column contains one
type of sensitive data or multiple labels to cover the cases where the
column contains multiple types of sensitive data.

Since the goal of our model is to detect sensitive types of infor-
mation, the amount of possible labels in the dataset is restricted to
sensitive data types and is thus smaller than the number of labels in
other datasets, which in most cases contain general semantic types and
not sensitive data. Since the number of labels in our dataset is smaller
and also mostly easier to detect than general purpose labels present in
datasets of related work, this also leads to higher results on our dataset
than on the datasets from most of the related work.
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Table 2
Types of sensitive data considered.
Class Description

Other data Everything that does not fall under any sensitive data type
Phone number Various supported formats of landline and mobile phone numbers
Address Multiple formats, can contain the street name, street number, and postal code
Person Name, Surname, can contain multiple of each or a combination
Email Email address
NIN National Identification Number
Date Various date formats
Organization Various types, supports extensions, i.e LLC, DD. . .
GPE Geopolitical entities such as states, cities, countries, etc.
Geolocation Longitude and Latitude
SWIFT/BIC Business identification codes for both financial and non-financial institutions
IBAN International bank account number
Passport Passport numbers
Religion Religions and members of such organizations
CCN Credit card numbers with all their supported formats
ID Card Numbers of identification cards
Sexuality Various types of sexualities
Gender Various types of genders
Nationality Nationalities based on countries
Race Various descriptions of races
To the best of our knowledge, DeSSI is the first widely available
ataset for sensitive data detection in structured data. Other available
atasets are general as they were created to solve a broader problem,
hile DeSSI is a more specific dataset focusing on sensitive data. We
cknowledge that DeSSI can certainly be improved and expanded upon
n the future. However, we do encourage the use of it as a standard
ataset for comparison on the problem of sensitive data detection in
tructured data sources.

.2. Initialization and input

CASSED attempts to account for the nuances of natural language
hich often occur within cells, as table cells may contain multiple
ords, or in some cases, even multiple sentences. To this end, CASSED
ses BERT — the well-known language representation model which
as extensive capabilities for detection of relations between words.
hen testing the other existing models mentioned in the related work

ection, we could not obtain satisfactory results on the tabular data we
enerated. Therefore, we decided to shift our focus to the approach
hat worked well on our unstructured data, namely treating the column
s a quasi-natural sentence and using context-sensitive transformers.
he driving idea behind this approach was the assumption that cells

n a column should be similar to each other in some way, and that
llowing the model to look at all cell values in a column at the same
ime might give more information than looking at each cell individually
nd then averaging. In a large portion of cases, we can also rely on
he column header as an indication of what purpose these cells should
ave. However, we decided against considering the column header as
he most important feature as column header naming conventions can
nclude shorthands, or even be missing or misleading in real-world
nterprise databases.

To take advantage of these assumptions, our model constructs the
nput to BERT from the column header together with multiple cell
alues from the same column, separated by delimiters, as shown in
ig. 2. In such a way, BERT can take multiple cell values at the same
ime into account, thereby jointly incorporating both the context inside
f a single cell, as well as the context between cell values. During the
esearch, we also tested multiple types of delimiters and found that the
hoice of the delimiter does not significantly affect the performance of
ur method. While any delimiter works well, we have found an increase
n performance when using different delimiters to separate column
eaders and cell values. This could be expected since they are used for
ifferent purposes and give additional information to the model.
5

3.3. Concatenating columns

Another problem faced by the method is the limited number of
tokens that can be entered into BERT. In the default version of BERT,
the number of tokens in one sequence is limited to 512. The maximum
token count is exceeded in such cases where database cells contain
multiple sentences or when tables contain a large number of rows.
This problem can be tackled in different ways. One option is to simply
truncate the input to the maximum token length. However, this could
lead to a loss of valuable information, especially when the values of
cells are long and contain dozens of tokens, as this would make the
input consist of only a few cell values. The additional unfavorable
outcome is that multiple labels in the column are not detected due to
the truncated input, as some of them might simply not make the cut.
To address these issues, we opt to not truncate, but instead split the
information from the whole column into multiple inputs if the token
count exceeds the maximum token count, after which each column
part is sent to BERT separately and in the end the BERT’s output is
averaged.

