
Improving Side-channel Analysis through
Semi-supervised Learning

Stjepan Picek1, Annelie Heuser2, Alan Jovic3,
Karlo Knezevic3, Tania Richmond2, and Axel Legay4

1 Delft University of Technology, Delft, The Netherlands
2 Univ Rennes, Inria, CNRS, IRISA, France

3 University of Zagreb Faculty of Electrical Engineering and Computing, Croatia
4 UCLouvain, Belgium

Abstract. The profiled side-channel analysis represents the most pow-
erful category of side-channel attacks. In this context, the security eval-
uator (i.e., attacker) gains access of a profiling device to build a precise
model which is used to attack another device in the attacking phase.
Mostly, it is assumed that the attacker has significant capabilities in the
profiling phase, whereas the attacking phase is very restricted. We step
away from this assumption and consider an attacker restricted in the
profiling phase, while the attacking phase is less limited. We propose the
concept of semi-supervised learning to side-channel analysis, in which the
attacker uses the small number of labeled measurements from the pro-
filing phase as well as the unlabeled measurements from the attacking
phase to build a more reliable model. Our results show that the semi-
supervised concept significantly helps the template attack. For machine
learning techniques and pooled template attack, the results are often im-
proved when only a smaller number of measurements is available in the
profiling phase, while there is no significant difference in scenarios where
the supervised set is large enough for reliable classification.

1 Introduction

Side-channel analysis (SCA) consists of extracting secret data from (noisy) mea-
surements. It is made up of a collection of miscellaneous techniques, combined
in order to maximize the probability of success, for a low number of trace mea-
surements, and as low computation complexity as possible. The most powerful
attacks currently known are based on a profiling phase, where the link between
leakage and the secret is learned under the assumption that the attacker knows
the secret on a profiling device. This knowledge is subsequently exploited to ex-
tract another secret using fresh measurements from a different device. In order
to run such an attack, one has a plethora of techniques and options to choose
from, where the two main types of attacks are based on 1) template attack (rely-
ing on probability estimation), and 2) machine learning (ML) techniques. When
working with the typical assumption for profiled SCA that the profiling phase is
not bounded, the situation actually becomes rather simple if neglecting compu-
tational costs. If the attacker is able to acquire an unlimited (or, in real-world

2

very large) amount of traces, the template attack (TA) is proven to be optimal
from an information theoretic point of view (see e.g., [1, 2]). In that context of
unbounded and unrestricted profiling phase, ML techniques seem not needed.

Stepping away from the assumption of an unbounded number of traces, the
situation becomes much more interesting and of practical relevance. A number
of results in recent years showed that in those cases, machine learning techniques
can actually significantly outperform template attack (see e.g., [3–5]).

Still, the aforesaid attacks work under the assumption that the attacker has a
(significantly) large amount of traces from which a model is learned. The opposite
case would be to learn a model without any labeled examples. Machine learning
approaches (mostly based on clustering) have been proposed, for instance, for
public key encryption schemes where only two possible classes are present – 0
and 1 – and where the key is guessed using only a single-trace (see e.g., [6]). In
the case of differential attacks (using more than one encryption) and using more
than two classes, to the best of our knowledge, unsupervised machine learning
techniques have not been studied yet.

In this paper, we aim to address a scenario lying between supervised and
unsupervised learning, the so-called semi-supervised learning in the context of
SCA. Figure 1 illustrates the different approaches of supervised (on the left)
and semi-supervised learning (on the right). Supervised learning assumes that
the security evaluator first possesses a device similar to the one under attack.
Having this additional device, he is then able to build a precise profiling model
using a set of measurement traces and knowing the plaintext/ciphertext and the
secret key of this device. In the second step, the attacker uses the beforehand
profiling model to reveal the secret key of the device under attack. For this, he
measures a new, additional set of traces, but as the key is secret, he has no
further information about the intermediate processed data and thus builds hy-
potheses. Accordingly, the only information which the attacker transfers between
the profiling phase and the attacking phase is the profiling model he builds.

In realistic settings, the attacker is not obliged to view the profiling phase
independently from the attacking phase. He can rather combine all available
resources to make the attack as effective as possible. In particular, he has at
hand a set of traces for which he precisely knows the intermediate processed
states (i.e., labeled data) and another set of traces with a secret unknown key
and thus no information about the intermediate variable (i.e., unlabeled data).
To take advantage of both sets at once, we propose a new strategy of conducting
profiled side-channel analysis to build a more reliable model (see Figure 1 on
the right). This new view is of particular interest when the number of profiling
traces is (very) low, and thus any additional data is helpful to improve the model
estimation.

To show the efficiency and applicability of semi-supervised learning for SCA,
we conduct extensive experiments where semi-supervised learning outperforms
supervised learning if certain assumptions are satisfied. More precisely, the re-
sults show a number of scenarios where the accuracy on the test set is signifi-
cantly higher if semi-supervised learning is used (when compared to the “clas-

3

Fig. 1: Profiling side-channel scenario: traditional (left), semi-supervised (right)

sical” supervised approach). We start with the scenario that we call “extreme
profiling”, where the attacker has only a very limited number of traces to learn
the model. From there, we increase the number of available traces, making the
attacker more powerful, until we reach a setting where there is no more need
for semi-supervised learning. Still, our results show that using semi-supervised
learning even in these settings is not deteriorating the efficiency of attacks.

