

Challenges in Designing Software

Architectures for Web Based Biomedical

Signal Analysis

Alan Jovic

1*
, Kresimir Jozic

2
, Davor Kukolja

1
, Kresimir Friganovic

1
, Mario Cifrek

1

1
University of Zagreb Faculty of Engineering and Computing, Unska 3, HR-10000 Zagreb,

Croatia,
2
 INA - industrija nafte, d.d., Avenija Veceslava Holjevca 10, p.p. 555, HR-10002 Zagreb,

Croatia
*
Corresponding author: alan.jovic@fer.hr

Abstract. In contemporary explorations of biomedical data, there is a strong

inclination towards software platforms that offer ubiquitous access and ease of use.

Traditional biomedical signal analysis, such as detection of disorders in

electrocardiogram recordings is considered as difficult task. There are many

approaches to tackle such tasks, but the common assumption is that such an

analysis should be performed both offline (after data collection) and particularly off

the web, using MATLAB (or Octave) programs or other specialized software.

There has been little effort involved in complete web solutions for biomedical

signal analysis, which, compared to traditional analysis, have many advantages:

access from afar, browser-only software requirements, reliance on fast server

solutions for calculations, etc. This chapter considers web systems for biomedical

signal analysis and describes their software architecture design aspects. It examines

its applications: home care, medical education, signal repositories with

visualization capabilities, signal analysis environments with data mining. The focus

is on challenges involving these systems, like: data privacy, frontend workflow,

frontend and backend interactions, database design, integration of data analysis and

reporting libraries, programming language issues, etc. We emphasize that little

work was published regarding architectural considerations in this setting and

highlight the importance of overcoming these issues.

1. Introduction: Background and Driving Forces

There has been a significant progress made recently in scientific, computerized exploration of

biomedical data, where novel software platforms are developed that offer remote access and data

mining capability. Traditionally, biomedical time series (signal) analysis tasks include, among

many others: detection of disorders by processing of electrocardiogram (ECG) recordings [1],

analysis of sleep in electroencephalogram (EEG) recordings [2], analysis of gait and muscle

dynamics using surface electromyogram (EMG) [3], calm/distress classification by skin

conductivity [4], etc. All of these tasks are considered as difficult to accomplish, since

mathematical methods for accurate analysis are computationally demanding and since the

difference between a disorder and healthy state may not be totally reflected in the analyzed signal.

There are many approaches developed that offer solutions to such analysis problems, but the

mainstays are still considered to be offline analysis (after all the data was collected) and off-the-

web analysis, using either MATLAB (or Octave) based scripts or frameworks [5], or other

specialized software, e.g. for heart rate variability analysis [6].

 The primary reason for such a mainstay, aside from biomedical engineering tradition, lies in

complex algorithmic procedures for signal processing and analysis that take a lot of computer

time to complete, visualize and interpret [7].

 In Fig. 1, we depict one of the usual workflows for a complex biomedical signal analysis

task. The primary steps included in such a workflow are:

1. the acquisition of signal data, either from an existing web repository, local database, file

storage or directly from a measuring instrument [8,9],

2. signal preprocessing, including noise filtering, signal transformations, characteristic points

detection [10],

3. feature extraction, usually recommended by medical experts or medical guidelines for a

particular type of signal and analysis goal [11],

4. feature selection and/or dimensionality reduction, usually based on several statistical and

machine learning techniques (e.g. principal component analysis, filter based selection,

wrappers, etc.) [12-14],

5. model construction, usually involving multivariate inductive statistics, classification,

regression, or unsupervised learning machine learning methods [15,16],

6. results visualization and interpretation, using a variety of statistical and machine learning

evaluation tools and methods [17].

Although some steps may be skipped, depending on the analysis goal, input signal type and

methods used, the entire process may be automated only partially and is cumbersome on the

hardware and software resources of the platform on which it is performed. Also, special expertise

in biomedical engineering research field is needed in order to intervene in the process.

 In order to ameliorate the issues with the hardware and software resources, the majority of

novel research focuses on remote healthcare, where services operate in the way to offer remote

collection of data, transfer of data via network, and medical center based analysis on a server or

cloud architecture using a variety of complex signal processing tools [18]. Still, the main issue

with such a process is that both signal analysis and signal inspection are considered to be reserved

only for medical and biomedical engineering experts, acting locally, in hospitals or research

centers.

 There has been little effort involved in complete web based solutions for biomedical signal

analysis that would enable on-the-web analysis of patient's data. The advantages of web based

solutions for biomedical signal analysis are plenty: remote and ubiquitous access, browser-only

software installation requirements, reliance on fast server solutions for calculations, independent

client and server side development, etc.

Figure 1. Complex biomedical signal analysis scenario

Signal data

acquisition

Signal

preprocessing

Feature

extraction

Model

construction

Feature

selection

Data source Data transformations and extraction

of potentially relevant features
Data mining methods

Interpretation

Results

visualization

and

interpretation

 In this chapter, we mostly consider web based systems that enable biomedical signal

analysis. We focus on software architecture aspects in designing such systems, from the

perspective and experience of an ongoing research project, named MULTISAB, aimed at

developing both research and application based web platform for parallel, heterogeneous

biomedical time series analysis, intended for medical disorder diagnostics and classification [19-

21] that would support complex analysis scenarios such as the one depicted in Fig. 1. For the

sake of completeness, we also examine typical applications of web based systems for home

healthcare that have very little or no options for the end user [22], medical educational software

platforms that offer training to medical staff regarding biomedical signal analysis [23], biomedical

signal repositories that offer both signal recordings and signal visualization [8], as well as

electronic and personal health record systems that are related to the current topic [24].

 The chapter does not consider offline and off-the-web biomedical time series analysis

software developed in specific medical domains, although there are many examples of such

software [5,6,25,26]. We also do not discuss numerous biomedical image applications and

software in this work, given either as a web or as offline solution [27-30].

 Challenges in developing web based biomedical signal analysis software are considered,

such as: data privacy, security and user roles, frontend workflow organization, frontend and

backend interactions, changes in implementation languages and libraries, database design,

integration of existing data analysis and reporting libraries, and workload amelioration. We would

like to emphasize that not much work was published regarding these practical aspects of

biomedical time series analysis software design and implementation in a web setting. Therefore,

through an in-depth exploration of these challenges, we highlight the importance of further

development of web based solutions to end users.

 In this chapter, we will intermittently use the terms "biomedical signal", "biomedical time

series" and "physiological signal" as synonyms. In subchapter 2, an overview of related work is

provided, and in subchapter 3, architectural challenges are presented, with some examples and

discussion from our developing MULTISAB web platform. Subchapter 4 discusses specifics

regarding design, hardware, software and other requirements needed to construct a biomedical

signal analysis web platform. Subsection 5 provides a short discussion and conclusion of this

chapter.

2. Overview of Web Based Systems for Biomedical Time Series Analysis

Web based systems for biomedical time series analysis have evolved significantly since the late

1990s (the advent of major internetization). The evolution of such systems has had several

directions:

 web physiological data repositories, highlighted mostly by the well known PhysioNet

website [8];

 remote healthcare systems for online patient monitoring, based on improvements in

wireless sensor technologies [31-33], with different storage capabilities, such as cloud

infrastructure [34], and governed today by a multitude of companies covering various

aspects of online service, see e.g. [35];

 medical educational software, intended for better understanding of complex physiological

processes, elucidated by biomedical time series visualization [36];

 electronic health record systems, primarily intended to replace traditional paper health

records and to allow information sharing among medical specialists and primary care

physicians for the purpose of improving patient care [37], but also intended for clinical

decision support, usually taking into account multiple information sources available in the

record [38], still having many architectural challenges [39];

 research and application oriented platforms/environments that enable decision support

and data mining of time series data, with major focus in bioinformatics [39], and only

with recent development in biomedical time series data analysis [19,40].

2.1. Web Physiological Data Repositories

Web physiological data repositories, such as the renowned openly available PhysioNet platform

[8], or [41] were developed in the last two decades as an ongoing effort to promote better

understanding of biomedical time series data through scientific exploration of their mechanisms

and behavior. Although a web repository may provide a user with somewhat limited analytical

capabilities, its primary use is to expose reliable and available anonymized patient data to

interested researchers and other users. Contributors to databases in web repositories are usually

hospitals and established medical research centers. The web repository allows better comparison

of developed feature extraction and data mining algorithms among researchers, usually with

standard physiological signal databases available as reference points (e.g. MIT-BIH Arrhythmia

Database database on PhysioNet web portal).

 Web based biomedical signal visualization and off-the-web use of biomedical signal analysis

software (such as WFDB toolkit available from PhysioNet [8]) are also important aspects that

contributed to widespread influence of the web signal repositories. Aside from open web

physiological data repositories, there also exist commercial or membership oriented repositories,

such as the THEW project [42] and Ann Arbor Electrogram Libraries [43] that offer similar or

even improved (better annotated, higher sampling quality) data records, compared to the openly

available repositories, but at a price.

2.2. Remote Healthcare Systems

In aging societies, the importance of remote healthcare systems cannot be overstated. Indeed,

immediate assistance in the case of medical emergency is imperative, and organization of

technological environment so that it best suits patient's needs and limitations has become a largely

investigated issue. Specialized scientific conferences (e.g. HealthyIoT, AmIHEALTH) and

journals (e.g. Journal of Healthcare Engineering, Journal of Biomedical and Health Informatics,

Sensors) cover this research area. Scientific literature usually focuses on descriptions of wireless

sensors and connectivity protocols [21,44], with the majority of applications in home

environments [45,46]. Particular effort is usually attributed to server side data processing [47],

where many different architectures and technologies may be used, e.g. cloud based architecture

[27,48], standard server with relational database architecture [49], and standard server with

online (script based) processing [47].

 Data mining in remote healthcare systems may be related to simple outlier detection

(whether sensor anomaly or patient emergency) [50], fuzzy rule based diagnostic systems that

alert physicians in the case of emergency [51], prediction of disorder onset (as is the case with

blood glucose in diabetes) [52], or a more complex expert system that allows multiple diagnoses

based on a variety of measured parameters [47], to name just a few. Some of the analyses are

more suitable for online processing, such as anomaly detection and rule based alerting, while

others are more appropriate for offline analysis, such as prediction of disorders. There are

multiple challenges involved in remote health monitoring systems, such as data acquisition and

preprocessing (in particular, a lack of standardized wireless sensor solutions), medical equipment

pricing, data privacy preserving, network coverage and bandwidth allocation, data modeling

methodology, results evaluation options, etc. [27,53,54].

