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Abstract - Unlike other popular data types, such as 

images, textual data cannot be easily converted into a 

numerical form that machine learning algorithms can 

process. Therefore, text must be embedded into a vector 

space using embedding algorithms. These algorithms attempt 

to encapsulate as much information as possible from the text 

into a resulting vector space. Natural language is complex 

and contains numerous layers of information. Information 

can be obtained from a sequence of characters or subword 

units that make up the word. It can also be derived from the 

context in which a word occurs. For this reason, a variety of 

word embedding algorithms have been developed over time, 

which use different pieces of information in different ways. 

In this paper, the currently available word embedding 

algorithms are described and it is shown what kind of 

information these algorithms use. After analyzing these 

algorithms, we discuss how it can be advantageous to use 

combinations of different types of information in different 

research and application areas. 

Keywords - word embedding, textual data, natural 

language processing, word space, text mining 

I. INTRODUCTION 

Some might argue that natural language is the most 
complicated invention in human history. It is an ever-
evolving system that allows us to express even the most 
elaborate ideas and is seemingly limitless. It is also one of 
the primary means of communication, as most knowledge 
is stored in some form of natural language. Natural 
language has formed over a very long period of time, 
resulting in a highly complex system that can represent 
large amounts of information in a very condensed form. 
This is often because some information can be inferred 
from prior knowledge and does not need to be said 
explicitly. Another reason is that closely related words have 
a similar internal structure and therefore the meaning of a 
word can be inferred even for unfamiliar words. This 
suggests  that there are multiple layers of information in a 
given text, and knowledge of this information is crucial for 
designing an appropriate text mining algorithm. 

In order for machine learning algorithms to work with 
textual data, the data must first be transformed into 
numerical data that is understandable to an algorithm. This 
is not as straightforward as with images, which can be 
directly represented by numbers. Textual data is usually 
transformed into vectors by word embedding algorithms. 
These are, by and large, models trained to perform a 
mapping of words or phrases into a real-valued vector of 
fixed size such that some desirable semantic properties and 
linguistic word relations are satisfied. Word embedding 

algorithms are de facto standard for improving model 
performance in numerous Natural Language Processing 
(NLP) tasks.  

The aim of this paper is to describe the currently 
available word embedding algorithms and to highlight 
which information sources they use. For each algorithm, 
the focus is on transforming from a variable-length word or 
phrase to a fixed-dimensionality vector representation. The 
algorithm may use the entire available text to determine in 
which context a word or phrase occurs frequently, or 
subword units to obtain a representation. When subword 
units are the smallest possible, we speak of character-level 
information extraction. In this paper, we distinguish 
between word embeddings and contextualized word 
embeddings, where the latter can represent a word with 
different vector representations based on the context 
surrounding that word. While contextualized word 
embedding algorithms have proven themselves in most 
NLP applications with remarkable results, there is still 
room for (uncontextualized) word embeddings when no 
context is available, which may be the case when dealing 
with structured data or when computational resources are 
scarce. 

The structure of this paper is as follows. Section II 
introduces and discusses related work. Sections III to V 
deal with information used to learn traditional word 
embeddings. Section III describes algorithms that use 
context to learn embeddings, while Section IV gives an 
overview of models that use additional information 
available in subword units. Section V gives an overview of 
algorithms that consider the word as a sequence of 
characters to represent it as a vector. Section VI gives a 
brief overview of some important recent advances in 
contextualized word embeddings. Finally, section VII 
draws concise conclusions about the topics covered in the 
paper.  

II. RELATED WORK 

Because of the vast amount of data stored as natural 
language and the implications that understanding it has for 
the study of human intelligence, the NLP field is active and 
well researched. Word embedding is one of the first steps 
in most NLP-related tasks and, accordingly, many papers 
have appeared that describe it systematically. In this paper, 
the problems faced by researchers, solutions to these 
problems and challenges of current methods are mentioned. 
In this section, an analytical evaluation of several recent 
scientific reviews dealing with word embeddings is 
provided.   



In their study, Camacho-Collados and Pilehvar [1] have 
mainly described vector space models and word 
embeddings. Despite their flexibility and success in 
capturing the semantics of words, the embedding 
algorithms have significant limitations. These limitations 
stem from the fact that a word is usually represented by a 
single vector, which severely limits the ability of 
algorithms to generalize. They point out that words with 
multiple meanings may have a different definition 
depending on the context. For example, the word "cut" can 
have 70 different meanings and can even be interpreted as 
a noun, verb, or an adjective. The authors of the paper refer 
to this limitation as meaning conflation deficiency. They 
conclude that an accurate distinction of different senses is 
needed, which can be achieved by representing the different 
meaning of words, i.e., word senses as independent 
representations. The authors of the paper review several 
models that learn representations for such word senses. 