As far as we are aware of, the only paper up till now implementing a semi-
supervised analysis in SCA is [7], where the authors conclude that the semi-
supervised setting cannot compete with a supervised setting. Unfortunately, the
assumed scenario is hard to justify and consequently their results are expected
(but without much implication for SCA). More precisely, the authors compared
the supervised attack with n + m labeled traces for all classes with a semi-
supervised attack with n labeled traces for one class and m unlabeled traces
for the other unknown classes (i.e., in total n + m traces). On the basis of
such experiments, they concluded that the supervised attack is better, which
is intuitive and straightforward. A proper comparison would be between the
supervised attack with n traces and the semi-supervised attack with n + m
traces, where m is mostly smaller than n, which is the direction we take in this
paper. Also, our analysis is not restricted to only one labeled class in the learning
phase.

We primarily focus on improving the accuracy if the profiling phase is limited.
Since we are considering extremely difficult scenarios, the improvements one can
realistically expect are often not too big (i.e., in the range of only a few percents).
Still, we consider any improvement to be relevant since it makes the attack easier,
while not requiring any additional knowledge or measurements.

2 Semi-supervised Learning Types and Notation

Semi-supervised learning (SSL) is positioned in the middle between supervised
and unsupervised learning. There, the basic idea is to take advantage of a large
quantity of unlabeled data during a supervised learning procedure [8]. This ap-
proach assumes that the attacker is able to possess a device to conduct a profiling
phase but have limited capacities. This may reflect a more realistic scenario in
some practical applications, as the attacker may be limited by time, resources,

4

and also face implemented countermeasures which prevent him from taking an
arbitrarily large amount of side-channel measurements, while knowing the secret
key of the device.

Let x = (x1, . . . , xn) be a set of n samples where each sample xi is assumed
to be drawn i.i.d. from a common distribution X with probability P (x). This
set x can be divided into three parts: the points xl = (x1, . . . , xl) for which
we know the labels yl = (y1, . . . , yl) and the points xu = (xl+1, . . . , xl+u) for
which we do not know the labels. Additionally, the third part is the test set
xt = (xl+u+1, . . . , xn) for which labels are also not known. We see that differing
from the supervised case, where we also do not know labels in the test phase, here
unknown labels appear already in the training phase. As for supervised learn-
ing, the goal of semi-supervised learning is to predict a class for each sample in
the test set xt = (xl+u+1, . . . , xn). For semi-supervised learning, two learning
paradigms can be discussed: transductive and inductive learning [9]. In transduc-
tive learning (which is a natural setting for some semi-supervised algorithms),
predictions are performed only for the unlabeled data on a known test set. The
goal is to optimize the classification performance. More formally, the algorithm
makes predictions yt = (yl+u+1, . . . , yn) on xt = (xl+u+1, . . . , xn). In inductive
learning, the goal is to find a prediction function defined on the complete space
X , i.e., to find a function f : X → Y. This function is then used to make predic-
tions f(xi) for each sample xi in the test set. Obviously, transductive learning
is easier, since no general rule needs to be inferred, and, consequently, we opt to
conduct it whenever possible. From the algorithm class perspective, we will use
two approaches in order to achieve successful semi-supervised learning, namely:
self-training [9] (Section 2.1) and graph-based algorithms [9, 10] (Section 2.2).

Although, on an intuitive level, semi-supervised learning sounds like an ex-
tremely powerful paradigm (after all, humans learn through semi-supervised
learning), the results show that it is not always the case. More precisely, when
comparing semi-supervised learning with supervised learning, it is not always
possible to obtain more accurate predictions. Consequently, we are interested in
the cases where semi-supervised learning can outperform supervised learning. In
order for that to be possible, the following needs to hold: the knowledge on p(x)
one gains through unlabeled data has to carry useful information for inference
of p(y|x). In the case where this is not true, semi-supervised learning will not be
better than supervised learning and can even lead to worse results. To assume
a structure about the underlying distribution of data and to have useful infor-
mation in the process of inference, we use two assumptions which should hold
when conducting semi-supervised learning [9].

Smoothness Assumption. If two points x1 and x2 are close, then their correspond-
ing labels y1 and y2 are close. The smoothness assumption can be generalized in
order to be useful for semi-supervised learning: if two points x1 and x2 in a high
density region are close, then so should the corresponding labels y1 and y2.

Intuitively, this assumption tells us that if two samples (measurements) be-
long to the same cluster, then their labels (e.g., their Hamming weight or inter-
mediate value) should be close. Note that, this assumption also implies that, if

5

two points are separated by a low-density region, then their labels need not be
close. The smoothness assumption should generally hold for SCA, as the power
consumption (or electromagnetic emanation) is related to the activity of the de-
vice. For example, a low Hamming weight or a low intermediate value should
result in a low side-channel measurement.

Manifold Assumption. The high-dimensional data lie on or close to a low-
dimensional manifold. If the data really lie on a low-dimensional manifold, then
the classifier can operate in a space of the corresponding (low) dimension.