 Web solutions in remote healthcare system usually offer unrestricted access only to

qualified physicians and medical personnel [22], with home (patient) side of the web interface

being either non-existent [55] or limited to simple actions [54,56,57]. For example, a user may

see some measured health parameters through a web based interface and request a feedback from

a medical expert [57].

 Remote monitoring by smart phones and tablets may offer price and access related

improvements [58], although mobile applications may present an obstacle for some patients if the

usability is not in focus [59]. Web interface on the server side differs from one system to another,

but usually supports: patient vital signs (emergency) monitoring, recorded signal visualization for

inspection, and in some occasions, data mining [47,60].

2.3. Medical Educational Software

Although there are many instances of web based medical software intended for physicians'

education, such as software for medical 2D [61] and 3D imaging [62,63], there are only a handful

of online systems available for biomedical time series analysis education, most of them ECG

related [23,36,64].

 The purpose of online learning system is to provide medical students with easier access to a

large number of interesting examples of physiological recordings, as well as to accelerate students

marking. Also, automated computer based detection and annotation of morphological signal

features (such as waves in ECG) and comparison with expert based annotations is another

application of the on-the-web educational approach [23]. Aside from specialized educational

software, medical personnel also have the option to use web physiological data repositories, as

the ones described in section 2.1, for educational purposes.

2.4. Electronic and Personal Health Record Systems

Contemporary electronic health record (EHR) system may be considered as a big data system,

particularly in the sense of large data volume and considerable data variety (structured text,

unstructured text, signals, images, 3D data) [65]. This is clearly reflected in various categories of

medical knowledge required to describe the state of a patient through time. The knowledge may

include standard medical history, demographical information, medications taken, various

laboratory tests results, undergone treatments, and many forms of recorded signals and images

(e.g. ECGs, echocardiography, radiology, MRI [66]). To support this kind of information

diversity and communication between medical institutions, and not only within institutions, as is

the case with standard electronic medical records (EMR), a set of standards and regulations were

developed, such as HL7, ISO 13606 (and its underlying standards), DICOM, and ISO/TC 215's

set of health informatics standards.

 The experience of using EHRs in hospitals is mostly positive, with reported improvements

in hospitals efficiency [67]. However, focusing specifically on the information coming from

biomedical signals in EHRs, there are very few proposed and implemented solutions for storing

ECG, EEG, and other important biomedical signals directly in an EHR [68]. The main issue lies

in integrating various heterogeneous formats of the signal recordings with the existing

architectural standards in EHRs [69]. As a commonly used alternative, the signals may be stored

(and also transformed to images) in a separate record system unavailable to the EHR. In such

cases, usually, only a final report is summarized and presented in the EHR [70]. This certainly

prohibits the interoperability between medical centers and therefore lowers the quality of service

to patients.

 There are some efforts to standardize various formats, such as the one in ECG analysis

domain, by conversion of various ECG formats to DICOM-PACS image format [24] and

integrating ECG-as-image in EHR stored in the cloud. Such images may be used later for

learning disease models based on image mining techniques, involving automatic detection and

classification [71]. Nevertheless, aside from individual uses in medical centers on the pay-per-use

basis, the full service of EHR, especially in the context of biomedical signals analysis, has not yet

been established [72]. The hospitals and medical centers are sometimes unwilling to use the

available cloud based solutions for EHRs, and this is not without a cause. Some of the major

challenges that influence hospitals in having such a stance, aside from the incompleteness of

structure of EHRs due to lack of standards, are: data safety and security issues, limited storage

capacity, network unreliability and low transfer capacity [73]. Also, in the context of use of EHR

in mobile devices (mobile health), which is considered as especially convenient for medical

personnel and patients in remote areas, short battery life, small storage capacity, and limited

processing ability of the mobile devices represent additional challenges [69]. However, using big

data architecture and resources can lead to many opportunities in healthcare: data quality

improvement, improved population management and health, early detection of diseases,

accessibility, improved decision making, and cost reduction [73].

 Personal health records (PHR) are a more recent development in the field of electronic

health records. Essentially, the main difference between EHR and PHR is in the way of access

privileges and user roles. Whereas EHR may be looked upon and updated only by medical

professionals, PHR may be read and, sometimes, modified by the patient, since it is considered as

the patient's property. Alyami et al. [74] mention two types of personal health record systems:

untethered and tethered. In untethered PHR, patient has full control over his PHR, where he can

collect, manage and share data in his record. Tethered PHR is linked to specific healthcare

provider's EHR (or hospital EHR), and can be used remotely by patients to view their data.

Patients sharing untethered PHR with healthcare providers may be one venue to go in supporting

interoperability between medical centers. In this respect, blockchain technology, developed for

data privacy, secure access and scalability [75] may play an important role in developing

applications for serving PHR to interested and authorized users [76]. We do note that we are

unaware of any current research that investigates individualized web based biomedical signal

analysis and processing based on personal health record information.

2.5. Research and Application Oriented Web Platforms/Environments for Biomedical Signal

Analysis

Decision support systems (DSS) may be included as an important part of EHR systems, with the

intent of helping the medical practitioner in reaching accurate diagnosis, treatment or prognosis.

DSS are of particular importance to less experienced physicians and general physicians in rural

areas, where absence of experts in a particular domain (e.g. cardiology) as well as medical

emergency requires immediate and educated action [77]. Web based solutions in a form of web

application that accesses EHR in order to provide decision support should allow easy access to

relevant data and conclusions to doctors in a well defined clinical domain [78].

 Research focused web platforms that offer some analysis and decision support based on

biomedical signals are mostly developed for some specific domain, e.g. stress level in virtual

reality environments [40] or ECG diagnostic interpretation [79]. As far as we are aware, there are

currently no complete research and application oriented web platforms available that would allow

biomedical signal analysis and data mining of multiple heterogeneous signals, whether in real

time, or offline. Still, at least one such platform is currently in development [20,21].

3. Architectural challenges in web based biomedical signal analysis software

3.1. Data privacy, Security and User Roles

Data privacy is a very important topic in biomedical data analysis. In recent times, a number of

software exploits are rising. Most reasons are related to bugs in software and to weak

configuration of servers. Programmers don't keep security and possible consequences of software

malfunctions in mind. Common errors are related to poor or absent verification of user input and

to an absence of verification of sizes of data buffers. Possible consequences are crashes caused by

invalid user input or leakage of confidential data [80]. The solution for this kind of problems is to

use defensive programming techniques [81].

 A weak server configuration allows an attacker to trick the server to use an older version

of SSL or TLS security protocols that have many exploits and then to use one or more exploits

to get confidential data. The solution is to pay more attention while writing server configuration

files. Namely, all unneeded services should be disabled, all not user ports should be blocked by a

firewall and only the latest version of TLS cryptographic protocol should be used [82].

 The most common attacks fall in the following groups: 1) weak configuration of servers, 2)

protocol design flaws, and 3) protocol implementation flaws. We provide examples for each

group of attacks, as follows.

 Group 1 example: Downgrade attack. A protocol downgrade attack tricks a server to use

one of older versions of SSL/TLS protocols that have design flaws and then employ one of the

many known exploits to get confidential data. This attack is performed by an attacker in the

handshake phase of the connection. The client initiates a handshake by sending the list of

supported TLS and SSL versions. An attacker intercepts the traffic, posing as a server (Man-in-

The-Middle attack) and persuades the client to accept one of the older versions of TLS or SSL

protocol. Now that the connection between the client and the server is established on an older

protocol version, the attacker can perform one of many known attacks that exploit protocol

design or implementation flaws.

 Group 2 example: SSL 2.0 design flaws. SSL version 2.0 has many known flaws. One of

the flaws is to use the same cryptographic keys both for message integrity and encryption. This is

a problem if a chosen cryptographic algorithm is weak. If an attacker successfully breaks the

encryption, he can change the content of a message. But he can also change the message integrity

part that is used to verify its content. Another flaw is an unprotected handshake, which leads to

Man-in-The-Middle attacks that can possibly go undetected.

 Group 3 example: Heartbleed attack. Heartbleed attack exploits the bug in the OpenSSL

library [83]. The client sends a “heartbeat” message to the server, which contains data and data

size. The server responds with the same data and the size of the data that was received from the

client. The problem is that if a client sent the false data size (bigger than the real size), the server

responds with the data received from the client + random data from server RAM to fill the

response to the required size. That random data can be e.g. password or encryption keys.

 We can safely conclude that using only cryptographic protocols is not enough. For

additional protection, authentication should be used. There are two major approaches: cookies

based and token based [84]. Most websites use a strategy that stores a cookie in the browser.

After a user logs in, he receives a cookie with the session identifier, which is used in a later

request to the server. Cookie based authentication is stateful. This means that a session must be

kept both on a server and on a client. Token based authentication is similar to cookies, but the

major difference is that token based authentication is stateless. The server does not keep a record

of which users are logged in. Every request from a client to the server contains a token, which the

server uses to verify the request.

 Arguably, the most popular token-based authentication technology nowadays are JWT -

JSON Web Tokens [85]. JWT are used for representing claims securely between two parties.

Representation is in the form HEADER.DATA.SIGNATURE. The header describes the token

type and encryption algorithm. Data is user data that is protected by JWT. Signature contains

header and user data signed by the encryption algorithm, for example:

Header:

{

 "alg": "HS256",

 "typ": "JWT"

}

Data:

{

 "name": "Alan",

 "admin": true

}

Password:

"secret" - without quotes

JWT is constructed in the following form:

HMACSHA256(

 base64UrlEncode(header) + "." +

 base64UrlEncode(payload),

 secret

).

The JWT token looks like this:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1lIjoiQWxhbiIsImFkbWluIjp0cnVlfQ.fTHi

KsW8gH_Bp5AUzqoOTx7FVTL0PZZrnVBnto05He0

In a later communication, JWT token is used in this way:

Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJuYW1lIjoiQWxhbiIsImFkbWluIjp0cnVlfQ.fTHi

KsW8gH_Bp5AUzqoOTx7FVTL0PZZrnVBnto05He0

JWT token is generated on the backend after the successful login of a user. It is used in the

Authorization header of each HTTP request, which goes from frontend to backend afterwards.

