
Climbing Down the Hierarchy: Hierarchical
Classification for Machine Learning Side-channel

Attacks

Stjepan Picek1, Annelie Heuser2, Alan Jovic3, and Axel Legay4

1 KU Leuven ESAT/COSIC and imec, Kasteelpark Arenberg 10, B-3001
Leuven-Heverlee, Belgium

2 IRISA/CNRS, Rennes, France
3 University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

4 IRISA/Inria, Rennes, France

Abstract. Machine learning techniques represent a powerful paradigm
in side-channel analysis, but they come with a price. Selecting the appro-
priate algorithm as well as the parameters can sometimes be a difficult
task. Nevertheless, the results obtained usually justify such an effort.
However, a large part of those results use simplification of the data rela-
tion and in fact do not consider all the available information. In this pa-
per, we analyze the hierarchical relation between the data and propose a
novel hierarchical classification approach for side-channel analysis. With
this technique, we are able to introduce two new attacks for machine
learning side-channel analysis: Hierarchical attack and Structured at-
tack. Our results show that both attacks can outperform machine learn-
ing techniques using the traditional approach as well as the template
attack regarding accuracy. To support our claims, we give extensive ex-
perimental results and discuss the necessary conditions to conduct such
attacks.

Keywords: Side-channel attacks, profiled scenario, machine learning techniques,
hierarchical classification, hierarchical attack, structured attack

1 Introduction

Side-channel attacks (SCAs) are capable of revealing secret keys on crypto-
graphic devices from unintentionally emitted information during computation,
like power consumption or electromagnetic emmanation. To evaluate the worst
case security threat, so-called profiled attacks have to be conducted, which con-
sist of an additional profiling phase. In this phase, one has the full control over
the device to build additional advanced models, which are then exploited to
extract key-dependent information in the attacking phase.

Profiled attacks can be divided into two main approaches. First, there exist
the traditional methods like the template attack [1] and stochastic approach [2],
relying on the maximum-likelihood estimation. Recently, machine learning (ML)

2

techniques, adapted as side-channel attacks, have been proposed, which can be
beneficial in many scenarios. In particular, ML techniques have originally been
introduced to classify between two classes (i.e., a bit is set (= 1) or not (=
0)) [3, 4]. The first extension to 9 Hamming weight (HW) classes for Support
Vector Machines (SVMs) has been given in [5]. Following this approach, recent
works studied ML techniques mostly using 9 (e.g., [6, 7]) or up to 16 classes [8].

However, in most real-world applications, the measured leakage does not fol-
low the Hamming weight (HW) or the Hamming distance (HD) model. For in-
stance, the authors in [9] showed that the leakage of the DPAcontest v2 traces [10]
using a Xilinx FPGA VirtexTM-5 [11] is highly “non-linear”, i.e., the HD does
not apply. Instead, one should consider the output of the S-Box itself as a sensi-
tive variable, resulting in 256 classes (considering AES with 8-bit words). Simi-
larly, even when using an Atmel ATMega-163 smart-card as in the DPAcontest
v4 [12], the leakage model does not exactly follow the Hamming weight. Thus,
especially in a profiled scenario, to be able to capture more knowledge on the
leakage model, it is more advisable to use the S-Box output with 256 classes as a
sensitive variable directly. Even more, considering 256 classes yields direct infor-
mation on the key as each class is related to only one key guess. This is naturally
not the case when considering 9 Hamming weight classes. For instance, in the
worst case when classifying into the Hamming weight class 4 we have 70 corre-
sponding key guesses. Therefore, in a low noise scenario an attacker is clearly
able to reveal the secret key within only one trace using 256 classes, whereas
this is not possible (on average5) when using HW classes.

1.1 Idea & Contributions

The more classes we have, the more instances (measurements) are necessary to
obtain high accuracies, i.e., high probability to classify each element to its class
correctly. Generally speaking one has either n+1 HW classes or 2n classes relat-
ing directly to the key guess where n is the number of bits of intermediate states
and a key chunk6. Up to now in side-channel analysis, the class variables have
been seen in a flat hierarchy, where each label directly results in the classified
variables (see Fig. 1). Naturally, estimating 2n instead of n+1 classes may bring
statistical difficulties. When considering random classification, with 9 classes
there is 1/9 chance of a successful guess, while in the 256 classes scenario there
is 1/256 chance for a random hit. However, only considering the Hamming weight
classes instead of the value itself brings two drawbacks as discussed before: first,
it lowers the information about the secret key and second, it yields an imprecise
estimation of the leakage model. On the other hand, with the increase in the
number of classes, the computational complexity also rises. In general, for most

5 Note that, an attacker could reveal the secret key with only one trace if it corresponds
to HW 0 or 8, which occurs with a probability of 2

256
.

6 For simplicity we assume that one key chunk is of the same size as one intermediate
state chunk, however, this study can easily be extended for other scenarios as given
e.g. in DES.

3

Fig. 1: Flat (standard) approach

ML techniques (with the exception of decision tree based techniques), the com-
plexity for multi-class classification rises with O

(
|Y|
)
, where |Y| is the number

of classes. This is particularly critical when performing a proper tuning within
the profiling phase, which may become very complex in terms of computation
resources.

