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Abstract—Traditionally, electrocardiogram (ECG) signals
are recorded and monitored over a period of time and finally
analyzed by an expert. Automatic classification of cardiac
arrhythmias has the potential to improve diagnostics. In
this work, we explore the use of representation learning
from ECG signals for cardiac arrhythmia classification.
The dataset consisting of five cardiac rhythm types was
created from the CPSC, CPSC-Extra, and The Georgia
12-lead ECG Challenge databases. We use a sophisticated
deep learning approach for representation learning and
classification, namely a combination of a Convolutional Auto-
Encoder (CAE) and a Long Short-Term Memory (LSTM)
classifier. CAE was used to compress the input signal that
serves as input to the LSTM classifier. We also implemented a
CAE-based data augmentation approach to balance the data
distribution. The classification results reaching above 90%
accuracy show that the use of the complex deep learning
approach is suitable for addressing the problem.
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convolutional autoencoder, LSTM, data augmentation.

I. INTRODUCTION

According to the data published by the World Health
Organization, cardiovascular diseases are the leading cause
of death worldwide, with an estimated 17.9 million deaths
per year, representing 32% of total deaths [1]. Scientific
research has played a prominent role in addressing this
problem. The basis of scientific research in the field of
cardiology is the electrocardiogram, which records the
electrical activity of the heart. The data collected, ECG
signal recordings, have a wealth of uses in both research
and practical applications.

Traditionally, ECG signals are recorded and monitored
over a period of time and eventually analyzed by an expert.
Nowadays, automatic classification of cardiac arrhythmias
has the potential to improve diagnostics and save lives.
Such a system can be used in real time in wearable
technologies, Holter monitors and medical facilities. The
task of arrhythmia classification from ECG signals can
generally be divided into three main steps. The first step,
similar to other machine learning tasks, is to obtain the
data. The second step is feature extraction, which takes
place after detecting the fiducial points in the ECG record-
ings. The third and final step is classification. The tradi-
tional rule-based diagnosis paradigm is inefficient when
dealing with large amounts of data because it requires

significant analysis and expert knowledge [2]. Deep learn-
ing, on the other hand, shows outstanding performance
on ECG classification studies in recent few years [3]. Its
hierarchical architecture and non-linearity enables higher-
level features (representations) to be obtained and its
strong capabilities in feature extraction contribute greatly
to classification tasks [3]. The goal of our work is to
use a combination of deep learning approaches in each of
the above steps to implement an end-to-end solution for
automatic classification of 5 cardiac rhythms (the normal
rhythm and 4 common arrhythmias).

This paper is organized as follows. Section II presents
some related works. Section III describes the datasets we
used for the tasks and the proposed deep learning methods
combination. Section IV presents the experimental results
obtained with our solution and discusses them. Finally,
Section V is the conclusion of this paper.

II. RELATED WORK

We noted that the task of arrhythmia classification can
generally be divided into three main steps. Beginning
with the second step, the traditional approach is to use
deterministic algorithms for feature extraction. The Pan
Tompkins QRS detection algorithm [4], dating back to
1985, is the staple algorithm in arrhythmia classification
research, as it provided a highly accurate way to detect
QRS complexes (R peaks) in ECG. In a more recent work,
Elgendi et al. [5], presented an algorithm for accurately
detecting other fiducial points in ECG, namely P and T
waves. In spite of significant advances in traditional feature
extraction, recently, deep learning achieved great results
in ECG feature extraction. In their work, garlija et al.
[6] tackle the problem of QRS complex detection using
a 1-D Convolutional Neural Network (CNN) classifier.
The classifier consisted of two convolutional layers, 1
max-pooling in between, and two fully connected layers.
The CNN served as a decision rule that labeled the QRS
complexes with multiple positive outputs. These outputs
were then clustered and a central measure was used as
the final decision for detecting the QRS complex. The
data used in this work were from 44 non-paced records
from the MIT-BIH Arrhythmia Database [7]. Their method
for detecting the QRS complex achieved a sensitivity of
99.81% and a positive predictive value of 99.93%.



