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Abstract—Dementia is a serious disease that is very common
in the elderly population. Automatic detection of dementia is a
difficult task that may involve the analysis of acoustic features
of speech, linguistic features of transcripts, and mental state
exams. In this work, we explore the limits of using speech
transcripts from doctor-patient conversations to detect dementia.
The dataset is prepared from Pitt corpus, which is a part of
DementiaBank, a shared database of multimedia interactions for
studying communication in dementia. We use a sophisticated
natural language processing approach, namely RoBERTa, which
addresses the problem by using transformers and self-attention
mechanism. We compare RoBERTa with a baseline BERT model.
We show that dementia detection using well-prepared speech
transcripts alone can lead to detection rates above 90% for
RoBERTa model in a near-balanced dataset, outperforming the
baseline model.

Keywords—dementia, detection, transformers, RoBERTa, deep
learning, Pitt corpus.

I. INTRODUCTION

Dementia is the loss of cognitive functioning – thinking,
remembering, and reasoning – to such an extent that it
interferes with a person’s daily life and activities [1]. It is a
serious disease that is usually chronic and progressive, which
is a major cause of disability in the elderly population. It poses
a significant obstacle not only to those with the disease, but
also to their careers and families. More than 50 million people
in the world suffer from dementia and it is estimated that the
number of cases will triple by 2050 [2].

Dementia is not only a serious global health problem, but
also represents a significant economic burden. According to
some estimates, the economic impact of dementia is more than
$1 trillion, which is more than 1% of the world’s gross do-
mestic product [3]. At the time of writing, there is no cure for
dementia, nor is there a standardized test to detect dementia.
Because dementia is currently incurable, a medical expert’s
goal is to diagnose dementia as early as possible so that
patients can receive appropriate treatment that can alleviate
their symptoms and slow cognitive decline, potentially leading
to extended life expectancy. All of this forms a motivation
for the development of an effective dementia detection tool
that could ideally be used in conjunction with some sort of
standardized test.

In this work, we explore the limits of using speech tran-
scripts from doctor-patient conversations to detect dementia
using a sophisticated natural language processing (NLP) ap-
proach, namely RoBERTa, a transformer model that uses a

self-attention mechanism. We decided to use the transformer
approach, as it has been shown that an architecture using
only the attention mechanism can achieve impressive results
in certain NLP tasks [4]. Moreover, we use BERT, a precursor
of RoBERTa, as a baseline model and compare the results ob-
tained using BERT and RoBERTa. The aforementioned speech
transcripts are a part of the Pitt corpus [5], which consists
of audio recordings of the Cookie Theft picture test and
associated transcripts created by expert linguists. Compared
to related work, we achieve better dementia detection results
by carefully considering both the optimization of RoBERTa
and the information obtainable from transcripts.

In the following sections, we first briefly review related
work and their results on dementia detection. Furthermore, we
describe our dataset and give a brief introduction to RoBERTa.
Finally, we describe our experimental setup, present our results
and give a concise conclusion.

II. RELATED WORK

There are a number of studies on the detection of dementia.
Although most of them share some similarities, such as the
use of the cookie test experiments from the Pitt corpus, they
all differ in some ways. In continuation of this section, we
explain the different approaches.

A. Feature-Based Approaches

The first approaches to diagnosing dementia from speech
were feature-based [6]. A classifier was trained using numer-
ous linguistic features such as verb rate, noun rate, pronoun
rate, and others. Further improvements of these feature-based
approaches were based on increasing the number of expert-
defined features [7], adding acoustic features [8], linking
linguistic features to neuropsychological tests [9] and so on.
Rather than using features introduced by human experts, some
studies focused on clustering pre-trained GloVE embeddings
of participants’ words to detect dementia [10], [11].

B. Deep Learning-Based Approaches

In recent years, there is an increase in the number of re-
search papers that use deep learning-based approaches instead
of feature-based approaches. The first work based on deep
learning was by Orimaye et al. [12], in which a deep neural
network was trained to predict mild cognitive impairment
based on speech. In subsequent studies, convolutional neural



networks (CNNs) [13] and recurrent neural networks with long
short-term memory (LSTM) [14] were mainly used. Following
the recent success of transformer models, several studies have
been published using transformers for dementia detection.
Most of them use BERT or RoBERTa methods. We give a
brief introduction to RoBERTa and transformer methods in
Section IV.

