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Abstract - The popularity of Python is growing, especially 

in the field of data science. Consequently, there is an 

increasing number of free libraries available for usage. The 

aim of this review paper is to describe and compare the 

characteristics of different data mining and big data analysis 

libraries in Python. There is currently no paper dealing with 

the subject and describing pros and cons of all these libraries. 

Here we consider more than 20 libraries and separate them 

into six groups: core libraries, data preparation, data 

visualization, machine learning, deep learning and big data. 

Beside functionalities of a certain library, important factors 

for comparison are the number of contributors developing 

and maintaining the library and the size of the community. 

Bigger communities mean larger chances for easily finding 

solution to a certain problem. We currently recommend: 

pandas for data preparation; Matplotlib, seaborn or Plotly 

for data visualization; scikit-learn for machine leraning; 

TensorFlow, Keras and PyTorch for deep learning; and 

Hadoop Streaming and PySpark for big data. 

Keywords - data science, python, data mining, machine 

learning library, big data analysis, framework 

I. INTRODUCTION 

Data mining (DM) deals with preparation of data 
obtained from various information sources (e.g. databases, 
text files, streams) as well as data modeling using a variety 
of techniques, depending on the goal that one wants to 
achieve (e.g. classification, clustering, regression, 
association rule mining, etc.). DM uses machine learning 
(ML) techniques to discover new knowledge from the 
existing information. DM is, nowadays, mostly considered 
within the wider scope of data science, which also 
encompasses statistics, big data techniques and data 
visualization. Data preparation is a vital step in the process 
of data analysis, and it includes data preprocessing and data 
manipulation (sometimes also called wrangling). 
Preprocessing aims at cleaning, integrating, transforming 
and reducing the original raw data so that it can become 
usable for data analysis, while wrangling transforms the 
preprocessed dataset into a data format that can be easily 
manipulated by the data modeling algorithms.  

The use of Python in the area of data science has 
reached unprecedented levels, especially in the area of 
freely available tools and libraries. In a poll published in 
May 2018 by the authoritative portal KDNuggets [1], under 
the category “Top Analytics, Data Science, Machine 
Learning Tools”, it was found that Python is used by 65.2% 
of roughly 2000 participants, compared to 52.7% for 

RapidMiner and 48.5% for R, its two major competitors. In 
practical perspective, in the last three years, Python has 
become the programming language of choice for the data 
science community, with R being the second choice. The 
Python’s popularity probably stems from its relative ease 
of use (even for non-computer scientists), huge ecosystem 
consisting of a number of libraries for every aspect of data 
science and its reliance via NumPy and SciPy wrappers on 
the fast implementations of a large number of scientific 
algorithms written in C and Fortran. 

In our previous work from 2014, we have provided a 
comparison of freely available tools for general DM [2]. At 
the time, Python based tools were still not mature enough, 
while R, RapidMiner, Weka and Knime were at the 
forefront of the most popular tools. In contrast, the aim of 
this work is to provide an overview and comparison of 
various existing Python based libraries for data science. 
Specifically, we focus on six groups of libraries: Python 
core, data preparation, data visualization, machine learning, 
deep learning and big data. We estimate the libraries’ 
significance based on a detailed analysis of their 
capabilities, the number of contributors and the community 
size. Since deep learning is a rather recent development in 
data science, but already with a steady and growing tools’ 
support in Python, we include these libraries, too.    

 

II. AN OVERVIEW AND COMARISON OF LIBRARIES 

A. Core libraries 

Many DM and ML tasks in Python are based on fast and 
efficient numerical and vectorized computing with NumPy 
[3] and SciPy [4] libraries. Many functionalities from these 
libraries are actually wrappers around the Netlib [5], secure 
and robust scientific implementations of algorithms. Main 
advantage of NumPy and SciPy is their ability of 
performing efficient vectorized computing and 
broadcasting over n-dimensional arrays.  

The other advantage of using Python in this field is the 
fact that it is relatively easy to connect third party code into 
the Python interpreter. Probably the most commonly used 
library for that purpose in the of DM is Cython [6]. Cython 
is a language built on top of Python that also supports 
calling C functions and having C type of variables and 
classes. The usage of Cython can make some critical parts 
of code several times faster.  