When backend receives JWT token, it verifies it, extracts the user credentials and generates a

response to the HTTP request. If TLS encryption is compromised, an attacker can inject or

modify JWT data, but the attack will be unsuccessful because JWT token will not pass

verification. It is a recommended practice to limit the lifetime of a JWT token, which is done

using the “exp” field.

 One additional layer of security can be implemented on a server, even before transmission

of data. That layer is the storage of files in an encrypted form. By implementing the layer, security

is increased a lot, because the only point left to attack is RAM. Encryption can be achieved in

two ways, depending on the file systems that are used. On older file systems (eg. FAT, ext2,

ext3), which do not support encryption, a file is run through some encryption software or library

and then stored as a regular file. On newer file systems, it is necessary only to enable encryption

and then the files are encrypted on the fly before being stored. Most notable examples of the

newest file systems are ZFS and APFS, which contain many other improvements in addition to

file encryption [86]. The approach to use the newest file systems is the preferable method for

encryption and it is very easy to implement, because server administrator just needs to create a

file system that supports encryptions and enable it.

 In the most recent times, exploit of hardware vulnerabilities are beginning to emerge. Most

notable are Meltdown and Spectre [87]. These vulnerabilities are related to CPU parts that are

responsible for speculative execution and caching (used for speeding up program execution), but

they follow different routes. Meltdown is used to attack a kernel (the core of and operating

systems) and Spectre is used to attack another user program. Meltdown is simpler and easier to

protect from. The solution is to isolate the kernel and user program page tables. Spectre is more

complex and more dangerous, because it can get confidential data from a program that doesn't

have bugs. Spectre patches are complex and significantly slow down the performance of a CPU.

 Data anonymization is important in medicine in order to avoid identification of patients to

unauthorized users. As a part of data security for a biomedical signal analysis platform, the users

should be made aware that, if possible, anonymized data only should be the one sent to the

analysis process on the web platform. Such data, stripped of any possibility for patient

identification, should be used to reach diagnosis or to model a disorder through the use of the

platform. Since data anonymization procedures may be complex and are investigated in details in

literature, they are considered beyond the scope of this work, but we nevertheless point the

interested reader to some of the existing related work [88,89].

 User roles are the usual mechanism used to prevent unauthorized user to access

confidential data and to prevent damage to a database [90]. Administrator role does not have

restrictions and a regular user is restricted to access data for which administrator grants access to

him. It is also possible to define multiple levels of user roles, which grant access to more or less

data. As an example, administrator of hospital EHR system can change everything: user data

(user is a doctor), patient data, password, system information, etc. Superuser of hospital EHR

system can change user data, patient data, and password, but cannot change system information.

Regular user (doctor) can change only patient data and his own password.

3.2. Frontend Workflow Organization

Workflow organization of a frontend solution for complex signal analysis poses a problem

because of many interconnected analysis steps and actions that are not directly related to signal

analysis. There are several problems that must be solved: how to organize display, how to switch

between steps of analysis, how to pause and continue analysis session, etc.

 The MULTISAB frontend is built using Angular web framework [91]. The central concept

of Angular is a component. A component consist of HTML, CSS and TypeScript (or JavaScript)

code. The MULTISAB consists of a large number of components. Some components are

unrelated to biomedical signal analysis (e.g. user login, main windows, change the password, used

data editor), but most of them are. Navigation between components is done by using routes. An

example of routes in MULTISAB frontend is shown in the following code segment:

export const routes: Routes = [

 {path: "", redirectTo: "/login", pathMatch: "full"},

 {path: "login", component: UserLogin},

 {

 path: "panel", component: PanelComponent,

 children: [

 {path: "", redirectTo: "/panel/multisab", pathMatch: "full"},

 {path: "multisab", component: MultisabComponent},

 {path: "type_selection", component: TypeSelectionComponent},

 {path: "scenario_selection", component: ScenarioSelectionComponent},

 {path: "file_upload", component: FileUploadComponent},

 {path: "record_inspection", component: RecordsInspectionComponent},

 {path: "records_preprocessing", component:

RecordsPreprocessingComponent},

 {path: "features_extraction", component:

FeaturesExtractionComponent},

 {path: "features_selection", component: FeaturesSelectionComponent},

 {path: "model_construction", component: ModelConstructionComponent},

 {path: "reporting", component: ReportingComponent},

 {path: "manage_users", component: ManageUsersComponent},

 {path: "change_password", component: ChangePasswordComponent},

 {path: "edit_self_data", component: EditSelfDataComponent}

] }

];

 Navigation is orchestrated by the main component, which is also responsible for the layout

of components on the web page. Navigation between routes that are not related to biomedical

signal analysis is not restricted, except for limitations imposed by user roles. For example, an

ordinary user can only do signal analysis and change his password. Navigation between routes

that are related to biomedical signal analysis is regulated by a finite state machine. This allows

navigation to components that are related to current state and to action that a user wants to

perform. For example, when a user creates new analysis, he is permitted only to close the analysis

or to select the type of analysis. This is important in order to support the usual process of

biomedical signal analysis, in which one usually moves forward, starting from a state in which the

analysis goal is set and ending in the state where reporting the analysis results is performed. A

transition between the states is resolved on the frontend and sent to the backend, which stores it

in the database. The backend does not have any semantics regarding the states, except when it

filters open and closed analysis sessions. We show all the possible state transitions in Table 1. For

a selected state in a row, X represents the allowed state for transition (in a column).

3.3. Frontend and Backend Interactions

Because of data confidentiality, all communication in MULTISAB goes over a secure

Table 1. State transitions in MULTISAB frontend finite state machine. S0: Start state; S1: New analysis

session; S2: Continue analysis session; S3: Close analysis session; S4: Select analysis type; S5: Scenario

selection; S6: Input data selection; S7: Records inspection; S8: Records preprocessing; S9: Features

extraction; S10: Features selection; S11: Model construction; S12: Reporting

State S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S0 X X

S1 X X

S2

S3 X

S4 X X X

S5 X X X X

S6 X X X X

S7 X X X X X

S8 X X X X X

S9 X X X X X

S10 X X X X

S11 X X X X

S12 X X

connection. Contemporary HTTP/2 protocol was chosen for communication, because it supports

TLS and many other features [92]. Although HTTP/2 does not require encryption, the majority

of web browsers only support HTTP/2 over TLS. HTTP/2 has several strong points, of which

the most prominent are that:

 It is binary protocol, so it is much faster to parse than the previous versions of protocol,

which were textual.

 It is multiplexed, so it significantly reduces round trip times without any additional

optimizations. In previous versions of the protocol, every request was followed by the

response. In version 2 of the protocol, many requests can be sent at once followed by one

(or more) responses.

 After a successful login, backend generates a random number, which is used as

authorization token, and sends it to the frontend. The token represents a session that is

maintained on the backend. Frontend sends the token to the backend in every request. Backend

verifies the token and, according to session data, determines if the user is logged in and if the user

is allowed to access a resource, with respect to his role. Frontend often sends the request to the

backend to refresh the token. If the token expires, backend automatically logs out the user for

safety reasons.

 All communication between the backend and the frontend is done over RESTful API.

However, contrary to common practice of using GET, PUT, POST and DELETE HTTP

requests, we have chosen to use only POST request. The consequence of that decision is that we

need to use one element or URL path more than the usual approach. For example, for deletion of

user data:

Common practice:

DELETE /api/users

{

 userid: 123456

}

MULTISAB implementation:

POST /api/users/delete-user

{

 userid: 123456

}

 We consider that our approach is better, because API structure looks more uniform

(although a bit more complex) and reduces the number of errors during programming, since we

can copy-paste functions that create HTTP request and change only the URL. Although it is

generally believed that RESTful architectural style should mirror CRUD (create, read, update,

delete) to HTTP methods POST, GET, PUT and DELETE, according to the author of the

RESTful protocol, this is not mandated [93].

3.4. Changes in Implementation Languages and Libraries

Programming languages evolve over time. Some changes improve performance, other simplify or

improve syntax and thus make writing programs easier. Changes in programming languages, no

matter how small, often break working programs. Changes in languages also cause changes in its

libraries [94]. If a program uses more libraries, then there is a higher probability that it will not

work correctly when a programming language change occurs. It is often necessary to create

wrappers or workarounds for the libraries that cause problems due to language changes. These

generally work only temporarily. For some changes, there is no easy solution and parts of a

program must be rewritten. From our experience, changes occur faster in frontend technologies

compared to backend technologies and it requires more time to modify a program and to ensure

that security issues are not introduced.

 On MULTISAB backend, we had an occasion where we had to modify several dozen lines

of code, because Java 9 changed legal identifier names [95]. Apparently, Java 9 removed the

symbol “_” (underscore) from the set of legal identifier names. That problem was easy to solve,

because compiler issued an error for each occurrence of “_” as an identifier name, so we only had

to follow the reported errors and rename the variables.

 Additionally, Java 9 introduced the module system. We soon recognized the importance of

the module system, because it adds an additional layer of security to the usual private / protected /

public visibility scope. By using module system, it is possible to completely hide the classes that

programmer does not want to export. For the exported classes, programmer continues to use the

usual visibility scope. When we tried to implement the module system in MULTISAB backend,

we ran into a problem, because some of the external libraries that we use had issues with the

module system and stopped working. We had to revert our code to the previous version and wait

for the libraries to be converted to Java 9.

 On MULTISAB frontend, we also had issues with RxJs library a few times. The Angular

library changes often (rarely causing a problem), but the RxJs library, which we use for reactive

programming, changes somewhat slower. On several occasions, we had a problem with the

inclusion of the RxJs operators. The initial strategy was to wait several days for RxJs to resolve

problems. The strategy was soon abandoned, because we wasted time waiting. Therefore, we

decided to create a workaround for each problem as a temporary solution. When the next version

of RxJs solved some problems, the workarounds were removed.

 Not all changes are negative or require a lot of work. For instance, when Angular

introduced HttpClient service as a replacement for the old Http service, we saw that as an

opportunity to simplify our program. HttpClient response returns JSON object by default, so it

became unnecessary to explicitly parse textual response. Changes were trivial to implement and

the end result was a smaller code base.