Table I shows a comparison of related works and their
results. It includes details such as the dataset, modeling
method, and evaluation method used for each of the mentioned
studies. In addition, the accuracy and F1 score are given for
each work. We would like to caution the reader that all results
listed in Table I should be taken with a grain of salt. Namely, it
is difficult to directly compare all the studies listed in the table.
First, most of the studies reported do not specify exactly how
the transcripts provided were preprocessed, although there are
some exceptions. Namely, Yancheva and Rudzicz removed all
of the filled pauses and repeated speech portions [10]. Karlekar
et al. split all of the transcripts into individual utterances and
they removed all utterances without POS tags [13]. Ilias and
Askounis removed all of the phonological fragments and non-
standard forms from transcripts, as well as repeated speech
portions and filled pauses [15]. All other mentioned related
works do not explicitly state in which way they prepared the
data. Furthermore, most of the related works do not specify
whether they split the dataset per patient or per sample. The
latter would mean that they have a data leak, as it would be
possible that the same patient ends up in both the training
set and the test set. In addition, not all the studies use the
same evaluation method. Finally, some studies have chosen to
use samples from participants with mild cognitive impairment,
while others have discarded them. Therefore, the results may
not be directly comparable. Although RoBERTa was already
used for detection of dementia by Jonasson and Wahlforss
[16], they used out-of-the-box parameters. We show that opti-
mized parameters as well as longer training can lead to better
results. Additionally, our work is the first one to experiment
with different ways of preprocessing Pitt corpus’ transcripts.
The first experiment, similar to the work of Ilias and Askounis
[15], removes most of the additional information provided in
the transcripts. In our second and third experiments, we add
repeated speech portions and filler words, respectively.

III. DATASET

One of the major challenges in training a model to accu-
rately detect dementia using speech is the lack of a large
dataset. At the time of writing, the largest dataset available
is the Pitt corpus from DementiaBank [5], which we used in
our work. The Pitt corpus consists of audio recordings of the
Cookie Theft picture test and associated transcripts created
by expert linguists. The Cookie Theft picture test is one of
many methods used to assess dementia, more specifically to
assess a patient’s verbal and cognitive abilities. Patients are
given the task of describing everything they see in a picture
shown in Figure 1. The picture shows a mother washing
dishes while children try to steal cookies from a jar, hence

the name Cookie Theft. The picture also contains elements
and information from different semantic categories. Healthy
participants are able to attend to, and perceive, every aspect
of the picture. Participants with neurological impairments may
present executive neurological function deficits in which a
range of cognitive skills including attention, memory, and
planning are compromised. These participants may not recall
previously describing a part of the scene and may describe it
for a second or third time. As a result, their description often
contains repetitive language that contributes no new informa-
tion. If cognitive skills such as planning and organization are
compromised, adults with dementia may be unable to convey
information in a logical order or present a coherent description
of the scene. As a consequence, the description may appear
fragmented and disorganized [21].

Fig. 1. Cookie Theft picture, adopted from Goodglass et. al. [22]

All of the samples included in the Pitt corpus are from a
large study of Alzheimer’s dementia conducted between 1983
and 1988. In order to participate in the study, participants
had to meet certain criteria, such as having no previous
cognitive impairment and not taking medications that affect
the central nervous system. A total of 292 participants took
part in the study. Of these 292 participants, 98 were in the
control group, while the other 194 participants were classified
as having MCI (mild cognitive impairment), or definite or
probable dementia. After subtracting the participants who were
classified as MCI, a total of 177 participants remained in the
dementia group. Each participant was tested one to three times
with the Cookie Theft picture test. Accordingly, there are 242
samples from patients in the control group and 267 samples
in the dementia group, excluding the participants diagnosed
with MCI, resulting in a total of 509 audio samples and their
associated linguistic transcripts. Detailed dataset statistics are
shown in Table II.