In this paper, in order to circumvent the problems arising when classifying
n + 1 or 2n directly, we propose to adapt a divide-and-conquer strategy, which
enables us to use as many classes as required from a side-channel leakage point
of view with a much lower complexity of resources and with a higher accuracy
compared to the standard approach. More precisely, our idea is to view the class
variables in a tree structure with additional intermediate nodes which are given
due to the natural clustering of the measured leakage.

A general illustration is given in Fig. 2, where we first divide into M nodes
and then directly into the leafs. Note that compared to the flat approach in
Fig. 1, the number of leaves does not change, but its depth does. Certainly, in
some scenarios due to the given structure of the leakage, it may be suitable to
include several layers of nodes resulting in a higher depth.

Fig. 2: Hierarchical approach

In the context of side-channel analysis, there is a simple hierarchy that one
could follow, which we detail next. However, we stress that the hierarchical ap-

4

proach is not restricted to this specific scenario, but is rather a general concept.
In particular, one could adapt the approach of clustering side-channel measure-
ments by their similarity as introduced in [13] to build an appropriate tree struc-
ture. Note that here we use a priori knowledge to build more accurate classifiers,
i.e., use the fact that we know (or can assume) the semantic hierarchy of the
data.

First, we divide our measurements regarding the HW of the sensitive variable
resulting in 9 classes and then each of those classes is further divided into the
sensitive variable itself (leaf classes). Note that, since the HW of a 8-bit word
forms a binomial distribution, two classes (HW 0 and HW 8) cannot be divided
any further (i.e., these are already leaf classes), while the rest of the classes (HW
1 to HW 7) have various number of subclasses. In this case, using hierarchical
approach, the largest number of classes we need to handle at once is for the class
with the Hamming weight equal to 4, where there are 70 possible values. We give
a depiction of hierarchical model with the Hamming weight/sensitive variable
model in Fig. 3.

Fig. 3: Hierarchical approach considering HW classes as intermediate nodes

1.2 Road Map

This paper is organized as follows. In Section 2, we present basic information
about machine learning and the algorithms we use. Section 3 presents our un-
derlying setup and experimental results for tuning and testing phase for two
powerful ML techniques. Next, in Section 4, we give results for a realistic testing
scenario as well as a comparison with the template attack. In Section 5, we give
a short discussion on the performance of ML as well as some possible future
research directions. Finally, in Section 6, we conclude the paper.

2 Machine Learning Techniques

In this section, we briefly present machine learning techniques used in the paper.
In our experimental setup, we use four algorithms, where two are relatively
simple techniques, i.e., the Naive Bayes and the C4.5 decision tree, while the
other two, Support Vector Machines and Rotation Forest, are more complex.

5

Remark 1. Note that we do not claim that these techniques are optimal, however,
preliminary tests showed that both complex techniques had the highest accuracy
out of a large pool of tested ML techniques. The reason why we additionally
included two simple techniques will be discussed in Section 4.

2.1 Naive Bayes

The Naive Bayes classifier is a method based on the Bayesian rule which works
under a simplifying assumption: it assumes that the predictor features (points
in the measurement traces) are mutually independent given the target class.
Existence of highly-correlated features in a dataset can thus influence the learn-
ing process and reduce the number of successful predictions. Additionally, Naive
Bayes assumes normal distribution for predictor features. A Naive Bayes classi-
fier outputs posterior probabilities as a result of the classification procedure [14].
Note that the space complexity for Naive Bayes algorithm for both training and
testing phase is O

(
|Y|Dv

)
, where |Y| is the number of classes, D is the number

of features, and v is the average number of values for a features. On the other
hand, time complexity for the training phase equals O

(
ND

)
and for the testing

phase is equal to O
(
|Y|D

)
. Here, N is the number of training examples.

2.2 Decision Tree - C4.5

C4.5 is the landmark decision tree algorithm developed by R. Quinlan [15]. It
is a divide-and-conquer algorithm that splits features at tree nodes using the
information-based gain ratio criterion. The node splits on further branches if
more information is gained (as measured by gain ratio) by the split than by
keeping all the instances at the node. The runtime of the algorithm is O

(
D
)
×N×

logN where D is the number of features and N is the number of instances [16].
The trees are first grown to full length and pruned afterwards in order to avoid
data overfitting.

2.3 Rotation Forest

Rotation Forest (RF) is a more recent decision tree ensemble method proposed by
Rodriguez et al [17]. The ensemble is capable of both classification and regression,
depending on the base classifier where in most applications, C4.5 algorithm is
used as the base learner [15]. The algorithm focuses on presenting transformed
data to the classifier by using a projection filter. The most common projection
filter and the one that has been shown to be the main factor for the success of
the ensemble is the principal component analysis (PCA) [18]. The running time
is the same as for C4.5 multiplied with the number of iterations.