In classification, the third step, the best results are usu-
ally obtained with machine learning approaches, especially
deep learning. Sannino et al. [8] developed a deep learning
model for heartbeat classification and arrhythmia detection
with 7 fully connected layers. They obtained the data from
the MIT-BIH Arrhythmia Database [7]. The ECG signals
were first filtered, denoised, segmented into heartbeats, and
finally their features were extracted using deterministic
algorithms before being passed to the deep learning model.
The input to the deep learning model consisted of 50
heartbeat segments of the original ECG signal and 4 of
its temporal features.

Because of the capabilities of deep learning models,
particularly CNNs, deep learning was used for both feature
extraction and classification. The data does not go through
feature extraction algorithms, but is fed directly into the
input of the deep learning model, resulting in end-to-
end solutions. Ribeiro et al. [9] used four residual blocks
placed between a convolutional layer at the beginning
and a fully connected layer at the end. They collected a
dataset of 2,322,513 ECG recordings from over one and
a half million patients from Brazil. This important work
classified six types of abnormalities with an F1 score of
over 80% and a specificity of over 99%.

Pyakillya et al. [10] presented a deep learning model as
an end-to-end solution with seven 1-D convolutional layers
for feature extraction followed by three fully connected
layers for classification. This work used data from the
PhysioNet/Computing in Cardiology Challenge 2017 [11].
The solution classified ECG recordings into four classes;
normal sinus rhythm, atrial fibrillation, other rhythm and
noisy. They achieved accuracy of 86%. Yildirim et al. [12]
used an exciting combination of deep learning approaches
that motivated our work. The basis of the experiment was
the long short-term memory classifier. A neural network
was proposed with an LSTM layer at the beginning,
followed by two fully connected layers and a softmax
activation function at the end. This classifier was used to
automatically classify ECG signals into one of the five
available arrhythmia classes. To reduce the computational
cost, a nonlinear compression structure was implemented
to reduce the input size to the LSTM classifier. For this
task, a convolutional autoencoder was implemented to
compress (encode) and decompress (decode) the ECG
signal. The compressed ECG signal was used as input
to the LSTM classifier, thus cutting down on overall
computational resources and training time. This work
achieved over 99.0% accuracy and showed that the CAE-
LSTM model was about 7 times faster than the LSTM
model.

Finally, deep learning can be applied to the first step by
augmenting the dataset by generating synthetic data. The
term data augmentation refers to any method that artifi-
cially inflates the original training set with label-preserving
transformations [13]. Shaker et al. [14] addressed the
problem of balancing a dataset using generative adversarial
networks (GANSs). For each arrhythmia class, a specific

TABLE I: Distribution of the Initial Dataset

Rhythm type  ECG Heartbeats Training  set
recordings heartbeats

NSR 2670 37909 26537

LBBB 467 6872 4811

RBBB 2399 38593 27016

PAC 1852 20610 14427

VPB 387 4068 2848

TOTAL 7775 108052 75639

GAN was trained because the amount of data available
for each class was disproportionately large. If a single
GAN were trained for the entire dataset, it would focus
on generating samples of the dominant class and neglect
the minor classes. The dataset used was from the MIT-
BIH Arrhythmia Database [7]. This interesting approach
and the positive impact on the results also motivated our
work. They used a CNN that achieved an overall accuracy
of over 98%, a precision of over 90%, a specificity of over
97.4%, and a sensitivity of over 97.7%.

III. MATERIALS AND METHODS

In this work, we attempt to combine sophisticated
deep learning approaches, the deep CAE-LSTM model
for ECG record compression and arrhythmia classification
presented in [12], and synthetic ECG record generation
based on the work in [14]. However, we did not imple-
ment GANs for data augmentation. Instead, we present
a different, novel method for data augmentation based
on properties of CAE. Additionally, our work and [12]
differ in two aspects, the datasets and preprocessing.
Subsequently, the works differ in results as well. This is
discussed in Section IV.