3.4. Processing

After the embeddings are created and the input is finalized, BERT is
employed on a batch of column embeddings. BERT’s decoder produces
a non-normalized prediction (logit), for each label, which is afterwards
averaged over all column parts that the column was separated into.
After the averaged logits for the whole column are calculated, a sigmoid
function is applied to each of the logits to produce normalized proba-
bilities for each class individually. A sigmoid function is used, rather
than a softmax function as the task is to find multiple labels if they are
present. If a softmax function were to be used, the majority presence of
one label might diminish the presence of another label, while a sigmoid
function considers all labels separately from each other.

After the probabilities are calculated for each label, they need to
exceed the threshold value required for the classification, which, after
extensive testing, we have found to be around 0.4. The depiction of the
whole CASSED method is shown in Fig. 3.

3.5. Post-processing

As previously mentioned, CASSED aims to detect cases of sensitive
data using mainly machine learning and NLP, but in addition, it also
uses rule-based methods. These methods often help with the detection
of sensitive data types which have a specific and strict form that is
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Fig. 2. An example of a column turned into an input for the model. The values of cells are separated by a comma, while the name of the column is at the front, separated by a
dot.
Fig. 3. CASSED method overview — the column is represented as an input and forwarded to both BERT and a rule-based layer separately, after which the probabilities for each
sensitive data type are generated and averaged over all the column parts. If the averages exceed a certain threshold, then the column is classified as the according type, allowing
multiple labels.
known beforehand, or when sensitive data type only occurs in a subset
of values, most of which are known. While machine learning methods
are efficient for general sensitive data type detection purposes, they
usually struggle with very specific cases, such as deciding if a 16-digit
6

cell value is a social security, credit card, telephone, or some other kind
of number. The differences among these sensitive data types are subtle
and it can be very hard even for a human to discern them. In these
situations, where sensitive data come with very specific limitations and
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formats, without a lot of context, rule-based methods help significantly
to disambiguate them.

Therefore, for sensitive data types such as emails, social security
numbers, or credit card numbers, CASSED uses regular expressions,
because these types can only occur in specific established formats, and
instances of false positives occur in negligible amounts, if at all.

For the values which belong to a subset of possible values, the
model uses lookup tables. Such classes are gender, nationality, religion,
ethnicity, and so on. There is always a small, finite set of options and
all of the values can be listed so that they can always be detected.

In addition to the main flow of classification through BERT, a side
flow is created where each input column is passed through rule-based
methods that produce a probability for the column to be of that label
by looking at the ratio of the number of detected labels inside of the
column and the total amount of cells in the column. The generated
ratio is treated as a probability of the whole column representing that
label type. After the main flow of the model classifies the column into
one or multiple classes, the side flow then compares the probabilities
it generated and also compares them to the threshold, altering the
classification if it exceeded the threshold.

3.6. Baseline

Before creating CASSED, we developed a model using more tradi-
tional methods for structured data. This model did not provide satis-
factory results, which led us to look for and experiment with more
unconventional methods. To compare the results from CASSED, we
used our baseline model alongside methods from related work. The
baseline model is a machine learning model which uses simpler con-
ventional methods for NLP which do not consider or include possible
contextual relations inside or between cells. This model serves as a
reference point to show how inclusion of context improves classifi-
cation results. Initially, the method creates word embeddings using
GloVe (Pennington, Socher, & Manning, 2014) for each word, which
are then averaged over the whole cell value. Aside from the word em-
beddings, it also creates character embeddings using a one-dimensional
CNN, as recommended in Vušak et al. (2021). The character embed-
dings are concatenated to the averaged word embeddings. After the
final embedding is created, it is passed through a fully connected
neural network. The label of the cell is predicted by applying a sigmoid
function to the logit outputs of the neural network. For the final
result, the results of all individual cells in a column are taken into
consideration and averaged.

4. Calculation

CASSED uses FLAIR (Akbik et al., 2019), a Pytorch-based framework
for NLP, for training and testing on the datasets of related work and
on the DeSSI dataset. A distilled and uncased version of BERT (Sanh,
Debut, Chaumond, & Wolf, 2020) was used with the AdamW opti-
mizer (Loshchilov & Hutter, 2017) and a learning rate of 5 ⋅ 10−5. The

odel was run for 20 epochs, with a mini-batch size of 16 on an NVIDIA
TX 3090 GPU. The learning process on the DeSSI dataset took around
hours to complete.