Intuitively, the manifold assumption tells us that a set of samples is connected
in some way: e.g., all measurements with the Hamming weight 4 lie on their own
manifold, while all measurements with the Hamming weight 5 lie on a different,
but nearby, manifold. Then, we can try to develop representations for each of
these manifolds using just the unlabeled data, while assuming that the different
manifolds will be represented using different learned features of the data.

2.1 Self-training

In self-training (or self-learning), any classification method is selected and the
classifier is trained with the labeled data. Afterward, the classifier is used to
classify the unlabeled data. From the obtained predictions, one selects only those
instances with the highest output probabilities (i.e., where the output probability
is higher than a given threshold σ) and then adds them to the labeled data. This
procedure is repeated k times.

Self-training is a well-known semi-supervised technique and one that is prob-
ably the most natural choice to start with [9]. The biggest drawback with this
technique is that it depends on the choice of the underlying classifier and that
possible mistakes reinforce themselves as the number of repeats increase. Natu-
rally, one expects that the first step of self-learning will introduce errors (wrongly
predicted classes). It is therefore important to retain only those instances for
which the prediction probability of the class is high. Unfortunately, a very high
class prediction probability (even 100%) does not guarantee that the actual
class is correctly predicted. The assumption taken by the self-training algorithm
is the same as the assumption taken by the underlying supervised classifier –
i.e., when we use Support Vector Machines (SVM) as the classifier, then we
work with the manifold assumption, while if we use Naive Bayes then we use the
semi-supervised smoothness assumption (alongside the independence assump-
tion, which is a standard for Naive Bayes).

In our experiments, we use Naive Bayes or SVM (with RBF kernel) as clas-
sifiers. The labeling threshold is set to the value obtained by cross-validation,
where a ratio between training set classification accuracy and the size of the
labeled samples from the unlabeled set is optimized. We repeat the labeling pro-
cess as long as the classification accuracy on the testing set is increasing, or if
the samples exist where the output probability of the classifier is higher than the
threshold. The second readjustment is important, because we noticed that even
a wrong labeling could improve the classifier generalization on the testing set.

6

Here, by classifier generalization, we consider how well will the classifier behave
on a yet unseen dataset.

2.2 Graph-based Learning

In graph-based learning, the data are represented as nodes in graphs, where a
node is both labeled and unlabeled example. The edges are labeled with the
pairwise distance of incident nodes. If an edge is not labeled, it corresponds to
the infinite distance. Most of the graph-based learning methods depend on the
manifold assumption and refer to the graph by utilizing the graph Laplacian. Let
G = (E, V) be a graph with edge weights given by w : E → R. The weight w(e)
of an edge e corresponds to the similarity of the incident nodes and a missing
edge means no similarity. The similarity matrix W of graph G is defined as:

Wij =

{
w(e) if e = (i, j) ∈ E
0 if e = (i, j) /∈ E

(1)

The diagonal matrix called the degree matrix Dii is defined as Dii =
∑
jWij .

To define the graph Laplacian two well-known ways are to use:
– normalized graph Laplacian L = I −D−1/2WD−1/2,
– unnormalized graph Laplacian L = D −W .

We use graph-based learning technique called label spreading that is based
on normalized graph Laplacian. In this algorithm, node’s labels propagate to
neighbor nodes according to their proximity. Since the edges between the nodes
have certain weights, some labels propagate easier. Consequently, nodes that
are close (in the Euclidean distance) are more likely to have the same labels.
As the classifier within the label spreading, we use k-nearest neighbors (k-NN)
(i.e., the technique how to assign labels) since it produces a sparse matrix that
can be calculated very quickly. k-nearest neighbors is the basic non-parametric
instance-based learning method. The classifier has no training phase; it just
stores the training set samples. In the test phase, the classifier assigns a class to
an instance by determining the k instances that are the closest to it, with respect
to Euclidean distance metric: d(xi, xj) =

√∑n
r=1(ar(xi)− ar(xj))2. Here, ar is

the r -th attribute of an instance x. The class is assigned as the most commonly
occurring one among the k -nearest neighbors of the test instance. This procedure
is repeated for all test set instances. We use label spreading as implemented in
Python [11], but we wrote a custom wrapper around it in order to better suit
our requirements. There, instead of using all measurements obtained from semi-
supervised learning, we use only those samples that have the highest classification
probabilities (similar to self-training).

3 Experimental Setting

3.1 Classification algorithms

We use template attack and its pooled version, Support Vector Machines (SVM),
and Naive Bayes (NB) algorithms. Those algorithms are used both in supervised

7

and in semi-supervised scenarios. Table 1 presents the time and space complex-
ities for classification algorithms we use.

Template Attack The template attack (TA) relies on the Bayes theorem such that
the posterior probability of each class value y, given the vector of N observed
attribute values x:

p(Y = y|X = x) =
p(Y = y)p(X = x|Y = y)

p(X = x)
, (2)

where X = x represents the event that X1 = x1 ∧X2 = x2 ∧ . . . ∧XN = xN .
When used as a classifier, p(X = x) in Eq. (2) can be dropped as it does
not depend on the class y. Accordingly, the attacker estimates in the profiling
phase p(Y = y) and p(X = x|Y = y) which are used in the attacking phase to
predict p(Y = y|X = x). Note that the class variable Y is discrete while the
measurement X is continuous. So, the discrete probability p(Y = y) is equal to
its sample frequency where p(Xi = xi|Y = y) displays a density function.