In 2019, Kowsari et al. [2] provided a comprehensive 
survey of text classification algorithms to facilitate the 
selection of appropriate structures, architectures and 
techniques for the text classification task. Their survey 
covers a wide range of different methods that can be used 
for the said task, such as feature extraction and 
dimensionality reduction. Although the paper takes a more 
overarching approach, the authors of the study also briefly 
addressed word embeddings as it is an important step in text 
classification. For the purpose of this research paper, the 
authors focused on a clear description of the underlying 
mechanisms for three well-known deep learning methods. 
They also briefly discussed a novel approach to word 
representation, Contextualized Word Representations. 

In the wake of public awareness of the digital language 
divide, Ruder et al. [3] authored a survey that provides an 
in-depth exploration of cross-lingual word embedding 
models. In this study, the authors described the benefits of 
such models and compare many models that have been 
proposed in recent years. Considering that many cross-
lingual embedding algorithms have been derived from 
monolingual models, the authors first presented 
conventional monolingual models. As one of their most 
notable contributions, they also formulated a topology of 
cross-lingual models based on data requirements, chosen 
architecture, hyperparameters and additional fine-tuning. 

The study by S. Wang et al. [4], provided an extensive 
and beneficial examination of word embedding 
architectures based on deep neural networks. To this end, 
the authors first identified and elaborated on classical word 
embedding models. They also noted some shortcomings 
that such models have. The first drawback addressed is the 
inability to represent words that were not present in the 
dataset used for training, also known as Out-of-Vocabulary 
(OOV) words. They presented a few state-of-the-art models 
that are able to represent such words with a vector derived 
from that word itself. Then, the authors focused on popular 
embedding models that are adapted to uniquely represent a 
word based on the context surrounding the same word. The 
last challenge addressed the processing of different 
languages with different linguistic structures. The paper 
mentioned models developed for the Chinese language, 
mainly because it is different from most European 
languages targeted by classical word embeddings. In 

addition, relevant neural network architectures commonly 
used in NLP were briefly identified and summarized. 

Y. Wang et al. [5] provided a comprehensive overview 
of how word representations have evolved from static to 
dynamic. Static word representations are referred to as such 
because once learned, they do not change with context. As 
mentioned earlier, many words or phrases can be assigned 
different meanings that simpler models cannot represent. 
Authors call this the polysemy problem. On the other hand, 
dynamic word representations can represent the same word 
with different vectors based on the context, mitigating the 
polysemy problem. The paper described static embedding 
models and additionally presents some efforts to solve the 
polysemy problem. Next, the authors focused on recent 
dynamic word representation models and attempted to 
demonstrate how such models mitigate the said problem. 
They also provided insight into methods and datasets used 
for intrinsic and extrinsic evaluation of word embeddings. 
Finally, cross-lingual word embedding models were 
addressed, for both static and dynamic models. 

III. CONTEXT-LEVEL LEARNED MODELS 

Word embedding models that use only other words 

enclosing the selected word to learn word representations 

are called context-level learned models. Models of this 

type were developed on the basis of famously articulated 

Firth’s 1957 notion "you shall know a word by the 

company it keeps." This means that semantically similar 

words or phrases often occur in a similar context. For 

example, suppose two very similar sentences. "A bee is 

buzzing around." and "A fly is buzzing around". We can 

conclude that bee and fly are closely related, which in a 

sense they are. This allows us to capture many semantic 

properties that a word may have, especially for more 

commonly used words. One of the most notable drawbacks 

of these models is their inability to effectively represent 

OOV words. Newer context-level learned models are 

computationally efficient and still desirable for this reason. 

They can also be extended with subword data. 

A. NNLM 

In 2001, Bengio et al. [6] published an innovative 

paper, in which they presented a novel idea of using neural 

networks to model the sequence as a joint conditional 

probability of the next word given all the previous words 

in a sequence, also known as neural network language 

model (NNLM). The language model can be expressed by: 

 

����, ��, … ��	 = � ����|��, … ����	�
���

�1	 

 

The authors proposed to associate each unique word in a 

vocabulary with a dense real-valued vector of fixed size. 

The size of the feature vector representation was chosen to 

be much smaller than the size of the vocabulary, 

consequently alleviating the well-known curse of 

dimensionality. Feature vectors were computed for a given 

sequence and used to represent the joint probability 

function (1) with the neural network. Feature vectors and 

function parameters can, therefore, be learned 



simultaneously. NNLM uses a multilayer neural network 

where the first layer maps a word from a sequence to its 

real-valued vector representation using an embedding �. 