2.4 Support Vector Machines

Support Vector Machine (SVM) is a kernel based machine learning family of
methods that are used to accurately classify both linearly separable and linearly

6

inseparable data [19]. The basic idea when the data is not linearly separable
is to transform them to a higher dimensional space by using a transformation
kernel function. In this new space, the samples can usually be classified with a
higher accuracy. Many types of kernel functions have been developed, with the
most used ones being polynomial and radial-based. The computational complex-
ity of SVM with radial kernel is between linear and quadratic in the number of
instances. In this work, we investigate only the radial-based SVM. The most
significant parameters are the cost of the margin C and the radial kernel param-
eter γ. As a learning method for SVM, sequential minimal optimization (SMO)
type algorithm is used [20]. Because SMO is a binary classification algorithm,
for multi-class classification purposes it is adapted to perform N × (N − 1)/2
binary classifications, where N denotes the number of classes.

3 The Hierarchical Approach under Test

3.1 Experimental Data

In order to ensure the reproducibility of our results, we use two publicly available
data sets for our study.

DPAcontest v2 [10]. This version of the contest provides 1 000 000 measurements
(in the template base) of an AES hardware implementation. Previous works
showed that the most suitable leakage model (when attacking the last round
of an unprotected hardware implementation) is the register writing in the last
round, i.e.,

Y (k∗) = Sbox−1[Cb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

, (1)

where k∗ denotes the secret key, Sbox−1[·] denotes the inverse Sbox operation,
Cb1 and Cb2 are two ciphertext bytes, and the relation between b1 and b2 is
given through the inverse ShiftRows operation of AES. In particular, we choose
b1 = 12 resulting in b2 = 8 as it is one of the easiest bytes to attack7. For
our study, we selected 50 points of interest with the highest correlation between
Y (k∗) and data set. Furthermore, we select 100 000 measurements randomly to
conduct the subsequent experiments. Figure 4a shows the absolute correlation
between Y (k∗) and the measurements for our selected points. One can see that
the measurements are relatively noisy and the resulting SNR (signal-to-noise
ratio) lies between 0.0069 and 0.0096. To calculate the SNR, we use the model-
based approach where we assume a leakage model and X is the measurement we
calculate:

var(signal)

var(noise)
=

var(Y (k∗))

var(X − Y (k∗))
. (2)

7 see e.g., in the hall of fame on [10]

7

DPAcontest v4 [12]. The 4th version provides 100 000 measurements of a masked
AES software implementation. However, as the mask is known, one can easily
turn it into an unprotected scenario. Though, as it is a software implementation,
the most leaking operation is not the register writing, but the processing of the
S-box operation and we attack the first round. Accordingly, the leakage model
changes to

Y (k∗) = Sbox[Pb1 ⊕ k∗]⊕ M︸︷︷︸
known mask

, (3)

where Pb1 is a plaintext byte and we choose b1 = 1. Figure 4b shows the abso-
lute correlation between Y (k∗) and the measurements for our selected points.
Compared to the measurements from version 2, there is much higher correlation
and naturally also SNR, which is between 0.1188 and 5.8577.

(a) DPAcontest v2 (b) DPAcontest v4

Fig. 4: Correlation between our model and the measurements

3.2 Training Phase and Parameter Tuning

Tuning represents an important phase in order to properly use ML techniques,
but unfortunately has often been ignored or underestimated in previous works on
machine learning side-channel attacks. For parameter tuning, we first randomly
selected the instances in a ratio of 2:1, where the total number of instances
equals 20 000 instances. Those instances are randomly selected out of the datasets
of 100 000 and 1 000 000 for DPAcontest v4 and DPAcontest v2, respectively.
Then, we take the bigger set as the training set (the set with the 2/3 of the
data) and the smaller set for testing (1/3 of the data). On the training set, we
conduct 10-fold cross-validation with all parameters considered. In the 10-fold
cross-validation, the original training sample is first randomly partitioned into
10 equal sized subsets. Then, a single subsample is selected to validate the data,
while the remaining 9 subsets are used for training. The cross-validation process
is repeated 10 times, where each of 10 subsamples is used once for validation.
The obtained results are then averaged to produce an estimate. All the results in
this section are presented as the percentage precision (accuracy) of the classifier.
Here, accuracy is defined as the ratio between the sum of true positive and true
negative records and sum of all records.

8

In our experiments we use Weka as the framework for conducting the ML
analysis [21]. We do not give details about the tuning phase but we note that
we made a grid search where for the Rotation Forest algorithm we investigated
Iteration parameter in the range [10, 60] with a step of 10. For SVM, we experi-
mented with γ and C parameters, where we tested γ values in the range [10, 70]
with a step of 10 and C values in the range [0.1, 0.5] with a step of 0.1. Based on
our experiments, we select as the best performing combinations Rotation Forest
with 60 iterations and SVM with C = 70, γ = 0.5 for DPAcontest v4 scenario.
For DPAcontest v2, we select Rotation Forest with 60 iterations and SVM with
C = 50, γ = 0.4.

Considering our hierarchical approach and dividing first the measurements
into 9 HW classes, we conduct a tuning phase with Rotation Forest and SVM
for HW classes 1 to 7 (recall that it is not possible to divide HW classes 0 and
8 further into subclasses). We investigate the same parameter ranges as before,
but again omit tuning details, since they are straightforward to obtain (the best
obtained algorithms and parameters are given in the next section).