A. Dataset

We use a different dataset than in [12], this is so
that we can experiment how the presented deep learn-
ing approaches behave on a different dataset. Namely,
ECG signals for our dataset were obtained from a
collection of three databases: CPSC Database, CPSC-
Extra Database, and The Georgia 12-lead ECG Chal-
lenge (GI12EC) Database, all available from the Phys-
ioNet/Computing in Cardiology Challenge 2020 at [15].
Each ECG recording obtained was sampled at 500 Hz, and
the dataset was created from second-lead ECG signals only
(IT). The dataset contains recordings of five rhythm types:
normal sinus rhythm (NSR), right bundle branch block
(RBBB), left bundle branch block (LBBB), premature
atrial contraction (PAC), and ventricular premature beat
(VPB). The dataset had to be further segmented into
heart beats and the ECG signals had to be preprocessed.
Afterwards, the dataset was split into a training dataset,
containing 70% randomly selected samples, and a test
dataset, containing 30% of the samples. The number of
recordings for each rhythm are shown in Table I.



B. Preprocessing

Each ECG signal first passes through a bandpass filter (5
— 15 Hz) to remove noise and provide a smoother signal.
Each ECG recording is segmented into heartbeats using
the Pan-Tompkins algorithm [4] to detect QRS complexes.
The segmented heartbeats are 260 samples long, and
the detected R peak is located at the 100th sample of
the recording. Finally, the ECG signals are normalized
between O and 1. This method for beat segmentation
differs from [12]. In their work, the beat labels were
independently annotated by multiple cardiologists, whose
consensus resolved differences in the diagnoses [12].

C. Convolutional Auto-encoder (CAE)

An autoencoder is a neural network that is trained to
try to copy its input to its output [16]. Internally, it has
a hidden layer h that describes a code that represents the
input [16]. The network consists of two parts: an encoder
function h=f(x) and a decoder that produces a reconstruc-
tion r=g(h) [16]. Autoencoders have been successfully
used in dimensionality reduction and information retrieval
[16]. CAEs benefit from unsupervised learning of convo-
lutional layers [17]. The convolutional part uses a different
number of layers with different kernel sizes as filters to
create an abstract information for input [18]. Both CNNs
and CAEs use convolutional layers, but CAEs are not
trained for classification or detection. During the training
of CAEs, the goal is to minimize the reconstruction error,
i.e., the value of the loss function that accounts for the
reconstructed and original data.

We have implemented a deep CAE with 16 layers,
as shown in Table II. The input to the CAE is a 260-
sample ECG signal of a single heartbeat. The CAE model,
like any auto-encoder, consists of two parts: encoder and
decoder. The encoder has the task of compressing the
260 samples-long signal into 32 samples-long encoded
features. Hence, with CAE, we can represent a larger
signal with a smaller encoded signal. The decoder part
has the task of reconstructing the original signal from
the coded signal. The reconstructed signal is compared to
the original signal in the loss function during the training
phase and used for the reconstruction metrics during the
testing and validation phase. We trained our CAE for 50
epochs, with a batch size of 128. The Adam optimizer
was used with a learning rate of 0.00036, betas of 0.9 and
0.999, and a weight decay of 1e-05. We used the mean
squared error (MSE) as the loss function.

Table I indicates a problem of class imbalance in the
dataset. In order to solve this problem, data augmentation
had to be implemented. As mentioned earlier, we did not
implement GANs. Instead, we turned to our CAE model.
We noticed slight imperfections and differences in the
reconstructed signals compared to the originals, and this
difference was more pronounced for some samples. Fig. 1
shows signal reconstruction examples for each arrhythmia
class. We can see, even when there are more pronounced
differences in the reconstructed signal, it still retains the

TABLE II: CAE Architecture

Activation Trainable

No Layer name Ifernel func- param- (?utput
sie tion eters suze
Input: ECG signal 260 x 1

E 1 Convld 16 x5 ReLU 96 260 x 16
N 2 MaxPoolld 2 - 0 130 x 16
C 3 Convld 64x5 ReLU 5,184 130 x 64
O 4 BatchNormld - - 128 130 x 64
D 5 MaxPoolld 2 - 0 65 x 64
E 6 Convld 32x3 ReLU 6,176 65 x 32
R 7 Convld 1x3 ReLU 97 65 x 1

8  MaxPoolld 2 - 0 32 x1

Bottleneck: Compressed ECG signal 32 x 1

D 9 ConvTransposeld 1x 3 ReLU 4 32x1
E 10 ConvTransposeld 32x3  ReLU 128 32 x 32
C 11 Upsample 2 - 0 64 x 32
O 12 ConvTransposeld 64x5 ReLU 10,304 64 x 64
D 13 Upsample 2 - 0 128 x 64
E 14 ConvTransposeld 16x5 ReLU 5,136 128 x 16
R 15 Flatten - - 0 2048 x 1