All three aforementioned libraries have a stable code 
and are in constant maintaining and development. Table 1 
shows useful information about libraries’ “reputation” on 
GitHub, a web-based hosting service for version control 
[7], using the number of stars, forks, contributors and 
activity on the library repository. Activity is shown through 
the number of contributing authors and the number of 
commits in the last month.  

B. Data preparation 

Since everything in the field of data science is based on 
data, there is a need for data preparation libraries. Currently 
the best and most used Python library in this field is pandas 
[8]. pandas has a wide range of capabilities for input/output 
data formats, like Excel, csv, Python/NumPy, HTML, SQL 
and more. Furthermore, pandas has powerful querying 
possibilities, statistic calculations and basic visualizations. 
It has a rich documentation, but a bit confusing syntax, 
which is often pointed out as its most significant flaw.  

Every other library in this field has much bigger issues 
than pandas. PyTables [9] and h5py [10] accept only HDF5 
data type, which is a huge limitation for general usage. 
There are several more similar libraries (e.g. Tabel [11]), 
but none of them can be competitive to pandas, for now. 

C. Data visualization 

Table 3 shows a comparison of data visualization 
libraries. Plotly [12] has support for most of the standard 
plots that are used in DM and ML. seaborn [13] has a few 
capabilities less than Plotly, and Matplotlib [14] has a few 
less than seaborn. Although there are differences between 
these three libraries, they all have the main plotting 
capabilities. Bokeh [15] and ggplot [16] have the fewest 
options and are the least used libraries.  

Matplotlib is a Python implementation of the 
MATLAB-like plots and is written on a low level, with a 
lot of possibilities for customization. Its syntax can be a bit 
confusing at first, but once one masters its main concepts, 
it is easy to draw pretty much any graph. seaborn is built 
on top of Matplotlib and is easier for usage and learning for 
beginners than Matplotlib. Although it is easier to use, in 
the cases of some complex graphs with a need for a lot of 
customization, it is possible that seaborn would be an 
infeasible option.  

Plotly seems to be the most powerful library in data 
visualization field. Its main flaw is a relatively unintuitive 
syntax, making it harder to learn for beginners. However, 
the flaw is compensated with a very rich documentation 
providing a lot of examples. It is possible to integrate Plotly 
graphs into webpages with Dash [17]. Bokeh is intended for 
integration of interactive plots into webpages, where a user 
can explore data himself. ggplot is the Python’s 
implementation of R’s way of plotting. It has a limited 
documentation and sacrifices customization in order to 
have a simple and straightforward code. 

Although all of the libraries in this group are relatively 
popular based on the data presented in Table 1, we must 
mention that ggplot has not been maintained or developed 
in the last two years. 

D. Machine Learning 

scikit-learn [18] is the most popular Python library for 
machine learning. Beside it, there are also mlxtend [19], a 
new and small library that includes only a few basic 
algorithms, and Shogun [20], which is primarily written in 
C++, but there is an available Python wrapper for all of its 
functionalities. Shogun has more algorithms than mlxtend, 
but far less than scikit-learn. There are only a handful of 
algorithms that Shogun has implemented and scikit-learn 
does not, which can be seen in Table 2. There is also a 
library called mlpy [21], which is not listed in Table 2. The 
reason for its absence is that it is a small library, similarly 
to mlxtend, but it does not have any well known algorithm 
implemented that other libraries do not have. 

scikit-learn has an advantage in the number of 
algorithms implemented in most categories in Table 2. 
Shogun’s advantage over the other libraries is in the number 
of algorithms that implement different kinds of trees. 
Although mlxtend is a small library, it is the only library 
with implemented association rule algorithms and stacking 
ensemble learning. The lack of these algorithms can be 
considered a huge omission by scikit-learn and Shogun. 
The same goes for inductive rule learners, full Bayesian 
network, rotational forest and fuzzy c-means clustering, 
which are not implemented in any of the listed libraries. 