3.3 Testing Results

In this section we perform the testing on an independent set of traces to verify
the performances for classifying into 9 and 256 classes (see Table 1) and the
performance within each meta-class for the hierarchical approach (see Table 2).
The results are given in Accuracy/F-measure/AUC form. Here, the area under
the ROC curve is used to measure the accuracy and ROC curve is the ratio
between true positive rate and false positive rate. AUC close to 1 represents
a good test, while value close to 0.5 represents a random guessing. F-measure
is the harmonic mean of the precision and recall, where precision is the ratio
between true positive (TP - the number of examples predicted positive that are
actually positive) and predicted positive, while recall is the ratio between true
positives and actual positives [22]. All the values are given in percentages and
in parenthesis, we give the parameter combinations reaching those values.

Note that this represents an ideal test scenario, where each meta-class only
contains measurements from the correct HW class. Therefore, all the instances in
a meta-class really belong to that meta-class. The next section discusses a more
realistic attacking scenario where errors are propagated through the tree. For
the testing results for the hierarchical approach (i.e., looking at each subclass),
we only give the best obtained values. In addition to the best values, we give the
parameter combinations used to obtain those values.

4 Realistic Testing

The goal in this section is to attack the implementation with our new ap-
proaches and assess their performance when compared to attacking immediately
256 classes. Here, we use 10 000 and 25 000 random measurements for all tests in
order to have a fair comparison. The traces are divided uniformly at random in

9

Table 1: Testing results for 9 and 256 classes (Accuracy/F-measure/AUC)
DPAcontest v4 DPAcontest v2

Algorithm Rotation Forest SVM Rotation Forest SVM

9 classes

Value 94.1/94.1/99.6 95.5/95.5/98.9 25/19.8/50.2 23.67/19/50.1
(C = 70, γ = 0.5) (Iter. = 60)

256 classes

Value 26.7/24.3/50.9 27.8/28/96.9 0.36/0.4/50.4 0.45/0.4/51
(C = 70, γ = 0.5) (C = 50, γ = 0.4)

Table 2: Testing results for the hierarchical approach (Accuracy/F-
measure/AUC)
Set DPAcontest v4 DPAcontest v2

HW1 69.6/68.9/91.1 (SVM, C = 4, γ = 0.6) 15.2/15.2/5.3 (RF, Iter. = 50)

HW2 67.8/57.5/96.3 (SVM, C = 10, γ = 0.7) 4.0/2.2/51.7 (SVM, C = 1, γ = 0.1)

HW3 49.5/49.4/97.3 (SVM, C = 10, γ = 0.9) 2.0/4/52.2 (SVM, C = 1, γ = 0.1)

HW4 46.4/46.4/97.5 (SVM, C = 20, γ = 0.8) 1.7/7/51.8 (SVM, C = 1, γ = 0.4)

HW5 49.9/50.1/97.3 (SVM, C = 10, γ = 1) 2.0/0.9/50.4 (SVM, C = 1, γ = 0.4)

HW6 57.7/58.0/96.3 (SVM, C = 10, γ = 0.7) 3.8/1.1/50.1 (SVM, C = 1, γ = 0.1)

HW7 74.5/74.6/92.2 (SVM, C = 4, γ = 0.7) 13.2/12.1/4.9 (SVM, C = 1, γ = 0.2)

2:1 ratio where we use 2/3 of measurements for profiling and 1/3 for the testing.
The best results in all tables are highlighted with gray background color of a
cell.

Therefore, we investigate a number of cases here that all fall within three
categories:

1. Attacking directly all 256 classes.

2. Attacking 9 classes (i.e., the Hamming weight classes).

3. New attacks - Hierarchical attack and Structured attack.

4.1 Hierarchical Attack

In the Hierarchical attack, one first investigates how to classify measurements
into a (relatively) small number of classes, i.e., into subclasses (which can be
repeated several times) and then, in the second step, the obtained classification
results are further classified into leaves. However, since not all the measurements
are correctly classified in the first step, they need to be discarded (since they
belong to subclasses) and the total number of available measurements will be
consequently lower than the number of instances we begin with. Note that the
number of leafs is the same as if one considers the flat approach, but the classi-
fication method in each independent step considers a smaller number of classes.
With this approach, we are able not only to improve the accuracy, but also to

10

lower the computational and space complexity for the classification process. Fi-
nally, since we are running independent experiments on each of the subclasses,
it is also easy to parallelize the attack, which may not be an option when consid-
ering the flat approach. We give more algorithmic description of the hierarchical
attack in the following listing:

1. Find a hierarchical relation to explore.
2. Run a classifier for each level of subclasses.
3. Consider all instances classified above some threshold value as correctly clas-

sified (e.g., all instances that have a probability of more than 90% to be
correctly classified into certain subclass), otherwise discard.

4. For all instances kept in a subclass, run new classifier in order to find in
which subclass they belong (repeat until leaf class is reached).

In our case study we exploit the HW of an intermediate value (see Eqs. (1)
and (3)) and thus first divide into 9 HW classes. Then, we use the measurement
predictions from that phase to conduct an attack on the intermediate value itself
(leaf class).