16 Linear - - 532,740 260 x 1

Output: reconstructed ECG signal 260 x 1

TABLE III: Distribution of the Dataset After

Augmentation
Rhythm type  Generated Heartbeats Training  set
heartbeats heartbeats

NSR 0 37909 26537

LBBB 19244 26116 24055

RBBB 0 38593 27016

PAC 14427 35037 28854

VPB 22784 26852 25632
TOTAL 56455 164507 132094

general shape of the original ECG signal. These signals are
different from the original, but appear unique and natural.
As obtaining such signals is the real intent behind data
augmentation, we used the obtained reconstructed signals
for data augmentation. Table III shows the number of
generated synthetic ECG signals and the distribution of
the dataset after data augmentation. The generated signals
were used to balance the training set only. We can see how
the dataset now has a much more balanced distribution of
arrhythmia classes.

D. LSTM Classifier

LSTM is a part of the recurrent neural network (RNN)
family that includes memory blocks, memory cells, and
gate units [19]. It has been shown that LSTM networks
can learn long-term dependencies more easily than the
simple recurrent architectures [16]. In this work, the
LSTM network is used for arrhythmia classification from
compressed ECG signals. We have implemented a 5-
layer deep LSTM classifier. Table IV shows the detailed
architecture. The input to the LSTM network is a 32-
sample compressed ECG signal, the output of the encoder
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Fig. 1: Examples of the original ECG signals (red line) and the corresponding reconstructed signals (overlapping
dashed blue line) for each rhythm. The left column presents examples of very good reconstruction of the original
signal, with only a slight deviation. The right column presents examples of reconstruction with pronounced
deviations to the original signal, especially along the QRS complex.

TABLE IV: LSTM Classifier Architecture

No Layer Unit size Layer parameter

Input: Compressed ECG signal 32 x 1

1 LSTM 32 batch first = True

2 Flatten - -

3 Linear 128 activation = ReLU
4 Dropout - p=0.1

5 Linear 5 activation = softmax

part of the CAE. At the output of the network is the
softmax activation function, which provides a probability
prediction for this multiclass classification task (5 rhythm
classes). The LSTM classifier was trained for 500 epochs
with a batch size of 128. The Adam optimizer was used
with a learning rate of 0.0005, betas of 0.9 and 0.999,
and a weight decay of le-05. We used cross entropy as
the loss function. The CAE-LSTM classifier architecture
is presented in Fig. 2.

IV. EXPERIMENTAL RESULTS

The experimental results are divided into two categories:
compression and classification. The compression results,
which come from the CAE evaluation, show the quality
of compression and reconstruction of the ECG signals.
The arrhythmia classification results were achieved by the

LSTM classifier. The experimental setup was as follows.
For the experimental implementation, the deep learning
tool PyTorch [20] was used along with Python [21]. All
experiments were performed on a remote system with 8
CPUs, 30 GB RAM memory and 16 GB NVIDIA Quardo
P5000 graphics card.

A. Compression/Reconstruction results

The CAE model was used to compress and then re-
construct an ECG signal. The original ECG signal of 260
samples was compressed to 32 samples in the encoder.
The decoder reconstructs the compressed ECG signal of
32 samples back to the original 260 samples. During this
process, some information of the original signal is lost,
as the reconstructed signal is not identical to the original.
To evaluate the quality of the reconstructed signal, the
following evaluation metrics were used [12]: Root Means
Squared (RMS), Percentage RMS Difference (PRD), PRD
Normalized (PRDN), Quality Score (QS) and Compres-
sion Ratio (CR).

CR is the only criterion that directly relates to compres-
sion. It is determined by dividing the size of the original
signal with the size of the compressed signal. A higher
value of CR means more compression. It is important to
choose a good value of CR to get a good reconstruction
of the compressed signals. The value of CR was set to
8.125 in this work. PRD is a very important metric for
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Fig. 2: Block representation of the classifier architecture.