These representations are concatenated and used to 

compute probability scores using a feedforward neural 

network with ���ℎ activation function and softmax layer 

to normalize the probabilities. Because the feature vectors 

are concatenated and fed into a feedforward network, the 

context length must be fixed, which prevents the network 

from using a longer context. Training of the neural 

network was accomplished by maximizing the log-

likelihood on a training corpus. Optimization parameters 

are embedding � and network parameters θ. Although the 

authors focused on a specific model architecture, they 

pointed out that more complex architectures can be used in 

conjunction with the same embedding type. 

B. SENNA 

Following the work of Bengio et al., whose goal was to 

model the probability of a word given previous words in a 

sentence, Collobert et al. [7] proposed an architecture that 

instead uses a pairwise ranking criterion to compute scores 

describing the acceptability of a piece of text. Formally 

speaking, for a window � = ���, ��, … ��	 the ���|θ	 is 

the score with the network parameters θ. In this case, hinge 

loss is defined using ranking criterion as: 

� �{�∈� 0� !"# , 1 − f��|θ	 + f'���	(θ)}, �2	 

where #denotes the set of all possible text windows with 

n words, � is a dictionary of words and ���	 denotes a text 

window which is created by replacing the central word 

from �  by the word � . This was done because a large 

dictionary size leads to a very complex computation of the 

normalization term in the softmax layer and would require 

more elaborate approximations. The architecture used in 

this work was named “SENNA” (Semantic/syntactic 

Extraction using a Neural Network Architecture) and is 

similar to NNLM, the main difference being the previously 

mentioned scoring. Some other notable differences are: (1) 

the removal of skip connections, (2) the use of ℎ�,-.��ℎ 

instead of ���ℎ . The paper also introduced a variable 

window that encompasses the whole sentence and then 

retrieves a fixed representation by using convolutional 

layer with max-over-time pooling. 

C. Word2vec 

Given the extended training times of previous work, 

Mikolov et al. [8] introduced Word2Vec, a novel word 

embedding architecture that extends the work of Bengio et 

al. by removing nonlinearity from NNLM to reduce 

computational complexity. They also adopt hierarchical 

softmax to reduce the problem of large number of classes. 

Hierarchical softmax represents the vocabulary as a 

Huffman binary tree and assigns short binary codes to 

frequent words, which further increases the training speed. 

In this paper, two different approaches for training word 

embeddings are proposed. The first is called Continuous 

Bag-of-Words (CBOW) and is similar to NNLM, where 

the non-linear layer is excluded and the projection layer, 

that maps the word indices of a context to a vector space, 

is shared across all words. The second architecture, 

Continuous Skip-gram or Skip-gram for short, is similar to 

CBOW, but instead of predicting a current word based on 

context, it attempts to predict surrounding words based on 

a current word.  

In a follow-up paper, Mikolov et al. [9] provide 

additional optimizations to the word2vec algorithm. One 

of these optimizations is the implementation of the 

Negative Sampling method that is used to reduce the 

number of negative samples. This is done by selecting only 

random / negative samples instead of using them all. 

D. GloVe 

Pennington et al. [10] introduced the Global Vector or 

GloVe model to address some limitations that algorithms 

like word2vec have. The authors pointed out that such 

algorithms can only learn semantic similarities based on a 

limited local context window but are unable to use all the 

global statistical information available in the dataset. For 

this reason, GloVe uses a global word-word co-occurrence 

matrix to make efficient use of statistics. If we annotate 

this matrix with 0, then each element 0�1  represents the 

number of times the word �1  occurred in the context of a 

word �� . The cost function is then defined as: 

 

2 = � �'0�1)'��3�45 + 6� + 647 − 89:0�1)�;
�,1�� , �3	 

 

where =  denotes the size of the vocabulary and �  is a 

weighting function used to weigh down rare co-

occurrences, because they are usually noisy and carry less 

information. 

IV. SUBWORD-LEVEL LEARNED MODELS 

Despite their popularity and success, context-level 

learned models have some weaknesses. They model words 

independently and disregard any internal morphological 

structure, resulting in their inability to represent rare or 

morphologically complex words. To counter this, models 

have been developed that use subword information, either 

alone or in conjunction with context-level information. 

This approach is closer to how words are formed in natural 

language. For example, consider the terms "breakable" and 

"biased" and assume that we know their meaning. If we 

then learn that "unbreakable" is exactly the opposite of 

"breakable" we can conclude with enough data that the 

prefix "un" negates adjectives. Therefore, even if we have 

never heard the term "unbiased," we can infer that its 

meaning is the opposite of the term "biased". By using 

subword-level information, these models can significantly 

reduce problems with the words that are rare and OOV. 