4.2 Structured Attack

In addition to the Hierarchical attack, we introduce an attack combination of the
standard flat approach and our hierarchical approach, which we denote as the
Structured attack. Accordingly, we merge the information from both approaches
and even further improve the accuracy. This is due to a fact that, when attacking
with the flat approach, we expect that the final accuracy will be lower than for
the hierarchical attack, but there will be instances where the flat classification
classifies correctly, while hierarchical classification makes a wrong prediction.
This combination is of particular interest when the computing power and the
runtime complexity is of no importance, but only the accuracy of the attack. We
give a more precise listing for the Structured attack in the following:

1. Run classifier with the flat approach.
2. Run the Hierarchical attack.
3. Assign weight factors for each of the two aforesaid steps.
4. Combine results from flat and hierarchical approach. Similarly as in the

Hierarchical approach, set a threshold value that signifies which classification
guesses to take as true.

4.3 Attack Results and Comparison with Template Attack

In order to facilitate a better understanding of the obtained results, we also use
two simpler machine learning techniques - Naive Bayes and Decision Tree (C4.5).
The Naive Bayes algorithm does not have parameters one could tune and the
tuning phase for Decision Tree highlights that the default values of parameters
are the best. Therefore, we use a minimum amount of two instances per leaf
and a confidence factor for pruning equal to C = 0.25. It is important to state

11

that these two methods are extremely fast (especially the Naive Bayes) and we
consider it to be beneficially to run them always as a first indicator of what can
be expected from an ML approach. Recall, the parameter combinations for RF
and SVM algorithms used in this section are obtained in Sections 3.2 and 3.3.

In Table 3, we present the results when working with 10 000 instances from
the DPAcontest v2 and the DPAcontest v4 using 9 classes. Next, in Table 4, we
present results for 10 000 instances using 256 classes. Note that the parameters
for ML techniques are as presented in Table 1. As in the previous scenario, we can
observe that SVM has the highest accuracy. Interestingly, Naive Bayes is more
efficient than Decision Tree when working with 256 classes, but for 9 classes
the situation is opposite. This is due to a jump of complexity appearing in the
Decision Tree when the number of classes is increased. However, here we observe
that Naive Bayes has the best accuracy when considering all 256 classes, which
is a somewhat surprising result. We believe that a more extensive tuning phase
for Rotation Forest and SVM would change this. However, we do not consider
this completely justified when considering the huge difference in the runtime
complexity between the Naive Bayes and these methods.

To rate the goodness of our achieved results, we additionally applied the
template attack (TA) [1] to the same set of traces as used in the realistic at-
tacking scenario and tested it for the standard approach of classifying 9 (see
Tables 3 and 6) and 256 classes (see Tables 4 and 7) directly. TA is the most
common and well-studied profiled side-channel attack and it is considered as the
most powerful one from an information theoretic perspective given an infinite
amount of measurements. However, compared to ML techniques, recent works
showed its inferiority when, for example, the profiling set is not large enough
or the attack is provided with too many useless (without information) points of
interest (features) [23]. Actually, the attack principle is very close to the one of
the Naive Bayes, where the main difference is the consideration of the features
along with the measurements to be dependent. In particular, the Naive Bayes
assumes independence and thus considers a univariate normal distribution. On
the contrary, for TA the noise is considered dependent and thus a multivariate
distribution is taken. For more details, we refer interested readers to [1]. To be
more efficient and numerically stable, we applied the adaptation of using only
one covariance matrix instead of 9 or 256 as described in [24]. Note that, for all
the algorithms, we use the same datasets with the same feature selection process
in order to make it as fair as possible (and to avoid seeing differences in results
stemming from other than hierarchy causes, e.g. better feature selection).

The attack results of our new Hierarchical and Structured attack using 10 000
instances are given in Table 5. As both new attacks are considering the same leaf
classes as in Table 4, we can directly compare their results. We note that in this
set of experiments, we use the threshold value equal to 0.9, which represents that
only the measurements with a high output probability of belonging to a certain
class are taken as correctly classified. We can see that the Hierarchical SVM
outperforms regular SVM, but the Structured SVM is by far the most efficient
method for both the DPAcontest v4 and DPAcontest v2 scenario. We note that

12

Table 3: Attack scenario with 9 classes, 10 000 instances
Algorithm # classes Parameters Training Testing

DPAcontest v4

Naive Bayes 9 - 66.8 65.9/66.0/91.2

Decision Tree 9 c = 0.25,M = 2 70.1 71.8/71.8/85.2

SVM 9 C = 70, γ = 0.5 90.9 91.39/91.4/98

TA 9 - - 76.71

DPAcontest v2

Naive Bayes 9 - 11.78 11/10.2/50.1

Decision Tree 9 c = 0.25,M = 2 19.36 20.58/20.4/50.7

Rotation Forest 9 Iter = 60 24.69 25.12/19.6/51.2

TA 9 - - 8.31

Table 4: Attack scenario with 256 classes, 10 000 instances
Algorithm # classes Parameters Training Testing