.1. Evaluation metrics

Since there are multiple classes of sensitive data, the main way to
etermine how well our model works is to use the F1 score calculated
rom the confusion matrix. When detecting sensitive data, recall is more
mportant than precision for all labels except ‘Other data’. Namely,
aving a false negative, where the model does not find sensitive data
nd thus subsequent tasks do not properly remove or de-identify that
ensitive data, is more damaging than it is to have a false positive,
here the model detects something that is not sensitive data as sen-
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itive, which only leads to more data being removed or de-identified in
Table 3
The comparison of results of CASSED and the models of related work on their datasets
on metrics they provided in their research papers.

Comparison of CASSED with related work models on their datasets

Datasets Results

VizNet Metric Sherlock CASSED
Weighted F1 0.890 0.896

Faker Metric SIMON CASSED
Weighted F1 0.84 0.996

WikiTables
Metric SeLab CASSED
Micro F1 0.51 0.72
Macro F1 0.66 0.80

downstream tasks. Three different types of measures are used in the
related work and our study. Those measures are micro, macro, and
weighted. They relate to the way in which the average result over all
samples and classes is calculated. In the micro average, every example
contributes equally to the final result. In the macro average approach,
class results are calculated independently, and each class contributes
the same amount to the final result, independent of the class size.
Finally, in the weighted average approach, class results are calculated
separately, and the contribution of each class relates proportionally to
the number of examples of the class to the final result.

In this section, the results are first shown for the comparisons of
a limited version of CASSED with other methods on their datasets,
which are not directly related to the task of sensitive data detection.
Afterwards, the results and comparisons on the DeSSI dataset are
shown.

4.2. Comparisons

In order to compare our model with related work and get a basic
idea of how well the machine learning part performs, we compare the
performance on datasets from similar tasks of models discussed in the
related work section. We use only machine learning part of our model
as our rule-based methods are specifically created with sensitive data
types in mind, which mostly do not occur in these datasets. Also, we
omit the rule-based methods due to the NDAs, as we are not permitted
to publish the exact handcrafted rule-based methods we created. Hence,
in further experiments, we evaluate only the part of the model up to
the post-processing step.

While we consider that in real-world applications column headers
very often carry important information which can help in the detection
of column labels, datasets from related work do not take them into
account. This is either because they use the available column headers to
generate labels for their dataset or because they consider that headers
could not be created in such a way that they adequately represent real-
world data. To compare our model on these datasets, we removed the
part of our model which takes column headers into account and only
left the input containing field values.

In Sherlock (Hulsebos et al., 2019), the dataset was created by
extracting specific columns from the VizNet (Hu et al., 2019) corpus
and labeling them by their column headers, thereby creating 78 pos-
sible labels. The dataset was split into a training/validation/test set
using the 60/20/20 percentages division. As seen in Table 3, their
method achieved a weighted F1 score of 0.890 on the test set, while our
base part of the model scored slightly better, achieving a weighted F1
score of 0.896, without using column headers or additional rule-based
methods.

5. Results

5.1. Training and testing on datasets from the related work

SIMON (Azunre et al., 2019) semantically classifies columns in
tabular data. The main data that they used for training, as well as their
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initial tests, were generated from Faker (Faker, 2021) and contained
nine different label types. We followed their data generation procedure
and generated 10,000 columns of data, which we split according to
their proposal with a 60/30/10 training/validation/test percentage
division. Taking into account that the created data was automatically
generated, CASSED still achieved significantly better results than SI-
MON. As seen in Table 3, their model produced a weighted F1 score
of 0.84, while our model classified the dataset almost perfectly, with
a weighted F1 score of 0.996. The performance of our model clearly
shows that only using character-level features and omitting broader
context negatively impacts the model’s performance.

SeLaB (Trabelsi et al., 2021) uses a curated version of the Wik-
iTables dataset from the WikiTables corpus (Bhagavatula, Noraset, &
Downey, 2015), which contains data from over 1.6 million Wikipedia
pages. As seen in Table 3, their model achieved a macro F1 score of 0.51
and a micro F1 score of 0.72, CASSED managed to achieve a macro
F1 score of 0.66, and a micro F1 score of 0.80, thereby showing the
advantages of capturing the context of the whole column.

SATO (Zhang et al., 2019) method took a subset of the Sher-
lock (Hulsebos et al., 2019) dataset and split it into five parts, instead
of training and testing the model on the exact dataset of Sherlock. After
the cross-validation was performed on those five parts, the authors very
unconventionally reported their results as the average of those five test
runs of the cross-validation. They did not create a separate test set
which the model has not seen, thus we did not know how to properly
compare our model with theirs, since we did not want to encourage
further use of methods that clearly overfit. We opted to split the dataset
used in SATO with a 60/20/20 split between train, validation, and test
corpora, thereby taking the datasets of their cross-validation indexed as
0, 1, and 2 as training; 3 as validation; and 4 as test sets. We achieved
a weighted F1 score of 0.90, which is comparable to our result on the
full Sherlock dataset and is expected since SATO worked on a segment
of it.