Table 1. Information about libraries from GitHub 

Library Stars Forked Contributors Activity 

NumPy 9621 3318 726 28 (103) 

SciPy 5418 2690 685 21 (101) 

Cython 3833 799 275 10 (85) 

pandas 18134 7233 1407 65 (217) 

PyTables 801 164 60 0 (0) 

h5py 1042 288 98 3 (6) 

Tabel 11 0 1 1 (1) 

Matplotlib 8688 3966 787 20 (218) 

seaborn 5722 905 87 0 (0) 

Plotly 4569 1068 68 5 (38) 

Bokeh 8969 2398 346 11 (52) 

ggplot 3429 539 13 0 (0) 

scikit-learn 33337 16358 1253 38 (94) 

mlpy 5 2 1 0 (0) 

Shogun 2312 891 153 8 (57) 

mlxtend 2033 475 46 3 (17) 

TensorFlow 120547 72008 1834 
194 

(1888) 

Keras 38196 14584 773 20 (53) 

PyTorch 24781 5878 934 
152 

(913) 

Caffe 27016 16335 267 0 (0) 

Caffe2 8407 2130 196 0 (0) 

mrjob 2367 570 82 3 (143) 

Dumbo 1037 161 6 0 (0) 

Hadoopy 245 62 3 0 (0) 

Pydoop 168 53 11 1 (18) 

Spark 

(PySpark) 
20576 18057 1330 78 (246) 

Hadoop 

(Streaming) 
8567 5360 155 58 (456) 

Note: 1) activity represents: number of contributing authors 

(number of commits) in the last month; 2) data is from February 

14th, 2019 

 



From popularity shown in Table 1, we can see that…  
Table 2. Comparison of machine learning libraries 

Category Supported algorithms scikit-learn mlxtend Shogun 

Feature selection 
Filters + (many methods) + (one method) - 

Wrappers + (many methods) + (two methods) - 

Feature transformation 

Discretization + - - 

Normalization + - + 

PCA + (several methods) + + 

ICA + (several methods) + + (various) 

MDS + - + 

Manifold learning + - + 

SVD + - - 

Random projections + - - 

LDA (for dimensionality reduction) + + + 

GDA (Kernel Fisher Discriminant 

Analysis, for dimensionality reduction 
+ - - 

Factor analysis + - + 

tSNE + - - 

others + - + 

Decision tree learner 

ID3 - - + 

C4.5 - - + 

CART + (optimized) - + 

CHAID - - + 

RelaxedTree - - + 

others - - 

+ (Conditional 

probability tree, 

Nobody tree) 

Bayesian classifiers 
Naïve Bayes 

+ (various distribution 
assumtions) 

- + 

others + (ComplementNB) - - 

Function based 
classification 

LDA classifier + - - 

Logistic regression + + - 

GDA classifier + - - 

Elastic net + - - 

Others + 
+ (Softmax 

regression) 
- 

Instance based learning 
kNN + (several) - + (several) 

Nearest centroid classifier + - + 

Regression analysis 

Ordinary least squares linear regression + + - 

Ridge regression + - - 

Kernel ridge regression + - + 

PLS regression + - - 

Lasso (and variations) + - - 

Least angle regression + - - 

Polynomial regression + - - 

others 

+ (Bayesian regr. 

Robustness regr., 
Isotonic regr. …) 

- - 

ANN 

Perceptron + + + 

MLP classification and/or regression + - + 

Restricted Bolzman Machine + - - 

Building your own NN - - + 

others - 
+ (Adaline, 
Multilayer 

perceptron) 

+ (Averaged 

perceptron) 

SVM 

SVC (or NuSVC) + - + 

SVR (or NuSVR) + - + 

OneClassSVM + - + 

LaRankSVM - - + 

others + (RBF kernel SVM) - 

+ (NewtonSVM, 

SVMSGD, 
LPBoost, 

MKLRegression) 

Ensemble learning 

Bagging + - + 

AdaBoost + - - 

Random forest + - + 

Extremely randomized trees + - - 

Totally randomized trees + - - 

Gradient boosting + - + 

stacking - + - 

Majority voting + + + 

others 
+ (IsolationForest, 

weighted average voting) 
+ (stacking 
regressor,  

+ (MeanRule, 

Combination 

Rule) 

 



From popularity shown in Table 1, we can see that scikit-
learn has a huge community, while mlpy has a very small 
community. It should also be mentioned that scikit-learn 
has the best documentation, which is intuitive for usage. 

E. Deep learning 

Table 4 shows functionalities that certain deep learning 
library have implemented. Basic functionalities are 
implemented in all four available libraries. Caffe [22] does 
not have much more than these basic functionalities and its 
documentation is not intuitively structured. Caffe has its 
new version – Caffe2 [23], but it has a similar number of 
functionalities. TensorFlow [24] (TF) is developed by 
Google Brain, it has a good documentation, a lot of 
functionalities beside the basics and it is possible to make 
code very customable. Since it is written as a low level 
library, it is bit harder to master. TensorBoard is a 

visualization tool that comes with all the standard 
installations of TF. It allows users to monitor their models, 
parameters, losses, and much more.  