For this reason, subword-level learned models are 

appropriate for tasks where morphological word structure 

contains fair amount of information. They are also 

practical for applications where there is no context 

available or plenty words are expected to be absent from 

vocabulary.  



A. MorphoRNN 

To better exploit the complex internal structures of 

English, Luong et al. [11] proposed a new model of 

architecture that compiles word representations using 

morphemes of words, called Morphological RNN 

(morphoRNN). For this purpose, the authors used an 

unsupervised morphological segmentation toolkit, called 

"Morfessor", which recursively splits words using hidden 

Markov models and labels morphemes with the tags �,> 

(prefix), ?�@  (stems) and ?A�  (suffixes). For efficient 

learning, the input form of words is assumed to be �,>∗ ?�>@ ?A�∗. After the morphemes are retrieved, they 

are encoded by a simple embedding matrix described by 

Collobert et al. The encoded representations of the 

morphemes are then recurrently joined into a parent word �. For a pair: stem vector �DEFG and affix vector �HII�J , � 

is constructed as follows: 

 � = �'KG'L�DEFG; �HII�JN + 6GN). �4	 

 

This forms the basis of the context-insensitive 

Morphological RNN (cimRNN), but to improve 

performance, the authors present a context-sensitive 

version called csmRNN that adopts the training approach 

proposed by Collobert et al. by adding a neural language 

model with a pairwise ranking criterion. 

B. Byte Pair Encoding 

Byte Pair Encoding (BPE) is not a word embedding 

algorithm, but a general-purpose data compression 

algorithm described by Gage in 1994 [12]. The BPE 

algorithm iteratively replaces all instances of most 

frequent pairs of adjacent bytes with a byte that was not in 

the original data. This is done until there are no more 

unused bytes or no more frequently occurring pairs.  

In their 2016 paper, Sennrich et al. [13] focus on 

translating rare words using subword units due to the 

advantages described earlier. Their goal was to achieve an 

open vocabulary by using BPE with characters instead of 

bytes. Their algorithm works similarly to the original, but 

instead of bytes, the most frequent pairs of characters are 

merged to form a new character and added to the 

vocabulary. Although strictly speaking their study does not 

focus on word embedding, they introduced the novel idea 

of using BPE to construct subword units.  

Recently, Heinzerling and Strube [16] extended this 

idea by introducing Byte-Pair Embedding (BPEmb). 

BPEmd is basically BPE applied to text, using the resulting 

symbols in combination with the GloVe word embeddings. 

C. FastText 

FastText [14][15] was developed in 2017 at Facebook 

as a direct extension of word2vec's Skip-Gram model, but 

taking subword information into account. Instead of 

predefined morphological structures, fastText models the 

morphology of words by representing them with character 

n-grams. Additionally, special boundary symbols < and > 

are added at the beginning and end of words to distinguish 

prefixes and suffixes from other strings. In practice, 

multiple � -grams of words are calculated for different 

values of � . The word �  is also included to learn 

representations for each word. The Skip-Gram model is 

used to learn vector representations for � -grams (and 

word), and then the final word embedding is computed as 

the sum of all vector representations for a word.  

V. CHARACTER-LEVEL LEARNED MODELS 

Since words are essentially sequences of characters, 

some algorithms use character-level information to 

represent words as vectors. There are a few reasons to do 

this. For example, languages like Chinese do not use the 

alphabet, they use a logographic system of characters. This 

means that words are made up from symbols instead of 

letters, and each symbol can have its own meaning. 

Another reason is to avoid handcrafting features such as 

affixes and allow the model to learn the complex 

morphological structure. Empirically, end-to-end models 

have usually shown better results and higher generalization 

ability. Moreover, the number of unique characters is 

much more limited than the number of unique words. 

Especially when dealing with digitally written text, where 

characters are selected from a finite set. This fact allows 

models to correctly represent OOV words. Character-

learned models should be used when subword information 

is insufficient as they are normally more elaborate. They 

should also often be combined with learned context-level 

models that can "memorize" the word semantic.  

A. CWE 

Chen et al. [18] proposed a new model for joint learning of 

character and word embeddings, which they named 

Character-enhanced Word Embedding model (CWE). 