Other methods mentioned in related work, such as TaBERT (Yin
et al., 2020) and TABBIE (Iida et al., 2021), deal with the same
problem of embedding a database table but are used for very different
downstream tasks. They focus on the tasks of question-answering or
outlier detection and are not meant to classify columns of database
tables, so we consider that comparing our model with theirs would
probably lead to misleading information.

Lastly, SemTab (Cutrona et al., 2022) is a yearly challenge for the
ontology task of knowledge base construction, which also incorporates
a task where column labels need to be predicted. However, as the task
was created as an ontology challenge, the authors did not provide train-
ing and test datasets for comparison, but rather tested the submitted
models which were trained on arbitrary datasets, or used approaches
that are not based on machine learning and did not require training
data. As the experiments were conducted without a predefined training
and test set, we did not see a feasible way to properly compare our
model to its results.

5.2. Training and testing on the DeSSI dataset

The results on the DeSSI dataset (test part) for the CASSED model
that uses only the machine learning part are presented in Table 4.
They are presented for each label, giving its precision (P), recall (R),
and F1 measures. The results show a very high and sometimes perfect
F1 score for some classes. The test dataset results of the baseline
model, related work, and both CASSED with and without the rule-
based methods are reported in Table 5. The results show that CASSED
significantly outperforms the baseline model, as well as Sherlock and
SeLaB, in all aspects, while the difference between the CASSED models
with and without rule-based methods can mostly be seen in the macro-
averaged metric types. While the machine learning part on its own has
very good results in general, the rule-based part of the model provides
8

classification when a label has been found under strict rules, and in
Table 4
The results showing precision (P), recall (R), F1-score (F1), and support (S) of only the
machine learning part of CASSED on the synthetically generated DeSSI dataset, test
part.

Results of CASSED on DeSSI by label

Class P R F1 S

Other data 0.9955 0.9940 0.9947 1334
Phone number 0.9966 0.9954 0.9960 876
Address 0.9973 0.9987 0.9980 742
Person 1.0000 0.9852 0.9925 741
Email 1.0000 0.9956 0.9978 678
NIN 0.9793 0.9822 0.9807 673
Date 0.9982 0.9982 0.9982 570
Organization 1.0000 1.0000 1.0000 434
GPE 1.0000 1.0000 1.0000 424
Geolocation 1.0000 1.0000 1.0000 400
SWIFT/BIC 0.8667 0.9811 0.9204 53
IBAN 1.0000 1.0000 1.0000 28
Passport 0.9130 0.8400 0.8750 25
Religion 1.0000 1.0000 1.0000 22
CCN 1.0000 1.0000 1.0000 18
ID Card 0.8000 1.0000 0.8889 16
Sexuality 1.0000 1.0000 1.0000 14
Gender 0.9286 1.0000 0.9630 13
Nationality 0.9231 1.0000 0.9600 12
Race 1.0000 1.0000 1.0000 9

Table 5
The results of the baseline model, Sherlock, SeLab, CASSED with only the machine-
learning part (CASSED*), and the whole CASSED model on macro-averaged and
weighted metrics of precision (P), recall (R), and F1-score (F1) on the synthetically
created DeSSI dataset, test part.

Comparisons of models on DeSSI

Type Metric Baseline Sherlock SeLaB CASSED* CASSED

Macro
P 0.9350 0.928 0.7531 0.9699 0.9707
R 0.8193 0.888 0.8586 0.9885 0.9978
F1 0.8672 0.895 0.7790 0.9783 0.9832

Weighted
P 0.9205 0.933 0.7897 0.9943 0.9944
R 0.9181 0.932 0.7360 0.9936 0.9951
F1 0.9170 0.931 0.7429 0.9939 0.9946

doing so only bolsters the recall of labels which can be detected in
such a way. Rule-based methods are not used on the most represented
labels, such as Other data, Phone number, Address, and Person, and
thus the improvement will mostly be visible in the macro-averaged
recall metric, and less so in other metrics.