Mostly in the state of the art, TA is based on a multivariate normal distri-
bution of the noise and thus the probability density function used to compute
p(X = x|Y = y) equals:

p(X = x|Y = y) =
1√

(2π)D|Σy|
e−

1
2 (x−µy)

TΣ−1
y (x−µy), (3)

where µy is the mean over X for 1, . . . , D and Σy the covariance matrix for each
class y. The authors of [12] propose to use only one pooled covariance matrix to
cope with statistical difficulties that result into low efficiency. We will use both
versions of the template attack, where we denote pooled TA attack as TAp.

Naive Bayes The Naive Bayes (NB) classifier [13] is also based on the Bayesian
rule but is labeled “Naive” as it works under a simplifying assumption that
the predictor features (measurements) are mutually independent among the D
features, given the class value. The existence of highly-correlated features in a
dataset can influence the learning process and reduce the number of successful
predictions. Also, NB assumes a normal distribution for predictor features. NB
classifier outputs posterior probabilities as a result of the classification proce-
dure [13]. The Bayes’ formula is used to compute the posterior probability of
each class value y given the vector of N observed feature values x.

Support Vector Machines Support Vector Machine (SVM) is a kernel based ma-
chine learning technique used to accurately classify both linearly separable and
linearly inseparable data [14]. The SVM algorithm is parametric and determin-
istic. The basic idea when the data are not linearly separable is to transform
them to a higher dimensional space by using a transformation kernel function.
In this new space, the samples can usually be classified with a higher accuracy.
Many types of kernel functions have been developed, with the most used ones
being polynomial and radial-based.

8

Table 1: Time and space complexities. N is the number of samples in the training
set, M is the number of samples in the test set, D is the number of attributes,
|Y| is the number of classes of the target attribute, and v is the average number
of values for a feature.

Alg. Training Testing

Time Space Time Space

TA O
(
ND2

)
O
(
|Y|D2v

)
O
(
|Y|D2

)
O
(
|Y|D2v

)
k-NN O

(
1
)

O
(
ND

)
O
(
M(ND + kN)

)
O
(
ND +MD

)
NB O

(
ND

)
O
(
ND

)
O
(
|Y|D

)
O
(
MD

)
SVM O

(
N3D

)
O
(
N2D

)
O
(
MND

)
O
(
N2D

)

3.2 Datasets

We use two datasets that mainly differ in the amount of noise and the side-
channel leakage distribution – DPAcontest v2 [15] and DPAcontest v4 [16]. We do
not consider the variations in the number of available points of interest (features),
since in such a case, the number of scenarios would become quite large. We select
50 points of interests with the highest correlation between the class value and
data set for all the analyzed data sets and investigate scenarios with a different
number of classes – 9 classes and 256 classes.

Calligraphic letters (e.g., X) denote sets, capital letters (e.g., X) denote ran-
dom variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. Let k∗ be the fixed secret cryptographic key
(byte) and the random variable T the plaintext or ciphertext of the cryptographic
algorithm which is uniformly chosen. The measured leakage is denoted as X and
we are particularly interested in multivariate leakage X = X1, . . . , XD, where
D is the number of time samples or features (attributes) in machine learning
terminology.

Considering a powerful attacker who has a device with knowledge about the
secret key implemented, a set of N profiling traces X1, . . . ,XN is used in order
to estimate the leakage model beforehand. Note that this set is multi-dimensional
(i.e., it has a dimension equal to D×N). In the attack phase, the attacker then
measures additional traces X1, . . . ,XQ from the device under attack in order
to break the unknown secret key k∗.

DPAcontest v2 [15] DPAcontest v2 provides measurements of an AES hardware
implementation. Previous works showed that the most suitable leakage model
(when attacking the last round of an unprotected hardware implementation) is
the register writing in the last round, i.e.:

Y (k∗) = Sbox−1[Cb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

, (4)

where Cb1 and Cb2 are two ciphertext bytes, and the relation between b1 and
b2 is given through the inverse ShiftRows operation of AES. In particular, we

9

choose b1 = 12 resulting in b2 = 8 as it is one of the easiest bytes to attack5.
In Eq. (4) Y (k∗) consists in 256 values, as an additional model we applied the
Hamming weight (HW) on this value resulting in 9 classes. These measure-
ments are relatively noisy and the resulting model-based signal-to-noise ratio

SNR = var(signal)
var(noise) = var(y(t,k∗))

var(x−y(t,k∗)) , lies between 0.0069 and 0.0096. We use the

measurements from the “template” part of the database.

DPAcontest v4 [16] The 4th version provides measurements of a masked AES
software implementation. However, as the mask is known, one can easily turn
it into an unprotected scenario. Though, as it is a software implementation, the
most leaking operation is not the register writing, but the processing of the S-box
operation and we attack the first round. Accordingly, the leakage model changes
to

Y (k∗) = Sbox[Pb1 ⊕ k∗]⊕ M︸︷︷︸
known mask

, (5)

where Pb1 is a plaintext byte and we choose b1 = 1. Again we consider the
scenario of 256 classes and 9 classes (considering HW (Y (k∗))). Compared to
the measurements from version 2, the model-based SNR is much higher and lies
between 0.1188 and 5.8577.