TABLE V: CAE Reconstruction Metrics

Rhythm  PRD PRDN  RMS SNR QS

NSR 1.31 5.72 0.01 58.21 6.71
LBBB 1.94 7.61 0.01 53.17 4.69
RBBB 1.76 7.65 0.01 53.73 5.37
PAC 1.43 6.80 0.01 55.23 6.16
VPB 1.66 8.03 0.01 51.98 5.58
Average 1.63 7.16 0.01 54.46 5.7

signal reconstruction, which gives information about the
amount of data lost in the reconstructed signal. A lower
PRD value means less data loss, thus better reconstruction.
The formula for PRD is, as follows:

SN (Xo(i) — X, ()2
S (Xo(i))?2

The reconstruction results are presented in Table V,
where less is better. As we can see from the table, the NSR
class has the best overall score for each metric. However,
all arrhythmia classes score well on these criteria. The
overall PRD score is 1.63 and QS is 5.7. Fig. 1 shows
two examples of signal reconstruction for each arrhythmia
class, one with a lower PRD and one with a higher PRD.

PRD =100 *

&)

B. Classification Results

The LSTM classifier is tasked with classifying five
rhythm classes from the compressed ECG signal. Table

TABLE VI: LSTM Classification Results, %

Rhythm  Accuracy PPV Sensitivity Specificity NPV
NSR 88.4 5481 81.34 96.84 89.5

LBBB 96.65 94.16 88.23 97.2 98.68
RBBB 91.58 72.01 84.52 96.61 93.07
VPB 9391 84.63  84.09 96.15 96.29
PAC 82.94 80.97 57.81 83.48 94.01
Average  90.7 7732 79.2 94.06 94.31

VI shows the classification results obtained. These results
were obtained using the test dataset presented to the
network only during the testing phase. We used the follow-
ing evaluation metrics: accuracy, positive predictive value
(PPV), sensitivity, specificity and negative predictive value
(NPV). The formulas for these criteria are, as follows:

Accuracy = TP+TN (2)
TP+ FP+TN+FN

Sensitivity = TPj—ﬂi-ipFN 3)

PPV = ot o)

Speci ficity = % (5)

NPV = ©)

TP denotes the true positives, TN true negatives, FP
false positives and FN false negatives. We chose these
criteria due to their use in medical diagnostic test evalua-
tion [22]. Sensitivity is the ability to correctly classify the
presence of a specific rhythm. Specificity is the ability to
correctly classify the absence of a specific rhythm.

The classification results shown in Table VI were
achieved after balancing the training dataset. The classi-
fication results for the original dataset were much worse.
Classification of PAC and VPB was essentially nonexistent
with extremely low test dataset results. The results for
other rhythms were significantly lower than those obtained
after data augmentation. According to Table VI, the de-
tection of the LBBB arrhythmia class showed the best
performance with respect to all criteria. Moreover, we see
that the specificity and NPV values are better than the
sensitivity and PPV values. In practise, this means that our
solution is better able to diagnose a patient as arrhythmia-
free than a patient with arrhythmia. However, according
to Table VI, our solution still achieves good results for
sensitivity and PPV, especially for LBBB, VPB and even
RBBB. As mentioned in Section III under Preprocessing,
in [12] expert knowledge is used in beat segmentation, and
the beat labels were independently annotated by several



cardiologists. This method is superior to our method. Due
to increased data quality, the results obtained are also
better than ours, reaching 99.11% accuracy.

V. CONCLUSION

In this work, we have implemented a deep CAE-LSTM
network model based on coded features, first presented
in Yildirim et al. [12]. A deep convolutional autoencoder
has been implemented to obtain compressed ECG signals
that can be used as input to the LSTM classifier. We also
present a novel approach to data augmentation based on
CAE. In addition to compression, CAE can also recon-
struct the original ECG signal. The reconstructed signal
is different from the original and can be considered as
a new and unique ECG signal. This was used as a data
augmentation approach to balance the initial, significantly
unbalanced training dataset. The CAE model compressed
and reconstructed the signal with an overall PRD of 1.63
and QS of 5.7. The LSTM classifier used to classify
5 rhythm classes (NSR and 4 arrhythmias) achieved an
accuracy of 90.7%, a specificity of 94.06%, a negative
predictive value of 94.31%, a sensitivity of 77.32%, and
a positive predictive value of 79.2%.
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