 On the other hand, the use of contemporary frontend development frameworks such as

Angular for developing the platform also poses a challenge. For example, in order to allow the

upload of multiple files in the platform in an elegant, drag-and-drop manner, as shown in Fig. 2,

we needed to write our own component with a significant number of lines of code (as there was

no readily available one), as is shown in the example:

import {Component} from "@angular/core";

import {Observable} from "rxjs";

import {AnalysisUrls} from "../../services/url/AnalysisUrls";

import {PrintMessages} from "../../services/PrintMessages";

import {Router} from "@angular/router";

import {HttpErrorResponse} from "@angular/common/http";

import {Language, LocaleService, TranslationService} from "angular-l10n";

@Component({

 templateUrl: "/app/components/analysis/FileUploadComponent.html"

 })

export class FileUploadComponent extends PrintMessages {

 @Language() lang: string;

 files: FileList;

 progress: Array<number> = [];

 constructor(private analysisUrls: AnalysisUrls, private router:

 Router,private locale: LocaleService, private translation:

 TranslationService) {

 super(translation);

 }

 fileChangeEvent(event: Event): void {

 this.files = (event.target.valueOf() as

 HTMLInputElement).files;

 if (this.files.length === 0) {

 this.progress = [];

 } else {

 this.progress = new Array<number>(this.files.length);

 }

 }

 dragHandler(event: DragEvent): void {

 event.stopPropagation();

 event.preventDefault();

 }

 dropHandler(event: DragEvent): void {

 event.stopPropagation();

 event.preventDefault();

 this.files = event.dataTransfer.files;

 if (this.files.length === 0) {

 this.progress = [];

 } else {

 this.progress = new Array<number>(this.files.length);

 }

 }

 submit(): void {

 for (let prog of this.progress) {

 prog = 0;

 }

 for (let i: number = 0; i < this.files.length; i++) {

 this.uploadFile(i);

 }

 }

...

}

We also need to write an HTML template for the component (FileUploadComponent.html). In

this case, the code is not long and is given here in full:

<p-growl [value]="msgs"></p-growl>

<div style="position: absolute; width: 450px; top: 10px; left: 10px;">

 <form>

 <div id="drop_zone" (drop)="dropHandler($event)"

 (dragenter)="dragHandler($event)"

 (dragover)="dragHandler($event)" (click)="inputFiles.click()"

 style="border: dashed 2px lightgray; border-radius: 20px; height:

 125px; font-size: 20px; color: gray; width: 100%; display:

 table;">

 <span style="text-align: center; display: table-cell; vertical-

 align: middle;">

 {{'FileUpload.dragFiles' | translate:lang}}

 {{'FileUpload.dragFilesOrClick' | translate:lang}}

 </div>

 <div hidden>

 <input type="file" id="file" (change)="fileChangeEvent($event)"

 multiple #inputFiles>

 </div>

 <div style="text-align: center;">

 <button type="submit" pButton (click)="submit()" label="

 {{'FileUpload.buttonSend' | translate:lang}}" [disabled]="files ==

 null"></button>

 <button type="submit" pButton (click)="nextPage()"

 label="{{'FileUpload.buttonNext' | translate:lang}}"></button>

 </div>

 <hr *ngIf="files != null">

 <div style="width: 100%" *ngFor="let file of files; let i = index;">

 <label>{{files[i].name}}</label>

 <p-progressBar [value]="progress[i]"></p-progressBar>

 </div>

 </form>

</div>

Figure 2. Multiple file upload page on frontend, as an example of a complicated Angular component, with some

example files uploaded onto the MULTISAB platform

 Hence, in our experience, there are significant challenges in keeping up with frontend

development languages and technologies, which slows down the overall platform development.

We suspect that fast language and libraries evolution, in particular related to frontend, may be one

of the reasons for having such a small number of relevant online biomedical signal analysis

platforms. Another reason may be because traditional biomedical signal analysis community

needed not to concern much with frontend development technologies, and due to the complexity

of its programming, the implementation of such a platform remained out of the community's

reach.

3.5. Database Design

Changes in database inevitably lead to changes on the backend and likely to changes in the

frontend. The opposite direction is true as well, changes in backend and frontend cause changes

in database. In the period of planning and implementation of a database, it is hard to predict all

the possible use cases, and therefore the database design should evolve as implementation

progresses, much as any other program. An important advice is not to try avoiding changes in

database, because then, backend and frontend suffer. Changes done in one of the three segments

(database, backend, or frontend) should trigger changes in the other two segments. Hence, it is

necessary to have good code organization in all three segments.

 In MULTISAB, we have only one central place for data prototypes in each of the three

segments. In the database, we have the file “Database.ddl” that holds data definitions of the

database tables. All changes in the file are propagated to database implementation. In the

example, we provide the definition of a class Phase that is a part of implementation of our

database.

CREATE TABLE Phase (

 Id BIGINT NOT NULL,

 Name VARCHAR(256) NOT NULL,

 PRIMARY KEY (Id),

 CHECK (LENGTH(TRIM(Name)) > 0),

 UNIQUE (Name)

);

On backend, we use Java Persistence API - JPA. This is a mechanism that maps Java classes to

database tables by using annotations. JPA defines Java Persistence Query Language, which is a

simplified version of SQL language and is adapted to the object oriented way of programming.

Changes in the database reflect easily to backend. One only needs to change the variable

definitions and annotations. In the example, we provide the definition of the class Phase in

backend.

@Entity

@Table(name = "PHASE")

public class Phase implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @Column(name = "ID")

 private Long id;

 @Basic(optional = false)

 @Column(name = "NAME")

 private String name;

 public Long getId() { return id; }

 public void setId(Long id) { this.id = id; }

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

}

 On frontend, we keep the TypeScript class prototypes in services, which are responsible for

their part of RESTful API (e.g. LoginService, SessionService). Changes in frontend are not 1:1

related to changes in databases. Instead, they are related to changes in the RESTful API.

 To simplify documentation of MULTISAB RESTful API, we use OpenAPI. OpenAPI was

originally known as the Swagger Specification. Description of a user RESTful API is contained in

a YAML file [96]. For editing the YAML file, Swagger Editor tool can be used, while for

viewing, Swagger UI tool is available [97]. Both Swagger Editor and Swagger UI translate

YAML file to HTML and visually display users’ RESTful API, see our example in Fig. 3.

 Our experience has shown that RESTful API should be edited first. Afterwards, backend

and frontend can be programmed according to the changes, and database can also be changed if

needed. If RESTful API needs to be changed due to changes in database, backend or frontend,

we recommend to change the documentation first and then propagate the changes accordingly.

Thus, one can always have an up to date documentation and one can develop different parts of

program independently, using documentation to synchronize.

 In MULTISAB project development, we use a simplified approach, skipping the usageof

the Swagger Editor. We first write backend code and annotate it with comments. In this case, we

merge two steps into one - writing of documentation and implementation in the backend.

Annotations in the code are transformed by the SpringFox library [98] into documentation. When

backend is launched, documentation can be accessed over Swagger UI. The Swagger UI is

packaged into the SpringFox so the end user just needs to visit the URL at

http://localhost:8081/swagger-ui.html to view the documentation. As an example, we show the

"closeSession()" function annotated with documentation comments. End result for the code can

be seen in Fig. 3.

 @RequestMapping(value = "/close",

 method = RequestMethod.POST,

 consumes = MediaType.APPLICATION_FORM_URLENCODED_VALUE,

 produces = MediaType.APPLICATION_JSON_UTF8_VALUE)

 @ApiOperation(value = "Zatvaranje sjednice", notes = "Zatvara

 sjednicu analize")

 @ApiResponses(value = {

 @ApiResponse(code = 200, message = "Uspješno je zatvorena

 sjednica"),

 @ApiResponse(code = 401, message = "Korisniku nedostaju

 ovlasti za zatvaranje sjednice"),

 @ApiResponse(code = 500, message = "Dogodila se interna

 greška na poslužitelju")

 })

 synchronized ResponseEntity<Void> closeSession(@RequestParam

 long connectionToken) {

 Optional<UserData> data =

 loggedInUsers.findUserByToken(connectionToken);

 if (!data.isPresent()) {

 return new ResponseEntity<>(HttpStatus.UNAUTHORIZED);

 }

 if (closeSessionInternal(connectionToken, data.get())) {

 return new ResponseEntity<>(HttpStatus.OK);

 } else {

 return new

 ResponseEntity<>(HttpStatus.INTERNAL_SERVER_ERROR);

 }

 }

 In the beginning of the MULTISAB backend project, we wanted a solution that would be

easily portable between different computers and that could be copy-pasted from a portable

medium without installation. Therefore, we chose Java as the programming language. For the

main development framework on backend, we chose Spring Boot, due to its high efficiency in

creating web applications [99]. Database candidates were Apache Derby and H2 [100].

Figure 3. Screenshot of Swagger UI displaying part of MULTISAB RESTful API

 Apache Derby had an advantage of being a part of the Java distribution (Java DB). The

main disadvantage was that it stores database files in many files and folders within the main

folder. We wanted as few files as possible, so H2 database was chosen instead, because it stores

all data in a single file. The disadvantage was that we had to pull the library from the separate

repository. As we use Maven in our project, this disadvantage is insignificant, because Maven

pulls H2 database library files as it also pulls other libraries that we use. H2 is a very compact

DMBS (only 1.5 MB) and it lacks some features that larger DBMSs have. For example, it does

not have a language for stored procedures and it does not support multi-threaded processing.

 Our current database model may be found in Friganovic et al. [20]. The database is

designed to support the workflow of the biomedical signal analysis platform. It is not designed to

store signal records, but rather to contain user session data, including the scenario that is

conducted through the platform, phase of the analysis in which the user is currently found (so that

the continuation of the session that was last discontinued is possible), the preprocessing methods

and the features that the user selected for the analysis. Also note that, aside from the analysis-

related data, we only store user personal data. MULTISAB backend is not demanding regarding

data storage, so H2 database is just enough for this purpose. This is because the files that contain

biomedical signals, extracted feature vectors, models and reports are all stored in the server

filesystem and only their names are stored in the database as a part of an analysis session.

Although we may modify some parts of the database design in the future, it should be noted that

the initial design that was proposed was found to be satisfactory thus far. We contend that such a

database solution is good enough for a web based biomedical signal analysis platform.

3.6. Integration of Existing Data Analysis and Reporting Libraries

When one is developing an online biomedical signal analysis platform that also includes machine

learning and data mining capabilities, one needs to consider two options: 1) development of

machine learning algorithms from scratch, and 2) integration of already existing data analysis

libraries. The decision between using the first or the second option is largely based on the

intended platform licensing and commercial preferences of the platform.