3.3 Dataset Preparation

We experiment with randomly selected 20 000 measurements (profiled traces)
from DPAcontest v2 and DPAcontest v4 datasets. These measurements are di-
vided into 2:1 ratio for training and testing sets (i.e., 13 000 in total for training
with or without semi-supervised learning and 7 000 for testing). When using su-
pervised learning, the training datasets are divided into 10 stratified folds and
evaluated by 10-fold cross-validation procedure. For semi-supervised learning,
we divide the training dataset into a labeled set of size l and unlabeled set of
size u, as follows:

– (100+12.9k): l = 100 , u = 12 900 → 0.77% vs 99.23%
– (250+12.75k): l = 250 , u = 12 750 → 1.93% vs 98.07%
– (500+12.5k): l = 500 , u = 12 500 → 3.85% vs 96.15%
– (1k+12k): l = 1 000 , u = 12 000 → 7.69% vs 92.31%
– (3k+10k): l = 3 000 , u = 10 000 → 23.08% vs 76.92%
– (5k+8k): l = 5 000 , u = 8 000 → 38.46% vs 61.54%
– (7k+6k): l = 7 000 , u = 6 000 → 53.85% vs 46.15%
– (10k+3k): l = 10 000 , u = 3 000 → 76.92% vs 23.08%

4 Experimental Results

As the main performance measure, we use the accuracy, i.e., the percentage of
correctly classified instances: ACC = TP+TN

TP+FP+TN+FN .

5 see e.g., in the hall of fame on [15]

10

In supervised learning, the classifiers are built on the labeled sets and esti-
mated on the unlabeled sets. We give results here only for the results obtained
from the testing phase. When discussing semi-supervised learning, we first learn
the classifiers on the labeled sets. Then, we learn with the labeled set and unla-
beled set in a number of steps, where in each step, we augment the labeled set
with the most confident predictions from the unlabeled set. Once we cannot add
any more measurements, we finish the learning phase. Finally, we conduct the
estimation phase on a different unlabeled set.

For machine learning techniques that have parameters to be tuned, we con-
ducted a tuning phase on labeled sets and use such tuned parameters in conse-
quent experimental phases. For SVM with radial kernel, we select C equal to 10
and γ equal to 0.6 for DPAcontest v4 and C equal to 2 and γ equal to 0.05 for
DPAcontest v2. A low cost of the margin parameter C makes the decision surface
smooth, while a high C aims at classifying all training examples correctly. The
radial kernel parameter γ defines how much influence a single training exam-
ple has, where the larger γ is, the closer other examples must be to be affected.
When using k-NN with label spreading, we select k to be equal to 7. Naive Bayes
and template attack do not have parameters to tune.

For semi-supervised learning, we tune the σ parameter. Table 2 states all the
threshold levels σ for different classifiers for all different scenarios we consider,
which was set at the labeled set training accuracy. In all experiments, when there
is a single result with the best accuracy, we depict it in bold style.

Table 2: Threshold levels. When considering SVM threshold level σ for DPAcon-
test v4, both 9 and 256 classes scenarios use the same value. This is because the
problem is “simple” for 9 classes and the threshold can be set to a higher value
but we noticed no difference in performance. The same behavior is not observed
for DPAcontest v2.

DPAcontest v4 DPAcontest v2

Classifier 9 classes 256 classes 9 classes 256 classes

NB, k-NN 0.99 0.99 0.99 0.99
SVM 0.22 0.22 0.01435 0.004

4.1 DPAcontest v2 Dataset Results

In Table 3, we give the results for the testing phase for supervised learning vs.
semi-supervised learning methods for DPAcontest v2 dataset.

Overall, the accuracies are low for all scenarios, which is expected due to the
high amount of noise. Supervised learning results serve as a baseline when com-
paring with the semi-supervised learning. Using only 100 traces in the profiling
phase can be considered as the worst case scenario, while using all 13 000 in the
profiling phase can be considered as the best case scenario. When having an

11

extremely small number of traces in the profiling phase, a natural assumption is
that adding more measurements in the semi-supervised phase helps. Still, as we
assume there will be at least some portion of measurements incorrectly classified
during semi-supervised learning, we cannot expect semi-supervised learning to
be more successful than supervised learning with all traces.

For the 9 classes scenario, we can notice an interesting behavior for the
smaller numbers of measurements, e.g., up to 1 000 measurements with Naive
Bayes and TAp techniques. We see that the accuracies are actually higher than
for the cases with more measurements. Namely, since there is a very limited
number of traces in the profiling phase, some of the classes do not have any
correctly trained representatives. As an example, for the scenario with 100 mea-
surements, we actually see there are no instances of HW 0, HW 1, HW 7, and
HW 8 classes present in the profiling phase. Consequently, the classifiers do not
work anymore with 9 classes but only with 5 classes, which makes it a much
simpler classification problem. Although such results look good, they are not
very helpful in the SCA context to reveal the secret key.