For our work, we have decided to use the linguistic tran-
scripts provided. These transcripts are provided in the CHAT
format [23]. CHAT is a format used in all TalkBank datasets
and contains additional information such as morphological
information and grammatical relationships in addition to the



TABLE I
COMPARISON OF RELATED WORK ON DEMENTIA DETECTION

Dataset Model Validation Accuracy, % F1, % Reference

ADReSS Challenge [17] BERT Stratified 10-fold CV 85.56% 85.43% Ilias & Askounis [15]
Pitt corpus CNN-RNN - 84.9% - Karlekar et.al. [13]
Pitt corpus LSTM - 83.7% - Karlekar et.al. [13]
Pitt corpus CNN-LSTM Leave-One-Out CV 85.6% - Fritsch et.al. [14]
Pitt corpus SVM 10-fold CV 78% 82% Hernandez-Dominguez et.al. [18]
Pitt corpus RoBERTa (512 maximum input length) 10-fold CV 86.72% - Jonasson, Wahlforss [16]
Pitt corpus S-BERT Large LR 10-fold CV 88.08% 87.23% Roshanzamir et.al. [19]
ADReSS Challenge [17] BERT 5-fold CV 80% 74% Saltz et.al. [20]
Pitt Corpus BERT 5-fold CV 80% 74% Saltz et.al. [20]

TABLE II
DATASET STATISTICS

Number of participants Number of transcripts Average number of tran-
scripts per patient

Average number of char-
acters per transcript

Average number of words
per transcript

275 509 1.85 521.42 107.09

transcribed speech of the participants. For more information
on how the dataset samples were used and how the transcripts
were processed, see Section V.

IV. ROBERTA

The publication of ”Attention Is All You Need” [4],
which presented a novel architecture called a ”transformer”
along with a mechanism called attention, represented a new
paradigm for the field of natural language processing. Until
that time, recurrent neural networks had been the best way
to represent temporal dependencies in sequences. However,
it has since been shown that an architecture using only the
attention mechanism can achieve impressive results in certain
NLP tasks [4]. Transformer is essentially an encoder-decoder
architecture. The encoder receives a list of vectors as input. It
processes these vectors by passing them into a self-attention
layer and then into a feed-forward neural network, which
sends the output upward to the next encoder. This process
is repeated until the final encoder is reached. The output of
the top encoder is then transformed into a set of attention
vectors K and V, which are used by each of the decoders to
focus on the appropriate locations in the input sequence. The
output of each step is passed to the lowest decoder in the next
time step, and similarly to the encoders, as they bubble up
their decoding results. The last layer is followed by a fully
connected layer and a softmax layer that provides an output
token. The given input sequence is fed into the encoder stack
only once, and the outputs are then fed into the decoder stack
at each time step. This process is repeated until the transformer
produces an end-of-sequence token. The number of encoders
and decoders varies from transformer to transformer. BERT-
base and RoBERTa-base models which we use in this work
both have 12 encoders/decoders The architecture with six
encoders/decoders was used in ”Attention Is All You Need”.
For a more detailed explanation, see [4].

One of the main advantages that came with the introduction
of transformers was the ability to train extensive pre-trained
models. Through sophisticated pre-training goals and huge
model parameters, large-scale pre-trained models can success-
fully capture knowledge from vast amounts of labeled and
unlabeled data. By accumulating knowledge in a huge number
of parameters and fine-tuning them for specific tasks, the
knowledge implicitly encoded in the model can be useful for
a variety of downstream tasks [24]. The first and best known
pre-trained model that uses transformers is BERT [25], which
was originally pre-trained on the entire English Wikipedia
and Brown corpus, outperformed state-of-the-art results on a
number of NLP tasks, including all major text classification
tasks.

Following the success of BERT, a number of novel ar-
chitectures using transformers were developed, and the cor-
responding pre-trained models were made available. One of
these models was RoBERTa. In ”RoBERTa: A Robustly Opti-
mized BERT Pretraining Approach,” it was shown that BERT
was significantly undertrained [26]. The authors of RoBERTa
modified the BERT training in a number of ways. Firstly, they
used longer training times and larger training data - 160 GB
in contrast to 16 GB used for the training of BERT. Secondly,
they notably increased the batch size from BERT’s 256 to
8000. Furthermore, the task of next sentence prediction was
removed, while the masked language modeling objective was
altered so that the masking was done during training in contrast
to BERT performing masking only once at data preparation
time. Finally, longer sequences were used as input, but the
limitation of 512 tokens was kept. It is important to emphasize
that RoBERTa essentially uses the same architecture as BERT.