 In MULTISAB platform, we opted to either integrate the existing data libraries licensed

under free and permissive Apache, MIT, BSD, and (somewhat less permissive) LGPL licences,

or to write our own code. In this way, we keep the option to develop a commercial version of the

platform if deemed needed. For some of the machine learning algorithms (e.g. neural network),

we integrate the Encog framework [101], licensed under Apache 2.0 license. We use the libsvm

library for support vector machines classifier [102]. This library is licensed under the modified

BSD license.

 We wrote some of the machine learning algorithms from scratch, particularly those

pertaining to feature selection (e.g. symmetrical uncertainty, chi square, ReliefF), as we did not

find any implementation under permissive licenses. For reporting the results of the analysis

process (final statistics and evaluation measures results), we opted to use the JasperReports (JR)

library [103]. JR is licensed under LGPL, briefly meaning that in other to keep the possibility of

commercializing our platform, we can only use its API, not change its source code. The use of a

separate reporting library should be considered suitable for a web platform in the case of

biomedical signal analysis applications, as many different types of statistical results may be

obtained from the analysis scenario (e.g. for classification: class distribution, confusion matrix,

total classification accuracy, sensitivity, specificity, F1 measure, etc) [104]. Some of the results

may be presented in a form of table or a list of evaluation measures, while others may use pie

charts, histograms, etc.

 Achieving a successful and uniform data connection between several different libraries and

our implementations is done through classes that adapt the data for particular API requirements

of certain libraries. As the platform is evolving, we expect to add more machine learning

algorithms in time, either through our own implementations or by integrating permissive licensed

implementations. We consider the approach we propose here reasonable and viable for similar

purpose online analysis software.

3.7. Workload Amelioration

In the backend planning phase for the MULTISAB project, we decided to separate it into two

parts. The first part is the core of the backend, which is responsible for database access, RESTful

API, and user rights management. The second part is a subproject called processing. Processing

implements all signal analysis algorithms, including machine learning, which are used in the

MULTISAB project. We made that decision, because we wanted to have better control over

intellectual property protection and to have the possibility to improve the performance of

algorithms without touching the core backend functionality.

 We started with the implementation of algorithms in a sequential way. After that, we

conducted experiments with the OpenCL library. We did not use OpenCL directly, but over the

Aparapi library [105]. Aparapi translates native Java bytecode in OpenCL kernels dynamically at

runtime. We initially did synthetic benchmark tests on GPU and they looked promising. After

that, we did the implementation of several concrete feature extraction algorithms in Aparapi.

Results were far below the results achieved on synthetic tests. The conclusion was that the

overhead of real-time compilation of Java bytecode to OpenCL kernels, as well as data transfer

between CPU and GPU, took too much time. Another cause was that data analysis algorithms

were either too simple, or if they were complex, too small amount of data was used to mask the

latency of transfer to the GPU. We have also tried to use CPU as an OpenCL computing device,

but the results were similar.

 Finally, we made a decision to rely on the classical approach with Java threads. The

parallelization procedure that we implemented for feature extraction step of the platform is, as

follows:

 if there are multiple segments present in a signal, then these are resolved (all the features

are extracted) in parallel,

 else if there are no multiple segments, but there are signals of the same type (e.g. EEG),

then these are resolved (all the features are extracted) in parallel,

 if there are no multiple segments nor signals of the same type, but there are multiple

patient files, then these are resolved (all the features are extracted) in parallel,

 lastly, if there is only a single file with a single signal of a particular type and a single

segment, then it is treated as sequential and single threaded.

Currently, we use parallelization over primitive data arrays, however, in the future, we plan to use

Java streams (introduced in Java 8). The concept of streams is simple; instead of viewing data as

a collection (sets, maps), user sees data as a "stream of elements". A stream can be created from

existing collections using functions "stream()" and "parallelStream()". By using

"parallelStream()", elements are automatically parallelized. The user only needs to ensure that

algorithms are suitable for parallel execution, which may be difficult in signal analysis.

 Another optimization is possible and that is the usage of several computers. In the future,

we will have to implement a kind of message passing interface to enable communication of the

core of the backend with the processing instances running on several physical machines.

4. Requirements for Constructing a Biomedical Signal Analysis Web Platform

4.1. Hardware and Software Requirements

Architectural requirements for a web platform designed to perform biomedical signal analysis

may vary depending on the amount of expected data processing and the analysis scenarios

supported by the platform. For example, if one wants only to record some physiological signals in

a home environment for a single (or a few) persons and provide a few health markers, which may

be sent to a medical expert acting remotely for further (manual) evaluation, then such a system

need not have significant hardware requirements. A usual personal computer or even a handheld

device may suffice for the client side, provided that it works as a gateway to a remote server in a

health institution [57,106]. In such a setting, a remote server is usually used for storing collected

patient data for visual inspection by the medical professional and perhaps for a future, offline

analysis.

 However, supporting many users at the same time and performing complex analysis

scenarios (as depicted in Fig. 1) may require more resources for a general and expandable

solution. A typical minimum solution would include a single computer, acting as a server for data

analysis with fast multi-core processor capabilities (4 or more logical cores), large hard drive and

RAM capacities. The computer would need to have a web server installed to support the web

application (e.g. Apache Tomcat), H2 or similar in-memory relational DBMS and would need to

provide software support for the whole web development technological stack in order to

accommodate for potential software improvements, hence: 1) frontend technologies, such as

HTML, CSS, Bootstrap, JavaScript/TypeScript, Angular or similar frontend development

framework, and 2) backend technologies, such as Java 9, Spring Boot, and JPA (or related

backend Microsoft, PHP, or Python technologies). Additionally, permissive license libraries used

to cover the various steps in biomedical signal analysis would be a welcome, but not a necessary

requirement for construction of the web platform, as some of the required methods may be

efficiently implemented from scratch.

 Any expansion of the proposed minimal solution would be primarily concerned with

workload improvements, as we already elaborated in subchapter 3.7. Although we focused

mostly on single-computer parallelism in our work, distributed backend processing, through the

use of OpenMP [107] bindings or through service oriented architecture based on remote method

invocation [108] should be considered.

 A step further might be the integration of the web based biomedical signal analysis platform

within a cloud infrastructure. Although some cloud based solutions for medical big data analysis

were already proposed in the literature [109,110], we are only aware of one solution that deals in

any way with biomedical signal analysis in such a setting [111]. Namely, this solution, called

Cloudware, focuses on ECG preprocessing and visualization through the use of Hadoop big data

technology in a cloud. Nevertheless, the Cloudware platform still lacks the complete complex

analysis scenarios for several different types of biomedical signals that we proposed in the

MULTISAB platform and which we depicted in Fig. 1, as it is primarily intended for better

visualization capabilities of ECG recordings.

4.2. Other requirements

Designing use cases for the requirements of the web platform proved to be a difficult task in our

case, due to the complexity of possible analysis scenarios. Nevertheless, the use of UML use case

diagrams to specify possible user behavior in communication with the system proved to be a

valuable asset in development of the platform [112]. Therefore, we would recommend the use of

UML tools, especially in specifying platform requirements through the use of scenarios.

 Development of the web analytical platform requires that the team members are well-

versed in a variety of frontend, backend and database technologies, aside from an expertise in

signal analysis. This is something not often encountered or required in practice, and this may be

one of the reasons such a platform has not been proposed earlier. As we have elaborated in

section 3.4, numerous challenges with implementation languages and libraries exist, especially in

frontend technologies. A well-versed, competent team requirement might seem as a trivial

requirement at first, but in our experience, and this is also corroborated by other researchers

[113], it is very important that all of the research team members are at least good acquainted with

all the aspects of the platform. Still, we also agree with the conclusions of the Software

Sustainability Institute that state that it may be counterproductive to instill all the software

development details to all team members, as some of them are better in, e.g. signal analysis than

in frontend development [114].

5. Discussion and Conclusion

Designing a web platform intended for biomedical signal analysis is challenging, as we showed in

this work. Indeed, there are many contributing factors to design and implementation complexity.

In subchapter 3, we presented some of the most pervasive challenges that we encountered in

developing the MULTISAB platform. Not all the challenges were reported in detail here, though.

For example, the issue of biomedical signal data itself is problematic, because analyzing multiple

heterogeneous time series poses difficulties with respect to input data formats, feature extraction

and parallelization. We reported progress on some of these issues in an earlier work [21] and we

also plan additional publications to cover these issues in more detail.

 We would like to stress out that one of the biggest problems in designing the web platform

are the web development technologies, which are still mostly not standardized (apart from

HTML) and are in continuous development. Thus, designing an offline biomedical signal analysis

platform that would accommodate all the complex scenarios related to multiple heterogeneous

signal analysis may be difficult, but designing the same platform for the web is even more difficult.

We consider that the only other serious issue in web platform construction aside from the

development technology is security. In biomedical applications, software safety and security need

to be of the highest degree possible. As we have elaborated in this work, this issue has not been

solved in a general sense. Although employing most recent security protocols, message

encryption, and other advanced techniques should suffice in most cases [115], there are really no

theoretical guarantees with the safety of web systems.

 Integrating all of the technologies to have a working platform is something that we are

currently working on. Despite the challenges explored in this chapter, we still consider that

having such an integrated analysis platform would greatly benefit both researchers and medical

professionals. Overcoming the challenges would allow distant access to platform with advanced

diagnostical and analytical capabilities. In the future, we plan to investigate how the platform

could be applied in medical practice, including:

 the modeling of body state, based on multiple patient records and signal types, e.g. for

stress detection [116], pregnancy characterization [117], etc.,

 possible smooth integration with remote patient monitoring technologies to enable online

analysis through its decision support capabilities [21],

 the integration with medical center computer infrastructure, in order to enable electronic

health record information processing in the platform to achieve better medical

diagnostics.

Acknowledgements

This work has been fully supported by the Croatian Science Foundation under the project number

UIP-2014-09-6889.

References

[1] Clifford, G.D., Azuaje, F., McSharry, P.E. 2006. Advanced Methods and Tools for ECG Data Analysis.

Norwood MA, USA: Artech House.