Table 3: Testing results, supervised learning vs. semi-supervised learning ap-
proaches, DPAcontest v2, (ACC, %).
Size NB SVM TA TAp

9 classes, supervised learning / SSL:self-learning / SSL:label spreading

100/+12.9k 20.6/14.5/11.8 21.6/18.7/18.1 0.4/7.3/5.9 17.7/17/15.6
250/+12.75k 10.4/12.3/11.3 21/20.8/19.8 10.2/0.5/0.4 15.8/16.2/15.1
500/+12.5k 10.8/12.9/11.8 22/21.4/21 5.5/1.4/1.1 15.3/17.6/16.7
1k/+12k 11.9/12.7/12.3 23.8/25.2/25.1 3.8/0.4/0.4 13.8/14.9/13.1
3k/+10k 7.3/7/6.8 24.5/25/24.9 8.7/1.5/1.4 10.4/12.4/12
5k/+8k 9.3/10.3/9.4 24.6/25.5/25.1 0.9/15/14.1 8.9/11.8/10.9
7k/+6k 8.8/11/10.4 25.5/26/26 2.1/1.7/1.3 8.4/11.1/10.9
10k/+3k 8.8/10.2/10 25.3/26.2/26 7.5/8.3/6.9 8.2/8.6/8
13k 8.3 26.2 15 7.6

256 classes, supervised learning / SSL:self-learning / SSL:label spreading

100/+12.9k 0.3/0.6/0.5 0.4/0.5/0.4 0.3/0.5/0.3 0.4/0.4/0.4
250/+12.75k 0.4/0.7/0.5 0.4/0.5/0.5 0.6/0.5/0.4 0.4/0.4/0.4
500/+12.5k 0.4/0.6/0.5 0.4/0.5/0.4 0.4/0.6/0.5 0.4/0.4/0.4
1k/+12k 0.5/0.5/0.5 0.4/0.4/0.3 0.4/0.6/0.5 0.5/0.5/0.5
3k/+10k 0.4/0.4/0.4 0.4/0.5/0.4 0.3/0.4/0.3 0.4/0.4/0.4
5k/+8k 0.6/0.5/0.4 0.5/0.4/0.4 0.4/0.4/0.4 0.5/0.4/0.4
7k/+6k 0.7/0.6/0.5 0.5/0.6/0.6 0.5/0.4/0.4 0.4/0.4/0.4
10k/+3k 0.6/0.5/0.5 0.5/0.5/0.5 0.4/0.4/0.4 0.4/0.4/0.4
13k 0.6 0.5 0.4 0.3

The most extreme cases behave worse than supervised learning when con-
sidering ML techniques. This is somewhat expected, since the level of noise is

12

high and it is difficult to form “good” clusters with a very small number of la-
beled measurements. For the cases where the amount of labeled measurements
is higher than 5 000, we see improvements with SSL, which is a clear indication
that more measurements are necessary for SSL if the data is noisy. Unfortu-
nately, not all cases for TA become stable. The analysis shows that some classes
are underrepresented, which makes covariance matrices unstable.

The behavior for label spreading is quite similar to that of self-training, but
we see somewhat worse accuracies throughout all scenarios. A smaller number
of measurements for 9 classes have higher accuracies than using more measure-
ments, but this is due to a lack of labeled examples of all classes which corre-
spond to an easier problem since then the classification process has fewer classes
to choose from. When considering 256 classes, interestingly, TA works better
with SSL than with supervised learning for a number of cases. Still, the accura-
cies are very low, as expected, since we work with a highly noisy scenario and
many classes.

4.2 DPAcontest v4 Dataset Results

In Table 4, we give the results for the testing phase for supervised learning vs.
semi-supervised learning approaches for DPAcontest v4 dataset.

Here, we see far better results compared to DPAcontest v2. We observe that
for both 9 and 256 classes, machine learning techniques work well. SVM performs
better than Naive Bayes, which is expected since SVM is a more powerful clas-
sification technique. When considering template attacks, we see that the pooled
version is significantly better, since it does not have the problem with covariance
matrices instability. As it can be seen, for 13 000 measurements and 9 classes,
TA and TA pooled perform similarly, which is a strong indication that the co-
variance matrices got stable and that if there would be further increase in the
number of measurements, TA may outperform the pooled version.

As particularly interesting, we highlight the efficiency of ML techniques even
in scenarios with only 100 to 500 measurements. This leads us to the conclusion
that ML is an extremely powerful option to be used even in the most extreme
profiling cases, provided that the level of noise is not too high. When considering
9 classes and SSL, only for the case with 100 measurements, the results for ML
are slightly worse when compared with supervised learning. The other results
are either better or comparable. What is the most interesting, TA and TAp

results are significantly better than those obtained with supervised learning. In
particular, the accuracy for TA and TAp increases for all scenarios regardless
of the number of added unlabeled measurements. For TA, the explanation is
simple but with profound consequences: by adding more measurements, we are
able to resolve instabilities in the estimation of the covariance matrices and
consequently, the accuracy of TA is significantly increasing. The highest increase
(more than 73.3%) can be observed for TA when using 10k labeled measurements
and 3k unlabeled ones. Interestingly, we see that for TA and TAp using 10k+3k
is approximately as efficient as using 13k labeled traces. The highest increases
for TAp can be observed in the first 4 scenarios (up to 12 000 of additional