We believe that a pre-trained model like RoBERTa has many
advantages for the NLP task at hand, especially because the
Pitt corpus has a dataset that is, by all accounts, quite small
compared to the one on which RoBERTa was pre-trained.



V. EXPERIMENTAL SETUP

In this section, we describe in detail our experimental setup,
so that reproducible results can be attained.

A. Data Preprocessing

As mentioned earlier, the transcripts are written in the
CHAT format. The first preprocessing step was to extract all
the speech of the participants. Therefore, we discarded the
examiners’ speech and all information about morphological
and grammatical relations in the transcripts.

Next, we had to decide which participant speech information
to keep and which to discard. Let us first briefly discuss the
content of the transcripts. The transcripts contain not only
most of the participant’s spoken words, but also additional
information, such as simple events which are preceded by: &=.
So, for example, if &=coughs is in a transcript, it means that
the participant coughed at that exact moment. Furthermore, the
transcripts contain a variety of filled pauses such as uh, um,
er, and so on. These pauses are preceded by the ampersand
and hyphen mark, &-. Finally, the transcripts also contain
portions of speech that the participant repeated, retraced or
reformulated, which is appropriately indicated by the marks
[/], [//] and [///].

We decided to create three different experiments. The first
experiment would consist of transcripts stripped of all previ-
ously mentioned information. To further clarify, the transcripts
in our first experiment contain the participant’s speech without
filled pauses or repeated speech. The second experiment
consists of transcripts with only the filled pauses removed.
The third and final experiment involves the use of transcripts
that contain both the filled pauses and the portions containing
all of the repeated, retraced and reformulated speech. Any
additional information not mentioned in this paragraph was
removed from all transcripts. An example of two preprocessed
transcripts can be found in Table III. The red-colored text
indicates filled pauses, which were used only in our third
experiment. The blue-colored text indicates repeated, retraced
or reformulated speech, which was included in both the second
and the third experiment. The first experiment did not include
any of the colored text from Table III.

B. Training Setup

Because, as mentioned earlier, each patient participated in
the Cookie Theft picture test between one and three times, we
decided to group the samples per patient. This was done to
avoid training and testing the model with the same patients.
To further illustrate, let us assume that the patient John Doe
participated in the test three times. Consequently, the dataset
would contain three samples of John Doe’s test. When training
or testing our model, we would ensure that all three samples
of John Doe are included only in the training or the test set.

In addition, our dataset is not perfectly balanced. There are
242 samples in the control group, which is 47.54% of the
total dataset. In addition, the grouping of samples per patient
added to the imbalance, as there were only 98 participants in
the control group, accounting for 35.64% of all patients. To

reduce bias as much as possible, we decided to use stratified
10-fold cross-validation. Therefore, 275 patients were divided
into 10 groups, resulting in an average of 27 patients per group.

The basic versions of RoBERTa and BERT, available in
the HuggingFace Transformers library [27], were used. We
experimented with both a maximum length of 256 and 512 for
the RoBERTa and BERT tokenizers. A batch size of 16 was
used in all experiments. The implementation of the AdamW
optimizer from the HuggingFace transformer library was used
along with the following parameters: β1 = 0.9, β2 = 0.999,
ϵ = 1e-8, and L2 weight decay of 0.01. The learning rate
was set to 5e-6. We also experimented with the MADGRAD
optimizer [28] in our preliminary experiments. Although it
showed promising results in terms of faster convergence than
AdamW, we still chose AdamW because there is much more
available literature for it. For each fold, a new model was
trained for 30 epochs. In addition, accuracy, precision, recall,
and F1 score were recorded for each model and later averaged
across all models in the 10-fold cross-validation.