[2] Campbell, I.G. 2009. EEG Recording and Analysis for Sleep Research. Curr Protoc Neurosci. chapter: Unit

10.2.; doi:10.1002/0471142301.ns1002s49

[3] Cifrek, M., Medved, V., Tonkovic, S., Ostojic, S. 2009. Surface EMG based muscle fatigue evaluation in

biomechanics. Clinical Biomechanics 24(4), pp. 327-340.

[4] Zangroniz, R., Martinez-Rodrigo, A., Pastor, J.M., Lopez, M.T., Fernandez-Caballero, A. 2017. Electrodermal

Activity Sensor for Classification of Calm/Distress Condition. Sensors 17(10), p. 2324; doi:10.3390/s17102324

[5] Robbins, K.A. 2012. EEGVIS: A MATLAB Toolbox for Browsing, Exploring, and Viewing Large Datasets.

Front Neuroinform. 6, p. 17; doi: 10.3389/fninf.2012.00017

[6] Tarvainen, M.P., Niskanen, J.P., Lipponen, J.K., Ranta-aho, P.O., Karjalainen, P.A. 2014. Kubios HRV – Heart

rate variability analysis software. Comput Methods Programs Biomed 113(1), pp. 210-220.

[7] Srhoj-Egekher, V., Cifrek, M., Medved, V. 2011. The application of Hilbert-Huang transform in the analysis of

muscle fatigue during cyclic dynamic contractions. Med & Biol Eng & Comput 49(6), pp. 659-669.

[8] Goldberger, A.L., Amaral, L.A.N., Glass, L., et al. 2000. PhysioBank, PhysioToolkit, and PhysioNet:

Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23), e215-e220, 2000.

[9] Baumert, M., Porta, A., Cichocki, A. 2016. Biomedical Signal Processing: From a Conceptual Framework to

Clinical Applications [Scanning the Issue]. Proceedings of the IEEE 104(2), pp. 220-222.

doi:10.1109/JPROC.2015.2511359

[10] Friganovic, K., Jovic, A., Kukolja, D., Cifrek, M., Krstacic, G. 2017. Optimizing the detection of characteristic

waves in ECG based on exploration of processing steps combinations. Joint Conf of the European Medical and

Biological Engineering Conference (EMBEC'17) and the Nordic-Baltic Conf on Biomedical Engineering and

Medical Physics (NBC'17), IFMBE Proceedings, vol. 65, Tampere : Springer Nature Singapore, pp. 928-931.

[11] Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H.V., Peng, C.-K., Schmidt, D., Yamamoto, Y. 2015.

Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group

and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 17,

pp. 1341-1353; doi:10.1093/europace/euv015

[12] Mladenic, D. 2006. Feature Selection for Dimensionality Reduction. In: Subspace, Latent Structure and

Feature Selection. Lecture Notes in Computer Science 3940. Springer, Berlin, Heidelberg, pp. 84-102.

[13] Nandi, D., Ashour, A.S., Samanta, S., Chakraborty, S., Salem, M.A.M., Dey, N. 2015. Principal component

analysis in medical image processing: a study. International Journal of Image Mining 1(1), pp. 65-86;

doi:10.1504/IJIM.2015.070024
[14] Dey, N., Ashour, A.S., Borra, S. (Eds.) 2017. Classification in BioApps: Automation of Decision

Making. Lecture Notes in Computational Vision and Biomechanics Vol. 26. Springer; doi: 10.1007/978-3-319-

65981-7

[15] Kamal, M.S., Dey, N., Ashour, A.S. 2017. Large Scale Medical Data Mining for Accurate Diagnosis: A

Blueprint. In: Handbook of Large-Scale Distributed Computing in Smart Healthcare, pp. 157-176. Springer,

Cham; doi: 10.1007/978-3-319-58280-1_7

[16] Rangayyan, R.M. 2015. Pattern Classification and Diagnostic Decision. In: Biomedical Signal Analysis. John

Wiley & Sons, Inc. pp. 571-632; doi:10.1002/9781119068129.ch9

[17] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H. 2009. The WEKA data mining

software: an update. SIGKDD Explor. Newsl. 11(1), pp. 10-18; doi:10.1145/1656274.1656278

[18] Bezerra, V.L., Leal, L.B., Lemos, M.V., Carvalho, C.G., Filho, J.B., Agoulmine, N. 2013. A pervasive energy-

efficient ECG monitoring approach for detecting abnormal cardiac situations. IEEE 15th Int. Conf. on e-Health

Networking, Applications and Services (Healthcom 2013), Lisbon, Portugal, pp. 340-345.

[19] Jovic, A., Kukolja, D., Jozic, K., Horvat, M. 2016. A Web Platform for Analysis of Multivariate

Heterogeneous Biomedical Time-Series - a Preliminary Report. Proc 23rd Int Conf on Systems, Signals and Image

Processing (IWSSIP 2016), Bratislava, Slovakia, p. 70.

[20] Friganovic, K., Jovic, A., Jozic, K., Kukolja, D., Cifrek, M. 2017. MULTISAB project: a web platform based

on specialized frameworks for heterogeneous biomedical time series analysis - an architectural overview. Proc. Int.

Conf. on Med & Biol Eng (CMBEBiH 2017), Sarajevo, Bosnia and Herzegovina, Springer Nature, pp. 9-15.

[21] Jovic, A., Kukolja, D., Friganovic, K., Jozic, K., Car, S. 2017. Biomedical Time Series Preprocessing and

Expert-System Based Feature Extraction in MULTISAB Platform. Proc. Int. Conf. MIPRO 2017, Opatija, Croatia,

pp. 349-354.

[22] Chen, C.M. 2011. Web-based remote human pulse monitoring system with intelligent data analysis for home

health care. Expert Syst Appl 38(3), pp. 2011-2019.

[23] Zunic, E., Djedovic, A., Boskovic, D. 2016. Web-based and mobile system for training and improving in the

field of electrocardiogram (ECG). 5th Mediterranean Conference on Embedded Computing (MECO 2016), Bar,

Montenegro, pp. 441-445.

[24] Hsieh, J.-C., Hsu, M.-W. 2012. A cloud computing based 12-lead ECG telemedicine service. BMC Med

Inform Decis Mak. 12, p. 77; doi:10.1186/1472-6947-12-77

[25] Jovic, A., Bogunovic, N., Cupic, M. 2013. Extension and Detailed Overview of the HRVFrame Framework for

Heart Rate Variability Analysis. Proc. Int. Conf. Eurocon 2013, IEEE Press, Zagreb, Croatia, pp. 1757-1763.

[26] Bao, F.S., Liu, X., Zhang, C. 2011. PyEEG: An open source Python module for EEG/MEG feature extraction.

Comput. Intell. Neurosci. 2011, p. 406391; doi:10.1155/2011/406391

[27] Moraru, L., Moldovanu, S., Dimitrievici, L.T., Shi, F., Ashour, A.S., Dey, N. 2017. Quantitative Diffusion

Tensor Magnetic Resonance Imaging Signal Characteristics in the Human Brain: A Hemispheres Analysis. IEEE

Sensors Journal 17(15), pp. 4886-4893; doi: 10.1109/JSEN.2017.2714701

[28] Wang, D., Li, Z., Cao, L., et al. 2017. Image fusion incorporating parameter estimation optimized Gaussian

mixture model and fuzzy weighted evaluation system: A case study in time-series plantar pressure data set. IEEE

Sensors Journal 17(5), pp. 1407-1420; doi: 10.1109/JSEN.2016.2641501

[29] Chakraborty, S., Chatterjee, S., Ashour, A.S., Mali, K., Dey, N. 2017. Intelligent Computing in Medical

Imaging: A Study. In: Advancements in Applied Metaheuristic Computing, p. 143; doi:10.4018/978-1-5225-4151-

6.ch006

[30] Dey, N., Ashour, A.S. 2018. Computing in Medical Image Analysis. In: Soft Computing Based Medical

Image Analysis, pp. 3-11.

[31] Elhayatmy, G., Dey, N., Ashour, A.S. 2018. Internet of Things Based Wireless Body Area Network in

Healthcare. In: Internet of Things and Big Data Analytics Toward Next-Generation Intelligence, pp. 3-20.

Springer, Cham.

[32] Dey, N., Hassanien, A.E., Bhatt, C., Ashour, A., Satapathy, S.C. (Eds.). 2018. Internet of Things and Big Data

Analytics Toward Next-Generation Intelligence. Studies in Big Data Vol. 30. Springer. doi: 10.1007/978-3-319-

60435-0

[33] Banaee, H., Ahmed, M.U., Loutfi, A. 2013. Data Mining for Wearable Sensors in Health Monitoring Systems:

A Review of Recent Trends and Challenges. Sensors 13(12), pp. 17472-17500; doi:10.3390/s131217472

[34] Kaur, P.D., Chana, I. 2014. Cloud based intelligent system for delivering health care as a service. Comput

Methods Programs Biomed 113(1), pp. 346-359; 10.1016/j.cmpb.2013.09.013

[35] Xtelligent Media, LLC. 2018. Top 10 Remote Patient Monitoring Companies for Hospitals.

https://mhealthintelligence.com/news/top-10-remote-patient-monitoring-solutions-for-hospitals (accessed: 2018-01-

07)

[36] Lessard, Y., Sinteff, J.P., Siregar, P., et al. 2009. An ECG analysis interactive training system for

understanding arrhythmias. Stud Health Technol Inform. 150, pp. 931-935.

[37] Ross, M.K., Wei, W., Ohno-Machado, L. 2014. “Big Data” and the Electronic Health Record. Yearb Med

Inform. 9(1), pp. 97-104; doi:10.15265/IY-2014-0003

[38] Murdoch, T.B., Detsky, A.S. 2013. The Inevitable Application of Big Data to Health Care. JAMA 309(13), pp.

1351-1352; doi:10.1001/jama.2013.393

[39] Hsu, C.-L., Wang, J.-K., Lu, P.-C., Huang, H.-C., Juan, H.-F. 2017. DynaPho: a web platform for inferring the

dynamics of time-series phosphoproteomics. Bioinformatics 33:12, pp. 3664-3666;

doi:10.1093/bioinformatics/btx443

[40] Gaggioli, A., Cipresso, P., Serino, S., et al. 2014. A decision support system for real-time stress detection

during virtual reality exposure. Stud Health Technol Inform 196, pp. 114-120.