DPAcontest v4

Naive Bayes 256 - 18.5 17.0/16.3/93

Decision Tree 256 c = 0.25,M = 2 13.4 13.2/13.2/58.5

SVM 256 C = 70, γ = 0.5 30.4 27.8/28/96.9

TA 256 - - 20.19

DPAcontest v2

Naive Bayes 256 - 0.42 0.58/0.1/51.3

Decision Tree 256 c = 0.25,M = 2 0.28 0.36/0.3/49.9

SVM 256 C = 50, γ = 0.4 0.43 0.45/0.4/51

TA 256 - - 0.39

13

the training phases for the Hierarchical and Structured attacks consist of train-
ing phases of the whole hierarchy (i.e., classes HW1 up to HW7) and therefore
we give here the median value of the training accuracies. Note that we had only
6 700 instances to train for the Hierarchical attack, which gives on average 26
traces per class. When conducting the Hierarchical attack, we cannot use the
whole test set (i.e., 3 300 instances), since some of them are wrongly classified
when classifying into 9 classes. We give details about the available number of in-
stances in notes below the table. For instance, the remark “From 3 016 correctly
classified instances for 9 classes” means that after classifying into 9 classes, we
have 3 016 correctly classified instances. Then, when classifying into subclasses
we have only 3 016 instances in total and we see that in total 33.7% of those in-
stances are correctly classified into intermediate values. In Tables 6, 7, and 8, we
present results for 25 000 instances. When comparing the results achieved using
10 000 instances, we observe that the results of all attacks for the DPAcontest
v4 are improving, whereas for the higher noise scenario from DPAcontest v2,
the results are not changing noticeably when considering 9 and 256 classes (i.e.,
when working with standard ML techniques). Note that here we have on average
65 instances per class when training for hierarchical attack.

Table 5: Hierarchical and Structured attack, 10 000 instances
Algorithm # classes Parameters Training Testing

DPAcontest v4

Hierarchical attack 9/256 Table 2 38.23 31.36∗

Structured attack 9/256 Tables 1 and 2 - 33.7

DPAcontest v2

Hierarchical ML 9/256 Table 2 2.95 1.32∗∗

Structured ML 9/256 Tables 1 and 2 - 0.91

∗ From 3 016 correctly classified instances for 9 classes.
∗∗ From 829 correctly classified instances for 9 classes.

5 Discussion

In our examples, when conducting the hierarchical approach, we consider an
extreme case: first dividing into 9 classes in accordance with the HW, and then
dividing into all values for the corresponding HW. For some classes (HW 0 and
8) the hierarchical approach does not make a difference, since it is not possible
to divide them any further. Contrary, for the Hamming weight class 4 contains
70 leaves, which is again a complex scenario. Therefore, one could instead use
sets of two (or any other number) values that are mapped to the same class. For
instance, in the Hamming weight class 4, values 23 and 27 can be grouped into
a subclass. Then, in the next step, one uses a binary classification for those two
values.

14

Table 6: Attack scenario with 9 classes, 25 000 instances
Algorithm # classes Parameters Training Testing (Acc./F-

measure/AUC)

DPAcontest v4

Naive Bayes 9 - 70.01 67.85/67.9/91.7

Decision Tree 9 c = 0.25,M = 2 74.39 74.75/74.7/86.7

SVM 9 C = 70, γ = 0.5 93.83 94.32/94.3/98.6

TA 9 - - 77.85

DPAcontest v2

Naive Bayes 9 - 8.21 8.1/10.2/50.3

Decision Tree 9 c = 0.25,M = 2 19.43 20.26/20.2/50.7

Rotation Forest 9 Iter = 60 25.15 24.71/19.5/50.4

TA 9 - - 6.47

Table 7: Attack scenario with 256 classes, 25 000 instances
Algorithm # classes Parameters Training

(Acc.)
Testing
(Acc./F-
measure/AUC)

DPAcontest v4

Naive Bayes 256 - 20.44 20.27/18.4/94.5

Decision Tree 256 c = 0.25,M = 2 15.38 16.23/16.2/60.5

SVM 256 C = 70, γ = 0.5 35.54 35.02/35.1/98.1

TA 256 - - 25.07

DPAcontest v2

Naive Bayes 256 - 0.65 0.5/0.1/50.8

Decision Tree 256 c = 0.25,M = 2 0.42 0.39/0.4/50

TA 256 - - 0.4

Table 8: Hierarchical and structured attack, 25 000 instances
Algorithm # classes Parameters Training Testing

DPAcontest v4

Hierarchical attack 9/256 Table 2 44.01 40.74∗

Structured attack 9/256 Tables 1 and 2 - 44.43

DPAcontest v2

Hierarchical ML 9/256 Table 2 2.92 1.69∗∗

Structured ML 9/256 Tables 1 and 2 - 0.92

∗ From 7 844 correctly classified instances for 9 classes.
∗∗ From 2 066 correctly classified instances for 9 classes.

15

Using SVM with a flat classification, 256 classes, and measurements from the
DPAcontest v4 (10 000 instances), we correctly classify 917 out of 3 300 instances
(27.8%). When classifying into 9 classes, SVM reaches an accuracy of 91.4%,
which translates into 3 016 correctly classified instances. The Hierarchical attack
has an accuracy of 31.3%, which amounts to 945 instances that are correctly
classified. Although the difference between the flat and hierarchical approach is
small in this example, we note that we still improve the accuracy without using
any extra information and with only a small overhead from the computational
side. Even more so, when considering the Structured attack, the accuracy equals
33.7%, which is in total equal to 1 112 correctly classified instances. When com-
pared to the flat approach, this amounts to 21% more instances that are correctly
classified, which represents a significant improvement.