VI. RESULTS AND DISCUSSION

The results of our experiments can be seen in Tables V
and VI. As expected, all of the experiments with RoBERTa
outperformed the ones with BERT. Not surprisingly, any
RoBERTa model with the maximum length parameter set to
512 performed better than the corresponding RoBERTa model
with a maximum length of 256, allowing us to conclude that
our models benefit from a larger text span. Another detail of
particular interest is that all trained models tend to produce
more false negatives than false positives, as can be seen from
the fact that all models have higher precision than recall values.
We suspect that this is the result of a partial imbalance in the
dataset.

To our surprise, the highest accuracy and F1 score were
obtained in the second experiment, both by RoBERTa and
BERT. From this, we can infer two things. First, repeated
speech is characteristic to dementia, it is one of the symptoms
of cognitive decline, therefore including it in the training set
improves model’s accuracy. The results of the first experiment
support this hypothesis, as the accuracy was lower when the
repeated speech portions from the transcripts were removed.
Moreover, from the results of the third experiment we can
observe that including filled pauses does not lead to better
results in dementia detection. Again, accuracy was noticeably
lower after we trained the models with transcripts containing
both filled pauses and repeated speech. The results of the first
and the third experiments were comparable, with only a slight
advantage in accuracy and F1 score for the third experiment.

All of the models failed to correctly classify 20 samples.
Of these 20 samples, 13 belong to the dementia group and
the other 7 to the control group. In Table IV, we show one
sample always misclassified from the dementia group and one
from the control group. Again, the blue coloured text indicates
parts of the transcript that were used in both the second and
third experiments, while the red coloured text indicates parts
of the transcript that were used only in the third experiment.



TABLE III
TRANSCRIPT EXAMPLE FOR DIFFERENT PREPROCESSING STEPS IN EACH OF THE EXPERIMENTS. BLUE TEXT, WHICH INDICATES REPEATED,

RETRACED OR REFORMULATED SPEECH WAS USED IN THE SECOND AND THE THIRD EXPERIMENT, RED TEXT, WHICH INDICATES FILLED PAUSES WAS
USED ONLY IN THE THIRD EXPERIMENT.

Transcript Label

mhm oh I see a part of the whole kitchen is that all the kitchen or isn’t it uh oh I can’t read a lady a mother were in her kitchen
in her kitchen doing some work I suppose and the uh there’s another woman there sharing their pleasures or whatever oh have
you have you checked heard of that new game that they started to play after christmas did you is a well it looks like I’d say this
is well let’s see it looks like oh my mother will beat me by my wife will beat me by a couple rows of this that’s that’s like the
washing would say washing machine or let me see I can’t oh that’s the son come out of from school maybe or something that’s a
youngster there well that’s just as though they getting ready to go to school or they’re just coming out from school and right there
he’s uh same as back there except for down there in the bottom I think it’s uh that’s a little

Dementia

okay uh the child’s falling off the chair he’s taking cookies out of the jar the girl is standing on the floor uh asking for a cookie
the door to the cabinet door is open mother is washing dishes the sink is overflowing the water’s running uh I don’t know if she’s
dryin em or washin em anyway and the kitchen window has curtains the window’s open um it looks like a view of the back there
are three dishes on the uh counter

Control

TABLE IV
TWO TRANSCRIPTS WHICH WERE CLASSIFIED INCORRECTLY IN ALL EXPERIMENTS. BLUE TEXT, WHICH INDICATES REPEATED, RETRACED OR

REFORMULATED SPEECH WAS USED IN THE SECOND AND THE THIRD EXPERIMENT, RED TEXT ,WHICH INDICATES FILLED PAUSES WAS USED ONLY IN
THE THIRD EXPERIMENT.