Keras [25] is built on top of TF. Coding in Keras is 
therefore on a higher level. The cost for that is a harder 
customization of code. It is well known that customization 
and tweaking of code is much easier when coding at a low 
level. PyTorch [26] (PT) is developed and used by 
Facebook. It was developed more recent than TF, but its 
community is growing fast. PT is dynamic and it runs code 
in a more procedural fashion, while in TF, one first needs 
to design the whole model and then run it within a Session. 
Because of this, it is much easier to debug code in PT. PT 
has more “pythonic” codes, it is easier to learn and easier 
to use for quick prototyping. PT and Keras also have good 
documentations. 

Table 3. Comparison of data visualization libraries 

Plot type Matplotlib seaborn Plotly Bokeh ggplot 

Line chart + + + + + 

Histograms + + + - + 

Bar + + + + + 

Scatterplots + + + + + 

Boxplot + + + - - 

Contures + + + - - 

Filled polygons + - + + - 

Spectrogram + - + - - 

Violin plot + + + - - 

Pairplot - + - - - 

Heatmap - + + + - 

Matrix clustermap (dendogram) - + + - - 

Regression plot - + - - + 

Joint plot - + + - - 

Polar plot + - + - - 

3D + - + - - 

Interactive graphs and animations + - + + - 

Others + + + + - 

NOTE: If there is minus in some column, it does not necessarily mean that it is not possible to do it, but that there is no direct function for a 

wanted plot (for example, pairplot is possible to create with Matplotlib with several lines of code and a scatterplot) 

 

Hierarchical clustering 
AgglomerativeClustering 

+ (Ward; single, average 

and complete linkage 

strategies) 

- 
+ (single 
linkage) 

BIRCH + - - 

Centroid (partition) 

clustering 

k-means + + - 

Mean Shift + - - 

Distribution based 
clustering 

EM clustering 
+ (Gaussian mixture 

model) 
- 

+ (Gaussian 

micture model) 

Affinity propagation + - - 

Spectral clustering + - - 

Density based clustering DBSCAN + - - 

Association rules 

(unsupervised) 

Apriori - + - 

Association rules - + - 

Evaluation methods and 

metrics 

Holdout + + - 

Cross-validation + - + 

Regression evaluation: MSE, MAE, 

Pearson’s correlation coefficient 
+ - - 

Classification evaluation: TP, FP, FN, TN, 
confusion matrix, accuracy, precision, 

recall, F1… 

+ + + 

Clustering evaluation: Adjusted rand index, 

Normalized mutual information, Silhouette 

Coefficient, Calinski-Harabasz index… 

+ - 

+ (Normalizer 

mutual 

information) 

ROC, PRC, Lift chart, Cost-benefit 

+ (ROC, PRC), liftchart 

and cost-benefit in 
scikit-plot 

- + (ROC, PRC) 

other 

+ (OVO, OVR, 

GridSearchCV, 

RepeatedKFold, …) 

+ (bootstrap, lift 
score, …) 

+ 

(ECOCStrategy
, OVO, OVR, 

GridSearch, …) 

 

 

 