[41] National Sleep Research Resource. 2018. https://sleepdata.org/ (accessed: 2018-01-07)

[42] University of Rochester Medical Center. 2018. Telemetric and Holter ECG Warehouse (THEW). http://thew-

project.org/ (accessed 2018-01-07)

[43] University of Michigan in Ann Arbor. 2018. Ann Arbor Electrogram Libraries. http://electrogram.com/

(accessed 2018-01-07)

[44] Gardasevic, G., Fotouhi, H., Tomasic, I., Vahabi, M., Björkman, M., Linden, M. 2017. A Heterogeneous IoT-

based Architecture for Remote Monitoring of Physiological and Environmental Parameters. 4th EAI Int. Conf. on

IoT Technologies for HealthCare (HealthyIoT 2017), Angers, France, p. 4869.

[45] Guan, K., Shao, M., Wu, S. 2017. A Remote Health Monitoring System for the Elderly Based on Smart Home

Gateway. Journal of Healthcare Engineering 2017, p. 5843504; doi:10.1155/2017/5843504

[46] Dey, N., Ashour, A.S., Shi, F., Fong, S.J., Sherratt, R.S. 2017. Developing residential wireless sensor networks

for ECG healthcare monitoring. IEEE Transactions on Consumer Electronics 63(4), pp. 442-449;

10.1109/TCE.2017.015063

[47] Granulo, E., Becar, L., Gurbeta, L., Badnjevic, A. 2016. Telemetry System for Diagnosis of Asthma and

Chronical Obstructive Pulmonary Disease (COPD). 3rd EAI Int. Conf. IoT Technologies for HealthCare

(HealthyIoT 2016), Vasteras, Sweden, pp 113-118.

[48] Matallah, H., Belalem, G., Bouamrane, K. 2017. Towards a New Model of Storage and Access to Data in Big

Data and Cloud Computing. International Journal of Ambient Computing and Intelligence (IJACI), 8(4), pp.1-14;

doi:10.4018/IJACI.2017100103

[49] Tomasic, I., Petrovic, N., Fotouhi, H., Linden, M., Bjorkman, M. 2017. Relational Database to a Web interface

in Real Time. Eur Med Biol Eng Conf & Nordic-Baltic Conf on Biomed Eng & Med Physics (EMBEC & NBC

2017), Tampere, Finnland, pp. 89-92; doi:10.1007/978-981-10-5122-7_23

[50] Salem, O., Guerassimov, A., Mehaoua, A., Marcus, A., Furht, B. 2013. Sensor fault and patient anomaly

detection and classification in medical wireless sensor networks. IEEE Int Conf on Communications (ICC 2013),

Budapest, Hungary, pp. 4373-4378; doi: 10.1109/ICC.2013.6655254

[51] Ivascu, T., Aritoni, O. 2015. Real-time health status monitoring system based on a fuzzy agent model. E-

Health and Bioengineering Conference (EHB 2015), Iasi, Romania, pp. 1-4; doi: 10.1109/EHB.2015.7391502

[52] Chatterjee, S., Dutta, K., Xie, H.Q., Byun, J., Pottathil, A., Moore, M. 2013. Persuasive and Pervasive

Sensing: A New Frontier to Monitor, Track and Assist Older Adults Suffering from Type-2 Diabetes. Proc. 46th

Hawaii Int. Conf. on System Sciences, Grand Wailea, HW, USA, pp. 2636-2645, 2013.

[53] Nangalia, V., Prytherch, D.R., Smith, G.B. 2010. Health technology assessment review: remote monitoring of

vital signs--current status and future challenges. Crit Care 14(5), p. 233; doi:10.1186/cc9208

[54] Villarrubia, G., Bajo, J., De Paz, J.F., Corchado, J.M. 2014. Monitoring and Detection Platform to Prevent

Anomalous Situations in Home Care. Sensors 14(6), pp. 9900-9921; doi:10.3390/s140609900

[55] Mainetti, L., Patrono, L., Secco, A., Sergi, I. 2016. An IoT-aware AAL system for elderly people. Int.

Multidisc. Conf. on Computer and Energy Science (SpliTech 2016), Split, Croatia, pp. 1-6; doi:

10.1109/SpliTech.2016.7555929

[56] Lin, S.-S., Hung, M.-H., Tsai, C.-L., Chou, L.-P. 2012. Development of an Ease-of-Use Remote Healthcare

System Architecture Using RFID and Networking Technologies. J Med Syst 36(6), pp. 3605-3619;

doi:10.1007/s10916-012-9836-0

[57] Tsujimura, S., Shiraishi, N., Saito, et al. 2009. Design and Implementation of Web-Based Healthcare

Management System for Home Healthcare. 13th Int Conf Biomed Eng, IFMBE Proceedings, vol 23. Springer,

Berlin, Heidelberg, pp. 1098-1101; doi: 10.1007/978-3-540-92841-6_270

[58] Secerbegovic, A., Suljanovic, N., Nurkic, M., Mujcic, A. 2015. The Usage of Smartphones in Remote ECG

Monitoring Scenarios. 6th Eur. Conf. Int. Federation for Med & Biol Eng (MBEC 2014), IFMBE vol. 45,

Dubrovnik, Croatia, Springer, pp. 666-669.

[59] Zapata, B.C., Fernandez-Aleman, J.L., Idri, A., Toval, A. 2015. Empirical Studies on Usability of mHealth

Apps: A Systematic Literature Review. J Med Systems 39(2), p. 1; doi: 10.1007/s10916-014-0182-2

[60] Fong, E.-M., Chung, W.-Y. 2013. Mobile Cloud-Computing-Based Healthcare Service by Noncontact ECG

Monitoring. Sensors, 13(12), pp. 16451-16473; doi:10.3390/s131216451

[61] Huang, Q., Huang, X., Liu, L., Lin, Y., Long, X., Li, X. 2018. A case-oriented web-based training system for

breast cancer diagnosis. Comput Methods Programs Biomed 156, pp. 73-83; doi:10.1016/j.cmpb.2017.12.028

[62] Qualter, J., Sculli, F., Oliker, A., et al. 2012. The biodigital human: a web-based 3D platform for medical

visualization and education. Stud Health Technol Inform 173, pp. 359-361.

[63] Hackett, M., Proctor, M. 2016. Three-Dimensional Display Technologies for Anatomical Education: A

Literature Review. Journal of Science Education and Technology 25(4), pp. 641-654.

[64] Porras, L., Drezner, J., Dotson, A., et al. 2016. Novice interpretation of screening electrocardiograms and

impact of online training. Journal of Electrocardiology 49(3), pp. 462-466; doi:10.1016/j.jelectrocard.2016.02.004

[65] Hilbert, M. 2016. Big Data for Development: A Review of Promises and Challenges. Development Policy

Review 34(1), pp. 135-174; doi:10.1111/dpr.12142

[66] Dey, N., Ashour, A.S., Shi, F., Balas, V.E. 2018. Soft Computing Based Medical Image Analysis. Academic

Press. ISBN:978-0-12-813087-2

[67] van Poelgeest, R., van Groningen, J.T., Daniels, J.H., et al. 2017. Level of Digitization in Dutch Hospitals and

the Lengths of Stay of Patients with Colorectal Cancer. J Med Syst 41(5), p. 84, 2017; doi: 10.1007/s10916-017-

0734-3

[68] Rubio, O.J., Alesanco, A., Garcia, J. 2013. Secure information embedding into 1D biomedical signals based on

SPIHT. J Biomed Inform 46(4), pp. 653-664; doi:10.1016/j.jbi.2013.05.002

[69] Hsieh, J.-C., Li, A.-H., Yang, C.-C. 2013. Mobile, Cloud, and Big Data Computing: Contributions,

Challenges, and New Directions in Telecardiology. Int. J. Environ. Res. Public Health 10(11), pp. 6131-6153;

doi:10.3390/ijerph10116131

[70] McCarthy, L.H., Longhurst, C.A., Hahn, J.S. 2015. Special requirements for electronic medical records in

neurology. Neurol Clin Pract. 5(1), pp. 67-73; doi:10.1212/CPJ.0000000000000093

[71] Karaa, W.B.A., Dey, N. 2015. Biomedical Image Analysis and Mining Techniques for Improved Health

Outcomes. IGI Global, Hershey, PA, USA, ISBN:1466688114.

[72] Griebel, L., Prokosch, H.-U., Kopcke F., et al. 2015. A scoping review of cloud computing in healthcare. BMC

Med Inform Decis Mak 15, p. 17; doi:10.1186/s12911-015-0145-7

[73] Kruse, C.S., Goswamy, R., Raval, Y., Marawi, S. 2016. Challenges and Opportunities of Big Data in Health

Care: A Systematic Review. JMIR Med Inform 4(4), p. e38; doi:10.2196/medinform.5359

[74] Alyami, M.A., Almotairi, M., Aikins, L., Yataco, A.R., Song, Y.-T. 2017. Managing personal health records

using meta-data and cloud storage. IEEE/ACIS 16th Int. Conf. on Computer and Information Science (ICIS 2017),

Wuhan, China, pp. 265-271; doi:10.1109/ICIS.2017.7960004

[75] Rifi, N., Rachkidi, E., Agoulmine, N., Taher, N.C. 2017. Towards using blockchain technology for eHealth

data access management. 4th Int. Conf. on Advances in Biomed Eng (ICABME 2017), Beirut, Lebanon, pp. 1-4;

doi:10.1109/ICABME.2017.8167555

[76] Azaria, A., Ekblaw, A., Vieira, T., Lippman, A. 2016. MedRec: Using Blockchain for Medical Data Access

and Permission Management. 2nd Int. Conf. on Open and Big Data (OBD 2016), Vienna, Austria, pp. 25-30; doi:

10.1109/OBD.2016.11

[77] Mitchell, J., Probst, J., Brock-Martin, A., Bennett, K., Glover, S., Hardin, J. 2014. Association between

clinical decision support system use and rural quality disparities in the treatment of pneumonia. J Rural Health

30(2), pp. 186-195. doi: 10.1111/jrh.12043

[78] Miller, P., Phipps, M., Chatterjee, S., et al. 2014. Exploring a Clinically Friendly Web-Based Approach to

Clinical Decision Support Linked to the Electronic Health Record: Design Philosophy, Prototype Implementation,

and Framework for Assessment. JMIR Med Inform 2(2), e20; doi:10.2196/medinform.3586

[79] Cloughley, R.G., Bond, R.R., Finlay, D.D., Guldenring, D., McLaughlin, J. 2016. An interactive clinician-

friendly query builder for decision support during ECG interpretation. Comput Cardiol Conf (CinC 2016),

Vancouver, BC, Canada, pp. 381-384; doi:10.23919/CIC.2016.7868759

[80] Kell, S. 2016. Dynamically Diagnosing Type Errors in Unsafe Code, Splash OOPSLA 2016 Conf.,

Amsterdam, Netherlands, pp. 800-819; doi: 10.1145/2983990.2983998

[81] McConnell, S. 2004. Code Complete. 2nd ed. Microsoft Press. ISBN: 0735619670

[82] Dierks, T., Rescorla, E. 2008. The Transport Layer Security (TLS) Protocol, Version 1.2. Network Working

Group Request for Comments 5246. https://tools.ietf.org/html/rfc5246 (accessed: 2018-02-20)

[83] Prokhorenko, V., Choo, K.-K.R., Ashman, H. 2016. Web application protection techniques: A taxonomy.