13

Table 4: Testing results, supervised learning vs. semi-supervised learning ap-
proaches, DPAcontest v4, (ACC, %).
Size NB SVM TA TAp

9 classes, supervised learning / SSL:self-learning / SSL:label-spreading

100/+12.9k 61.5/59/30 69.1/69/25 0.3/58.9/18.8 45.4/67.6/21.1
250/+12.75k 64.3/64.6/65.3 78.4/78.2/77.5 0.3/12.6/61.4 53/75.2/71.3
500/+12.5k 65.9/66.2/65.5 82.7/82.8/81.1 0.3/56.6/58.8 68.9/76.9/74.5
1k/+12k 64.8/68.1/67.7 86.6/87.1/84.1 1.3/44.2/7.1 73.1/78.3/76.6
3k/+10k 67.2/68.3/68.7 90.8/90.5/91.8 5.2/53/66.6 74.9/78.1/77.4
5k/+8k 67.9/68.1/68.8 92/92.3/91.8 2.8/46.4/3.2 75.8/78.4/78
7k/+6k 68/68.4/68.6 92.8/92.7/92.5 11.2/75.6/14.8 76.5/78/77.9
10k/+3k 68.1/68.7/68.7 93.3/93.6/93.5 0.4/73.8/49.6 77.2/77.9/78
13k 68.4 93.7 75.3 77.7

256 classes, supervised learning / SSL:self-learning / SSL:label-spreading

100/+12.9k 1.5/2.7/1.7 5.1/4.2/3.7 0.3/0.3/0.3 0.4/3.4/2.6
250/+12.75k 2.2/3.1/3 6.8/6.4/6.1 0.3/0.3/0.3 3.3/3.7/3.5
500/+12.5k 4.9/5.7/5.7 10.3/8.5/7.9 0.4/0.5/0.4 6.4/7.1/7
1k/+12k 10.5/9.3/8.5 13.6/12.8/11 0.4/0.5/0.4 10.2/9.5/9
3k/+10k 16.5/15.6/15 22.4/21.7/18.7 0.1/0.4/0.3 16.3/15.5/14.8
5k/+8k 18/17.3/16 27.4/25.7/24.8 0.2/0.1/0.1 19.2/18.7/17.2
7k/+6k 19.5/18.4/17 30/29/26.9 0.3/0.1/0.1 20.6/21/20.1
10k/+3k 20.1/19.6/18.1 33.3/32.8/28.8 0/0.2/0.2 22.5/22.4/21.9
13k 20.2 34.9 0.1 23.7

unlabeled measurements). Afterward, the accuracy is still higher when compared
to the supervised scenario, but the margin is getting smaller. For 256 classes,
the results for Naive Bayes are better for the most extreme cases (i.e., up to
500 labeled measurements) but slightly worse for the other scenarios. A similar
behavior can be seen for TAp. With label spreading, we see that the results
are in general worse than for self-training. When considering 9 classes, the first
case with 100 labeled measurements has a significant drop in accuracy when
compared to supervised case or self-training. The rest of the results for 9 classes
are comparable with the results obtained with self-training. What is important
to notice are the cases 1k + 12k and 5k + 8k, where TA is not stable, and,
consequently, the results are much worse than for self-training. Scenarios with
256 classes are again similar, but we note that there are no cases where label
spreading outperforms self-training.

On a more general level, one could ask if a small increase in the accuracy
has a significance from a practical (attack) perspective. We believe it does, since
1) with SSL, it requires no additional knowledge except the one already used in
profiling attack and 2) as shown in [17], even a small difference in accuracy can
translate to a large difference is guessing entropy or success rate.

14

5 Conclusions and Future Work

Previously, in the SCA community, profiled side-channel analysis has been con-
sidered as a strict two-step process, where only the profiled model is transferred
between the two phases. Here, we explore the scenario where the attacker is
more restricted in the profiling phase but can use additional available informa-
tion given from the attacking measurements to build the profiled model. Two
approaches to SSL have been studied in scenarios with low/high noise, 9/256
classes for prediction, and a different number of measurements in the profil-
ing phase. As side-channel attack techniques, we use two ML techniques (Naive
Bayes and SVM), template attack, and its pooled version. The obtained results
show that SSL is able to help in many scenarios. Significant improvements are
achieved for the template attack and its pooled version in the low noise scenario.
Particularly, we observed that using additional samples from the attacking phase
improved the estimation of the covariance matrices which resulted in improve-
ments of more than 70%. It is shown that the higher the number of samples in
the profiling phase, the less influential are the added unlabeled samples from the
attacking phase. In the scenarios with no increase in accuracy, the behavior is
not significantly deteriorated compared to supervised learning (standard profil-
ing), which makes SSL a general technique to be considered. When considering
the scenario with high noise, the improvements are smaller, since those scenarios
are, in general, much more difficult to attack.