5.3. Training and testing on real-world data

The principal goal of any sensitive data detection approach is to
work efficiently with real-world data. Therefore, for internal testing and
analyzing how well DeSSI represents real-world data, we also created
another dataset from real-world data which we cannot publish due
to the strict NDA. That dataset is around half the size of our dataset
and the results on it are slightly worse than the results on DeSSI, by
around 0.02 for weighted F1, achieving a weighted F1 score of 0.976
(compare to Table 5). The slight drop in performance is expected and
can be attributed to the variations and noisy data that are found in
real-world datasets. In creating DeSSI, we aimed to introduce as much
nuance and noise as possible, however, due to the diverse nature of
these variations in real-world datasets, it is impossible to represent all
of them without making the dataset lose its generalizability, thus it is
expected that results will always be slightly better on DeSSI than on
real-world datasets.

6. Discussion

In this paper, an approach to the problem of classifying sensitive
data types in database table columns is presented. As mentioned, the
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definition of sensitive data is not set in stone and varies depending
on the topic. We tested our CASSED approach on a handful of other
related datasets on similar tasks and outperformed the methods that
use those datasets (Table 3) without relying on column headers, and
by only using the machine learning part of our model. However, since
these datasets were not really in the domain of sensitive data, we opted
to create a dataset from synthetic and publicly available data called
DeSSI which includes the most important sensitive data types. Although
the dataset could certainly benefit from expansion in both its scope
and the set of sensitive data types, it should provide a good starting
point for comparing other models to ours for this task. Our method was
also applied to a dataset created using real-world test and production
databases, for which we do not have publication rights. The results
on real-world datasets give insight into the possible differences and
shortcomings of our synthetic dataset to be addressed in the future.

In addition to testing CASSED on datasets from related work, we
also tested it on DeSSI and compared it to the performance of models
described in the related work section and our baseline model, as seen
in Table 5. These experiments served as a reference point to how much
of an improvement active inter-cellular context can achieve.

Unlike the baseline method and the related work models which use
no context, or only use passive inter-cellular context, CASSED makes
the assumption that the data within the cells may be in some form
of natural language and that the task of classifying a column benefits
from the model being able to direct its attention to one of the cells
at any given moment. To make use of this assumption, CASSED takes
advantage of the extensive capabilities of BERT to account for context
by converting the database tables into an input that encapsulates whole
columns along with metadata and passing it to BERT for classification.

As seen in Table 5, the results show that CASSED outperforms the
baseline model and the related work models in all aspects. It also
achieves very high F1 scores in all sensitive data categories (Table 4),
and in some which are easier to detect, even has perfect F1 scores,
which indicates that the incorporation of intra-cellular context through
BERT and active inter-cellular context is a viable approach that should
be considered for the problem of structured sensitive data detection
and, more generally, semantic column labeling.

Rule-based methods enhance the performance of CASSED to a de-
gree (Table 5), by detecting certain labels which occur in very strict
formats which are not always easily detectable for machine learning
models. An argument can even be made to not classify some of the
labels in the machine learning part of the model, but instead rely only
on rule-based methods for these labels if they have such a strict format
that the rule-based methods should almost never misclassify them.

We mentioned that CASSED has a small drop in performance on
real-world data, which implies that the DeSSI dataset could use some
careful expansions and adjustments, both in scope and in the number
of columns, as well as discovering where the variations and noisiness in
real-world data exactly come from. These expansions and adjustments
should be carefully conducted in order to retain generalization and
not adjust too much to one specific real-world dataset. Nevertheless,
we consider that the small drop in performance only attests to the
soundness and robustness of the proposed approach.

7. Conclusion

We propose a novel method, called CASSED, for solving the problem
of structured sensitive data detection as well as for solving the more
general semantic column labeling problem. The novelty of the method
comes from the use of NLP on whole columns of structured data. Specif-
ically, the method thereby allows the NLP model to actively consider
multiple cells from the same column while creating embeddings and
labeling the column. The method automates efficiently on large sets of
database columns. In addition to the proposed method, a new dataset,
called DeSSI, was created, to aid in the task of structured sensitive
data detection and is, to our knowledge, the first widely available
9

dataset of this type. CASSED outperforms the related work on the
broader problem of semantic column labeling on their datasets, and
it also outperforms the related work and a baseline model on DeSSI’s
structured sensitive data detection problem, which brings us to the
conclusion that NLP together with the whole column context can be
used to gather more information about structured data.

The potential next steps would include the incorporation of even
more context in the NLP models without increasing the computational
times significantly, as well as further expansion and improvement of
the DeSSI dataset.
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