Journal of Network and Computer Applications 60, pp. 95-112, doi:10.1016/j.jnca.2015.11.017

[84] Huang, X.-W., Hsieh, C.-Y., Wu, C.-H., Cheng, Y.-C. 2015. A Token-Based User Authentication Mechanism

for Data Exchange in RESTful API, 18th Int. Conf. on Network-Based Information Systems (NBiS 2015), Taipei,

Taiwan, pp. 601-606; 10.1109/NBiS.2015.89

[85] Jones, M., Bradley, J., Sakimura, N. 2015. JSON Web Token (JWT). Internet Engineering Task Force. Request

for Comments 7519. https://tools.ietf.org/html/rfc7519

[86] Shen, Q., Yang, Y., Wu, Z., Wang, D., Long, M. 2013. Securing data services: a security architecture design

for private storage cloud based on HDFS. International Journal of Grid and Utility Computing 4(4), pp. 242-254;

doi:10.1504/IJGUC.2013.057118

[87] Graz University of Technology. 2018. Meltdown and Spectre. https://meltdownattack.com (accessed: 2018-01-

21)

[88] Gkoulalas-Divanis, A., Loukides, G. 2013. Anonymization of Electronic Medical Records to Support Clinical

Analysis. SpringerBriefs in Electrical and Computer Engineering. doi:10.1007/978-1-4614-5668-1_2

[89] Emam, K.E. Rodgers, S., Malin, B. 2015. Anonymising and sharing individual patient data. BMJ 350, h1139;

doi:10.1136/bmj.h1139

[90] Fernandez-Aleman, J.L, Senor, I.C., Lozoya, P.A.O., Toval, A. 2013. Security and privacy in electronic health

records: A systematic literature review, J Biomed Inform 46(3), pp. 541-562; doi:10.1016/j.jbi.2012.12.003

[91] Google. 2018. Angular. https://angular.io/ (accessed: 2018-01-21)

[92] Belshe, M., Peon, R., Thomson, M. 2015. Hypertext Transfer Protocol Version 2 (HTTP/2). Internet

Engineering Task Force (IETF). RFC 7540. http://httpwg.org/specs/rfc7540.html (accessed: 2018-01-19)

[93] Fielding, R.T. 2009. It is okay to use POST. Untangled, Blog. http://roy.gbiv.com/untangled/2009/it-is-okay-

to-use-post (accessed 2018-01-19)

[94] Orchard, D. 2016. Programming language evolution and sustainable software. Blog. The Software

Sustainability Institute, UK, https://www.software.ac.uk/blog/2016-09-12-programming-language-evolution-and-

sustainable-software (accessed: 2018-02-20)

[95] Oracle. Java Platform, Standard Edition What’s New in Oracle JDK 9.

https://docs.oracle.com/javase/9/whatsnew/toc.htm (accessed: 2018-01-19)

[96] Ben-Kiki, O., Evans, C., Net, I.D. 2009. YAML Ain’t Markup Language (YAML™) Version 1.2.

http://www.yaml.org/spec/1.2/spec.html (accessed: 2018-01-20)

[97] SmartBear Software. 2018. Swagger Editor and Swagger UI. https://swagger.io/ (accessed: 2018-01-20)

[98] Krishnan, D., Kelly, A. 2018. Springfox Reference Documentation. Available at:

https://springfox.github.io/springfox/docs/current/ (accessed: 2018-01-20)

[99] Pivotal Software, Inc. 2018. Spring Boot. https://projects.spring.io/spring-boot/ (accessed: 2018-01-20)

[100] H2 database. 2018. http://www.h2database.com/html/features.html (accessed: 2018-01-20)

[101] Heaton, J. 2015. Encog: Library of Interchangeable Machine Learning Models for Java and C#. JMLR 16,

pp. 1243-1247.

[102] Chang, C.-C., Lin, C.-J. 2011. LIBSVM : a library for support vector machines. ACM TIST 2(27), pp. 1-27.

[103] Tibco Software, Inc. 2018. JasperReports® Library, Open Source Java Reporting Library.

https://community.jaspersoft.com/project/jasperreports-library (accessed: 2018-01-21).

[104] Witten, I.H., Frank, E., Hall, M.A. 2011. Data Mining: Practical Machine Learning Tools and Techniques.

3rd ed. Morgan Kaufmann. ISBN:0123814790

[105] Syncleus. 2018. Aparapi. http://aparapi.com, (accessed: 2018-01-21)

[106] Majumder, S., Mondal, T., Deen, M.J. 2017. Wearable Sensors for Remote Health Monitoring. Sensors

17(1), p. 130; doi:10.3390/s17010130

[107] Chapman, B., Jost, G., van der Pas, R. 2007. Using OpenMP: Portable Shared Memory Parallel

Programming. The MIT Press; Scientific and Engineering edition, Boston, MA, USA, ISBN:0262533022.

[108] Kalin, M. 2013. Java Web Services: Up and Running: A Quick, Practical, and Thorough Introduction. 2nd

ed., O'Reilly Media, Sebastopol, CA, USA, ISBN:1449365116

[109] Li, W.-S., Yan, J., Yan, Y., Zhang, J. 2010. Xbase: cloud-enabled information appliance for healthcare. Proc

13th Int Conf on Extending Database Technology (EDBT '10), ACM, New York, NY, USA, pp. 675-680.

doi:10.1145/1739041.1739125

[110] Vukicevic, M., Radovanovic, S., Milovanovic, M., Minovic, M. 2014. Cloud Based Metalearning System for

Predictive Modeling of Biomedical Data. The Scientific World Journal vol. 2014, p. 859279;

doi:10.1155/2014/859279.

[111] Sahoo, S.S., Jayapandian, C., Garg, G., Kaffashi, F., Chung, S., Bozorgi, A., Chen, C.-H., Loparo, K.,

Lhatoo, S.-D., Zhang G.-Q. 2014. Heart beats in the cloud: distributed analysis of electrophysiological ‘Big Data’

using cloud computing for epilepsy clinical research. JAMIA 21(2), pp. 263-271, 2014; doi:10.1136/amiajnl-2013-

002156

[112] Jovic A., Kukolja, D., Jozic, K., Cifrek, M. 2016. Use Case Diagram Based Scenarios Design for a

Biomedical Time-Series Analysis Web Platform Proc. Int. Conf. MIPRO 2016. Opatija, Croatia, pp. 326-331.

[113] Brett, A., Croucher, M., Haines, R., Hettrick, S., Hetherington, J., Stillwell M., Wyatt, C. 2017. Research

Software Engineers: State of the Nation Report 2017. University of Southampton, UK: The Research Software

Engineer Network (RSEN); doi:10.5281/zenodo.495360

[114] Grieve, S., Mueller, E., Morley, A., Upson, M., Adams, R., Clerx, M. 2018. Bridging the gap: Convincing

researchers with different backgrounds to adopt good (enough) software development practices. Blog. The

Software Sustainability Institute, UK, https://software.ac.uk/blog/2018-02-09-bridging-gap-convincing-researchers-

different-backgrounds-adopt-good-enough (accessed: 2018-02-20)

[115] Cairns, C., Somerfield, D. 2017. The Basics of Web Application Security, MartinFowler.com blog,

https://martinfowler.com/articles/web-security-basics.html (accessed: 2018-02-20)

[116] Healey, J.A., Picard, R.W. 2005. Detecting stress during real-world driving tasks using physiological sensors.

IEEE TITS 6(2), pp. 156-166; doi:10.1109/TITS.2005.848368.

[117] Chudacek, V., Spilka, J., Bursa, M., Janku, P., Hruban, L., Huptych, M., Lhotska, L. 2014. Open access

intrapartum CTG database. BMC Pregnancy and Childbirth 14, p. 16.

Relating the chapter title with the scope and title of the book

Here, we consider the relation between the title of the book: "Medical Big Data and Internet

of Medical Things: Advances, Challenges, and Applications" and its scope with the title of

our proposed chapter: "Challenges in Designing Software Architectures for Web Based

Biomedical Signal Analysis".

 The first word of our chapter involves architectural design "Challenges", which is

also mentioned in the title of the book. Next, the scope of the book in "Part A: IoT in Life

Sciences" involves the topic "Medical Big Data Management Systems and Infrastructures".

This is reflected in the title of our chapter, because we focus on "designing software

architectures" in biomedical engineering, including big data applications.

Our chapter deals with telemedicine and health care based on web solutions in signal

analyis that includes recommendations to researchers, and the scope of the book mentions

under "Part B: Telemedicine and Health care" the topic "Recommender Systems and

Decision Support Systems".

 Although not explicitly mentioned in the title, the scope "Part C: Medical Big Data

Mining and Processing" with the topic "Pattern Recognition, Features Extraction, Feature

Reduction and Selection Techniques in Biomedical Applications" is greatly reflected in our

title, as the whole topic forms part of the complex biomedical signal analysis scenario,

namely, the extraction of features, its reduction and selection are all part of the signal

analysis process. This is also shown and discussed in the text of the chapter.

 In the scope "Part D: Case studies for Classification in Medical Problems", the topic

"Privacy and Security Issues in Big Data" is mentioned, which is reflected in the design of

software architecture that we discuss in detail in the manuscript and mention in the title of

the chapter.

 To conclude, apparently, the title of our chapter encompasses several parts of the

scope of the book and thus we consider it suitable for publication in the current form.