Transcript Description

okay I’ll start the mother is drying dishes and the sink is over flowing the water is falling onto the floor uh the
boy is on his stool uh taking cookies out of a cookie jar and he has one cookie two cookies one in each hand the
uh girl is standing reaching up for a cookie with her uh finger over her mouth telling him to be quiet the stool
is on one leg uh there’s drapes on the window there’s a path uh between the grass and the bushes and this little
picture is a part of the house and part of the tree in the upper window there are uh uh doors on the uh cabinets
in the sink and uh it’s daylight um there’s two cups and a dish on it on the sink should I describe the two faucets

One of the examples from
dementia group which all
of the models classified
incorrectly

well the boy’s trying to get in this cookie jar and the stool overturns and uh the little girl is expecting to hand her
a cookie uh the mother is her sink is running over and she’s standing in some of the water and uh she’s drying
a dish or wiping a dish and uh you said everything is happening well the water is still runnin in the sink and I
said it’s it’s overflowing and she’s standing in the water and that’s I guess look somebody laying in the lawn out
there but I can’t uh

One of the examples from
control group which all
of the models classified
incorrectly

We would like to point out that the split between training and
testing may have significantly affected the reliability of our
results, as the data set is small and somewhat unbalanced.
Two datasets most commonly used in related studies were the
Pitt corpus, which we also use, and the ADReSS challenge
dataset [17]. The ADReSS Challenge dataset is a subset of
the Pitt corpus and is perfectly balanced with 78 subjects
belonging to the dementia group and 78 subjects belonging
to the control group. It is difficult to compare our results with
those of related studies because, as mentioned earlier, some of
them use the ADReSS challenge dataset, whereas most of the
others, which use the Pitt corpus, do not specify whether they
included participants with MCI and how they preprocessed
the transcripts. The results obtained by our RoBERTa model
outperform the results which Jonasson and Wahlforss [16]
obtained using a RoBERTa model on the same task. They
report an accuracy of 86.82% and precision of 90.69%, while
our best performing model obtained an accuracy of 90.16%
and precision of 92.81%. These differences in scores could be
due to a number of things. Firstly, it could be due to them
using the out-of-the-box parameters and not performing any
optimization. Secondly, since they do not specify in which

way they preprocessed the transcripts, their accuracy could be
a result of removing the repeated speech portions, for which
we have shown that they clearly affect the end results. Finally,
as previously indicated, it could be due to the split between
training and test sets.

VII. CONCLUSION AND FUTURE WORK

In this study, we have shown that pre-trained transformer
models such as RoBERTa can achieve significant results in
detecting dementia from speech transcripts. Our best model
trained on transcripts that contained repeated parts of speech
achieved 90.16% accuracy. These results are promising and
motivate the development of a standardized test for dementia
detection that could be used in conjunction with a model
similar to the one we fine-tuned in this study. Currently, one
of the major obstacles to the detection of dementia is the lack
of a larger data set. We hope that studies such as this one
can encourage the creation of larger, standardized datasets,
as this could lead to the development of a truly powerful
dementia detection tool that could help in delaying the onset of
severe dementia, helping millions of people and significantly
extending their lifespan.



TABLE V
EXPERIMENT RESULTS - BERT

First Experiment First Experiment Second Experiment Second Experiment Third Experiment Third Experiment

Model BERT256 BERT512 BERT256 BERT512 BERT256 BERT512
Precision 91.86% 90.17% 88.78% 90.55% 89.84% 90.76%

Recall 80.08% 84.44% 85.58% 81.42% 83.27% 82.89%
F1 score 84.99% 86.61% 86.89% 85.34% 85.76% 86.36%
Accuracy 85.29% 86.26% 86.42% 85.03% 85.22% 86.29%

TABLE VI
EXPERIMENT RESULTS - ROBERTA

First Experiment First Experiment Second Experiment Second Experiment Third Experiment Third Experiment

Model ROBERTA256 ROBERTA512 ROBERTA256 ROBERTA512 ROBERTA256 ROBERTA512
Precision 94.26% 93.46% 90.21% 92.81% 92.88% 91.87%

Recall 80.31% 83.30% 87.27% 88.60% 83.46% 86.09%
F1 score 86.31% 87.75% 88.27% 90.28% 87.27% 88.49%
Accuracy 86.93% 87.76% 87.74% 90.16% 87.22% 88.16%

In the future, we would like to explore a couple of research
avenues. First and foremost, we would like to experiment
with models that detect dementia directly from patient speech
by classifying audio spectrograms. We also want to explore
the potential of some newer transformer models such as
XLNet [29] and the use of a Longformer [30] that would
allow us to process language sequences with more than 512
tokens.
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