As future work, we may consider the scenarios where the number of labeled
traces is extremely small (100 labeled traces or less), while the number of unla-
beled examples is much larger, e.g., 30 000, as we have shown that the greatest
benefit of SSL is in these extreme cases. A second research direction would be to
consider not only those measurements with the highest probabilities but also to
use the distribution of probabilities from SSL learning. Additionally, in the semi-
supervised phase, we used ML classifiers to obtain new labeled measurements,
but there is no reason why not try using TAp attack. Consequently, we plan to
investigate the scenario where TAp attack is used as the classifier in self-training.
Finally, in a real-world scenario, two different devices should be considered, which
may result in (slightly) different distributions (see e.g., [18, 19]).

References

1. Heuser, A., Rioul, O., Guilley, S.: Good is Not Good Enough — Deriving Optimal
Distinguishers from Communication Theory. In Batina, L., Robshaw, M., eds.:
CHES. Volume 8731 of Lecture Notes in Computer Science., Springer (2014)

2. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.: Template
attacks vs. machine learning revisited (and the curse of dimensionality in side-
channel analysis). In: COSADE 2015, Berlin, Germany, 2015. Revised Selected
Papers. (2015) 20–33

3. Heuser, A., Zohner, M.: Intelligent Machine Homicide - Breaking Cryptographic
Devices Using Support Vector Machines. In Schindler, W., Huss, S.A., eds.:
COSADE. Volume 7275 of LNCS., Springer (2012) 249–264

15

4. Cagli, E., Dumas, C., Prouff, E.: Convolutional Neural Networks with Data Aug-
mentation Against Jitter-Based Countermeasures - Profiling Attacks Without Pre-
processing. In Fischer, W., Homma, N., eds.: CHES 2017, Taipei, Taiwan, 2017,
Proceedings. Volume 10529 of LNCS., Springer (2017) 45–68

5. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking Cryptographic Implementations
Using Deep Learning Techniques. In Carlet, C., Hasan, M.A., Saraswat, V., eds.:
SPACE 2016, Hyderabad, India, 2016, Proceedings. Volume 10076 of Lecture Notes
in Computer Science., Springer (2016) 3–26

6. Heyszl, J., Ibing, A., Mangard, S., Santis, F.D., Sigl, G.: Clustering Algorithms for
Non-Profiled Single-Execution Attacks on Exponentiations. In: CARDIS. Lecture
Notes in Computer Science, Springer (November 2013) Berlin, Germany.

7. Lerman, L., Medeiros, S.F., Veshchikov, N., Meuter, C., Bontempi, G., Markowitch,
O.: Semi-supervised template attack. In Prouff, E., ed.: COSADE 2013, Paris,
France, 2013, Revised Selected Papers, Springer Berlin Heidelberg (2013) 184–199

8. Schwenker, F., Trentin, E.: Pattern classification and clustering: A review of par-
tially supervised learning approaches. Pattern Recognition Letters 37 (2014) 4–14

9. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. 1st edn. The MIT
Press (2010)

10. Bengio, Y., Delalleau, O., Le Roux, N.: Efficient Non-Parametric Function
Induction in Semi-Supervised Learning. Technical Report 1247, Département
d’informatique et recherche opérationnelle, Université de Montréal (2004)

11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011) 2825–2830

12. Choudary, O., Kuhn, M.G.: Efficient template attacks. In Francillon, A., Rohatgi,
P., eds.: Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, 2013. Revised Selected Papers. Vol-
ume 8419 of LNCS., Springer (2013) 253–270

13. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An Algorithm for Finding Best Matches
in Logarithmic Expected Time. ACM Trans. Math. Softw. 3(3) (September 1977)
209–226

14. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York, NY, USA (1995)

15. TELECOM ParisTech SEN research group: DPA Contest (2nd edition) (2009–
2010) http://www.DPAcontest.org/v2/.

16. TELECOM ParisTech SEN research group: DPA Contest (4th edition) (2013–2014)
http://www.DPAcontest.org/v4/.

17. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class im-
balance and conflicting metrics with machine learning for side-channel evaluations.
Cryptology ePrint Archive, Report 2018/476 (2018) https://eprint.iacr.org/

2018/476.
18. Renauld, M., Standaert, F., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A

Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale
Devices. In Paterson, K.G., ed.: Advances in Cryptology - EUROCRYPT 2011,
Tallinn, Estonia, 2011. Proceedings. Volume 6632 of Lecture Notes in Computer
Science., Springer (2011) 109–128

19. Choudary, O., Kuhn, M.G.: Template Attacks on Different Devices. In Prouff,
E., ed.: Constructive Side-Channel Analysis and Secure Design: 5th International
Workshop, COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected Pa-
pers, Cham, Springer International Publishing (2014) 179–198

http://www.DPAcontest.org/v2/
http://www.DPAcontest.org/v4/
https://eprint.iacr.org/2018/476
https://eprint.iacr.org/2018/476

	Improving Side-channel Analysis through Semi-supervised Learning
	Introduction
	Semi-supervised Learning Types and Notation
	Self-training
	Graph-based Learning

	Experimental Setting
	Classification algorithms
	Datasets
	Dataset Preparation

	Experimental Results
	DPAcontest v2 Dataset Results
	DPAcontest v4 Dataset Results

	Conclusions and Future Work