When considering the measurements of the DPAcontest v2, the classifica-
tion is much more difficult. Indeed, when classifying into 9 classes, the accuracy
is around 25% which results into 5 out of 9 classes having correctly classified
instances. Therefore, to significantly improve the accuracy of the Hierarchical
attack, we would need to use much more measurements. On the basis of the
results from Table 5, it could seem that the Hierarchical attack has better accu-
racy (1.32%) than the Structured attack (0.91%) but that is actually not true.
Indeed, when considering the Hierarchical attack, the accuracy can be calculated
only from the number of instances that are correctly classified into subclasses
(829 instances), which results in around 11 correctly classified instances. On the
other hand, the accuracy of 0.91% for the Structured attack must be taken on
the whole test set (3 300) which equals 30 correctly classified instances. There-
fore, we see that the Structured attack offers a significant improvement over all
other considered methods.

We emphasize that in order to obtain a fair comparison the Hierarchical
and Structured attack must be compared with the 256 classes scenario, and not
with the results from 9 classes. With the increase in the number of instances
to 25 000, the superior performance of the Hierarchical and Structured attacks
becomes even more apparent. For instance, when considering the measurements
of the DPAcontest v4, SVM with the flat approach and classifying 256 classes
has the accuracy of 35%, TA of 25%, and Structured attack of 44%.

On a more general level, we present here two novel attacks that are able to
significantly increase the efficiency of ML techniques when compared to related
work. Naturally, conducting the Hierarchical attack is more computationally
expensive than just attacking the Hamming weight classes, and the Structured
attack is even more expensive since one needs to use flat approach on all 256
classes as well as the Hierarchical attack. However, the increase in the number of
experiments is well compensated with the increased accuracy of those methods.
On the other hand, the hierarchical approach for ML techniques is beneficial from
the runtime complexity side, since using smaller number of classes decreases the
runtime of ML, while dividing experiments enables one to easily use parallel
computing. The process of making a hierarchy is here considered to be simple
and therefore its complexity is negligible. Naturally, this does not need always

16

to happen, which would make our attack more complex in accordance with the
process of finding the hierarchy.

When considering realistic settings, one does not know whether a classifier
correctly classified certain instances into subclasses. Therefore, it is necessary to
use a threshold which serves as a cut-off for all measurements below it. Naturally,
the value of such a threshold is a parameter that can be tuned and that differs
with respect to the underlying setting. For instance, measurements with smaller
levels of noise can have higher threshold values since it is expected that the
classifier will be able to classify certain instance with high probability of success.
However, we note that the threshold level is in the end to be set by the attacker,
with regards to how reliable he considers the classifier to be.

In this paper, we considered the HW of the intermediate value as a first level
in the hierarchy. However, we do not claim that this choice is optimal or should
be generally taken. Another approach would be to use the values of each bit of
the intermediate value as a level of hierarchy, e.g., all the measurements where
the first bit equals to 1 goes into one class and where the first bit equal to 0 into
other class. Then, each of those subclasses has 128 subclasses. A more general
approach would be, if some hierarchical structure is not readily observable, to
build a hierarchy with the automatic generation of subclasses, where algorithm
groups leaf classes by their similarity [13].

Finally, we give several observations why the hierarchical attack might im-
prove the accuracy in some cases. The first reason is because we use a priori
knowledge about the dataset (i.e., we know the semantic hierarchy). Naturally,
this can also be a source of mistake, where the question is how severe would a
(slightly) wrong hierarchy influence the results. Since in our experiments, we use
only two levels of hierarchy, then consequently, the propagation of error in the
classification cannot go far. The second reason why hierarchical attacks improve
the accuracy over flat approach is that they can limit the model complexity and
constrain the expressiveness of a hypothetical class. We leave for future research
the experiments showing which reason has more influence on success in these
scenarios. Moreover, it would be interesting to explore how robust is the hier-
archical classification when the hierarchy does not model the data completely.
Still, we emphasize that the complexity of classification for each subclass and the
corresponding subclasses is lower than in the case of the flat classification (since
most of the algorithms have complexity increasing linearly with the number of
classes).

As future work, we are interested in exploring how hierarchical and struc-
tured approaches behave when using a larger number of instances. Moreover,
we observe that in the hierarchical approach, wrongly classified measurements
often exhibit some structure (e.g., the measurements belonging to one class are
dominantly classified as belonging to some other class) and we would like to
investigate the automatic generation of classes (similar to [25]). With such an
approach, we expect to find some new subclasses that can be used in the hier-
archical approach.

17

6 Conclusions

In this paper, we introduced the concept of hierarchical machine learning classi-
fication for side-channel analysis. Instead of attacking immediately the sensitive
variable or just the Hamming weight of it, we propose to use a divide-and-
conquer approach in a form of class hierarchy. To show the practicability of our
new approach, we conducted our analysis on two publicly available data sets
from the DPAcontest with different SNRs and made a comparisons to machine
learning techniques and the template attack using the standard (flat) approach.
Our results show that, for both data sets, the Hierarchical and Structured at-
tacks outperform other ML approaches as well as the template attack. Aside
from the better accuracy with our hierarchical approach, an additional advan-
tage is also the lower computational complexity for ML techniques, which renders
more plausible such attacks when using realistic data sets with large number of
measurements and points in time.