 Table 4. Comparison of deep learning libraries 

Category Supported method TensorFlow Kearas PyTorch Caffe 

Layers 

Conv1D, Conv2D, Conv3D + + + + 

ConvTranspose1D, ConvTranspose2D, 

ConvTranspose3D, 
+ + + + 

SeparableConv1D, SeparableConv2D + + - - 

MaxPool1D, MaxPool2D, MaxPool3D + + + + 

AvgPool1D, AvgPool2D, AvgPool3D + + + + 

AdaptivePool (all combinations) - - + - 

GlobalPool - + - - 

Dense + + + + 

Dropout + + + + 

Flatten + + - + 

Padding + + + + 

RNN + + + + 

LSTM + + + + 

GRU + + + - 

Normalization + + + + 

Noise - + - - 

others + + + + 

Activation functions 

ReLu + + + + 

ReLu6 + - + - 

PReLu - + + + 

LeakyReLu - + + - 

CReLu + - - - 

ThresholdedReLu - + + - 

Elu + + + + 

Selu + + + - 

Softplus + + + - 

Softsign + + + - 

Bias_add + - - - 

Sigmoid + + + + 

Hard_sigmoid - + - - 

Exponential - + - + 

Linear - + - - 

Softmax + + + + 

Tanh + + + + 

others + + + + 

Losses 

MSE + + + + 

Log_loss + - - - 

Hinge_loss + + + + 

Logcosh - + - - 

Cross_entropy + + + + 

Poisson + + - - 

Cosine_distance + - - - 

Huber + - - - 

NLLLoss + - + - 

CTCLoss + - + - 

KLDivLoss - + + - 

NCELoss + - - - 

BCELoss - + + - 

SoftMarginLoss - - + - 

CosineEmbeddingLoss - - + - 

MultiMarginLoss - - + - 

others + + + + 

Optimizers 

GradientDescent (GD) + - - - 

Proximal GD + - - - 

StohasticGradientDescent (SGD) - + + + 

Averaged SGD - - + - 

RMSprop + + + + 

Rprop - - + - 

Adadelta + + + + 

Adagrad + + + + 

AdagradDualAveraging + - - - 

ProximalAdagrad + - - - 

Adam + + + + 

AdaMax - + + - 

Nadam - + - + 

SparseAdam - - + - 

L-BFGS - - + - 

FTRL + - - - 

Momentum + - - - 

GPU acceleration  + + + + 

 



F. Big data 

Currently, the most popular tools for big data are Spark 
and Hadoop MapReduce. Both are scalable, flexible and 
fault tolerant tools. They have their own specialized storage 
system, which allows them to work on clusters of 
computers. Spark uses the Resilient Distributed Datasets 
(RDDs), while Hadoop uses the Hadoop distributed file 
system (HDFS). The main difference between Spark and 
Hadoop MapReduce is the fact that Spark can work within 
the RAM memory, while Hadoop always writes on the file 
system. Hadoop is a good choice in the cases of very large 
amount of data (larger than the available RAM) and when 
there is no need for immediate results. In all other cases, 
Spark is probably a better choice. Although both are written 
in Java, many big data engineers prefer to use them in 
combination with Python.  

Hadoop Streaming [27] is an interface that allows the 
usage of any language for MapReduce jobs on Hadoop. The 
other possibility is to use mrjob [28], an open source 
wrapper around Hadoop Streaming. It is actively developed 
by Yelp and it has a good documentation. A disadvantage 
of mrjob is that it is a simplified framework that does not 
provide some advanced functionalities and does not have 
available support for typedbytes, so it is a bit slow in some 
cases. In contrast, Dumbo [29] provides more advanced 
functionalities. It is also a wrapper around Hadoop 
Streaming, but its documentation is not that rich, which 
makes it harder to use. It is very similar to Hadoopy [30], 
which also has support for typedbytes serialization of data 
and is a Hadoop Streaming wrapper. Hadoopy has a 
relatively good documentation. Pydoop [31] is a wrapper 
around Hadoop pipes (C++ API for Hadoop). There are a 
few additional Python libraries for Hadoop, but we find that 
those mentioned above are currently the best options. 
Dumbo and Hadoopy have not been maintained or 
developed for the last 5 years.  

Regarding Spark, we are not aware of any other Python 
library other than PySpark [32]. PySpark is an API that 
exposes Spark data processing model to Python.  

III. CONCLUSION 

For data preprocessing and manipulation, we 
recommend the usage of pandas. It has a strong community 
support, a rich offer of functionalities and no serious 
competition. In the field of data visualization, things are not 
so clear-cut and the choice of library largely depends on the 
project. Plotly has the most capabilities, seaborn is very 
intuitive and easy to use, while Matplotlib offers many 
possibilities for customization. All three have strong 
communities.  

scikit-learn is the best library in the field of machine 
learning. It has a very good and intuitive documentation 
with many examples. It has a large scope of implemented 
algorithms. Deep learning is a relatively recent field, but 
with three very good libraries. We recommend the usage of 
PyTorch or Keras for quick prototyping and TensorFlow 
for projects which demand a lot of customization. 

Hadoop Streaming and PySpark are the best libraries to 
use in the field of big data. Both are APIs for native libraries 

(Hadoop and Spark), so they have a large community 
support. 
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