Acknowledgments

S. Picek was supported in part by Croatian Science Foundation under the project
IP-2014-09-4882.

References

1. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: CHES. Volume 2523 of
LNCS., Springer (August 2002) 13–28 San Francisco Bay (Redwood City), USA.

2. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side
Channel Cryptanalysis. In LNCS, ed.: CHES. Volume 3659 of LNCS., Springer
(Sept 2005) 30–46 Edinburgh, Scotland, UK.

3. Lerman, L., Bontempi, G., Markowitch, O.: Side Channel Attack: an Approach
Based on Machine Learning. In: Second International Workshop on Constructive
SideChannel Analysis and Secure Design, Center for Advanced Security Research
Darmstadt (2011) 29–41

4. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. Journal of Cryptographic
Engineering 1 (2011) 293–302 10.1007/s13389-011-0023-x.

5. Heuser, A., Zohner, M.: Intelligent Machine Homicide - Breaking Cryptographic
Devices Using Support Vector Machines. In Schindler, W., Huss, S.A., eds.:
COSADE. Volume 7275 of LNCS., Springer (2012) 249–264

6. Lerman, L., Bontempi, G., Markowitch, O.: The bias-variance decomposition in
profiled attacks. J. Cryptographic Engineering 5(4) (2015) 255–267

7. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach
based on machine learning. IJACT 3(2) (2014) 97–115

8. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A Machine Learn-
ing Approach Against a Masked AES. In: CARDIS. Lecture Notes in Computer
Science, Springer (November 2013) Berlin, Germany.

18

9. Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: A New Difference Method
for Side-Channel Analysis with High-Dimensional Leakage Models. In Dunkelman,
O., ed.: CT-RSA. Volume 7178 of Lecture Notes in Computer Science., Springer
(2012) 365–382

10. TELECOM ParisTech SEN research group: DPA Contest (2nd edition) (2009–
2010) http://www.DPAcontest.org/v2/.

11. Xilinx: Virtex-5 libraries guide for hdl designs
http://www.xilinx.com/support/documentation/sw manuals/ xil-
inx14 4/virtex5 hdl.pdf.

12. TELECOM ParisTech SEN research group: DPA Contest (4th edition) (2013–2014)
http://www.DPAcontest.org/v4/.

13. de Almendra Freitas, C.O., Oliveira, L.S., Aires, S.B.K., Bortolozzi, F.: Metaclasses
and Zoning Mechanism Applied to Handwriting Recognition. J. UCS 14(2) (2008)
211–223

14. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine
Learning 29(2) (1997) 131–163

15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA (1993)

16. Frank, E., Witten, I.H.: Generating Accurate Rule Sets Without Global Optimiza-
tion. In Shavlik, J., ed.: Fifteenth International Conference on Machine Learning,
Morgan Kaufmann (1998) 144–151

17. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: A new classifier
ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10) (October 2006)
1619–1630

18. Kuncheva, L.I., Rodŕıguez, J.J.: An experimental study on rotation forest ensem-
bles. In: Proceedings of the 7th International Conference on Multiple Classifier
Systems. MCS’07, Berlin, Heidelberg, Springer-Verlag (2007) 459–468

19. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York, NY, USA (1995)

20. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal
Optimization. In Schoelkopf, B., Burges, C., Smola, A., eds.: Advances in Kernel
Methods - Support Vector Learning. MIT Press (1998)

21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 11(1)
(November 2009) 10–18

22. Powers, D.M.W.: Evaluation: from precision, recall and F-factor to ROC, informed-
ness, markedness and correlation (2007)

23. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In Mangard, S., Poschmann, A.Y., eds.: Constructive Side-
Channel Analysis and Secure Design - 6th International Workshop, COSADE 2015,
Berlin, Germany, April 13-14, 2015. Revised Selected Papers. Volume 9064 of Lec-
ture Notes in Computer Science., Springer (2015) 20–33

24. Choudary, O., Kuhn, M.G.: Efficient template attacks. In Francillon, A., Rohatgi,
P., eds.: Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Se-
lected Papers. Volume 8419 of LNCS., Springer (2013) 253–270

25. Whitnall, C., Oswald, E.: Robust Profiling for DPA-Style Attacks. In Güneysu,
T., Handschuh, H., eds.: Cryptographic Hardware and Embedded Systems - CHES
2015 - 17th International Workshop, Proceedings. Volume 9293 of Lecture Notes
in Computer Science., Springer (2015) 3–21

http://www.DPAcontest.org/v2/
http://www.DPAcontest.org/v4/

	Climbing Down the Hierarchy: Hierarchical Classification for Machine Learning Side-channel Attacks
	Introduction
	Idea & Contributions
	Road Map

	Machine Learning Techniques
	Naive Bayes
	Decision Tree - C4.5
	Rotation Forest
	Support Vector Machines

	The Hierarchical Approach under Test
	Experimental Data
	Training Phase and Parameter Tuning
	Testing Results

	Realistic Testing
	Hierarchical Attack
	Structured Attack
	Attack Results and Comparison with Template Attack

	Discussion
	Conclusions