Their goal was to take advantage of both internal 

characters and external context to create a model that is 

better adapted to languages where characters contain rich 

internal information. Their study used the CBOW model 

to demonstrate the CWE framework. CWE mainly consists 

of two different vocabularies. The first one is a Chinese 

character set, denoted with �  and the second one is a 

Chinese word vocabulary, denoted as K. Each character Q� ∈ � is represented by a vector Q�̅  and each word �� ∈ K 

is represented by a vector �S�  The final representation of 

the word �̅1  is represented as a composition between a 

vector �1  and the average of the embeddings of the 

characters forming this word. The authors considered two 

options for composition, addition and concatenation, but 

empirically found that concatenation does not significantly 

outperform addition and is more time-consuming. For this 

reason, they opted for addition. Consequently, a final 

representation for �̅1 can be written as: 

�4S = 12 T�4UUU + 1V1 � QWS
XY

W�� Z . �5	 

In their work, Chen et al. also proposed several methods 

that assign multiple vectors to a single character. These 

methods are position-based, cluster-based, nonparametric 

cluster-based, and position-cluster-based character 

embeddings. 



B. Word embeddings based on convolutional neural 

networks  

Convolutional neural networks (CNN) are a famously 

proven network architecture for computer vision because 

they can learn spatial features, eliminating the need for 

feature extraction steps. The same advantages can be 

applied to word representation tasks. We can view a word 

or phrase as a one-dimensional image. For example, when 

we see a date or an address, we immediately know what it 

is by just looking at it. The fact that CNNs are very good 

at learning internal structures can be extended to learning 

complicated morphological structures that words may 

have. Because of this fact, many CNN-based approaches 

have been implemented over the years. 

Dos Santos and Zadrozny [17] proposed such a method 

in 2014. They presented a deep neural network for 

performing part-of-speech (POS) tagging using joint 

representations at context and character levels. Their 

approach, called CharWNN, can be seen as an extension 

of the SENNA model, since for a given sentence network, 

it also takes the fixed-sized window of words around the 

target word to score it. Instead of using only a simple 

matrix-based word embedding, CharWNN also uses a 

convolutional layer to capture character-level information. 

Each character in a word is first transformed into a 

character embedding using a complementary embedding 

matrix. Then, using one-dimensional convolution, a 

matrix-vector operation is applied to each successive 

window in a sequence. Finally, max polling is used for all 

character windows in the word to extract a fixed size 

feature vector. Word-level embeddings were pre-trained in 

an unsupervised manner using the word2vec model. The 

character-level and word-level embeddings are then 

concatenated to form a final word representation. 

Kim et al. [19] used a convolutional neural network at 

the character-level whose output serves as input to the 

language model. However, unlike the previously described 

model, this model did not use word embeddings. Given the 

large vocabulary, the word embedding matrices have 

numerous parameters that must be learned. When the 

authors removed these, they obtained a much smaller 

model. As they pointed out, this may be desirable in 

applications where resources do not support large models 

(e.g., embedded and mobile devices).  In their model, 

words were embedded in the following steps: (1) 

characters were embedded through a small embedding 

matrix, (2) a one-dimensional character-level 

convolutional layer was used to extract features, (3) max-

over-time pooling was applied to retrieve fixed-size word 

representations, (4) the resulting features were passed 

through a highway layer that further captures complex 

interactions between features. The authors showed that 

step 4 is not necessary, but it slightly improves 

performance. These word representations are then fed into 

a Long Short-Term Memory (LSTM) recurrent neural 

network with a softmax output to obtain distributions over 

the next word. Training is done by minimizing the cross-

entropy loss between these distributions over the next 

word and the actual next word. 

An interesting approach was proposed by Rama and 

Çöltekin [20], which used an LSTM autoencoder to 

compute representations for word pronunciations. 

Autoencoders traditionally have an hourglass shape where 

the first half, the encoder, learns to represent the input as 

an information-dense vector, and the second part of the 

model, the decoder, mirrors the first and learns to 

reconstruct the original input data from this compressed 

vector. After the autoencoder model is trained, the 

resulting dense vector in the middle is called the latent 

representation. Instead of the traditional autoencoder 

architecture, the encoder here is an LSTM network that 

"rolls" the word or phrase into a latent space, and then the 

decoder LSTM network "unrolls" it back to the original 

word or phrase. Thus, the model can learn word 

representations on an unlabeled dataset with variable 

input. Because the latent space representation is much 

smaller than the original vocabulary size, the model is 

forced to learn a sophisticated internal word structure and 

remove noise. Authors used this model primarily to 

visualize dialect shifts, but the same model could be 

adopted for many conventional NLP tasks. 

VI. CONTEXTUALIZED WORD EMBEDDINGS 

In the previous sections, we have focused mainly on the 

information used to train a model, and assumed that 

inference uses only one word to compute its vector 

representation. As mentioned, this approach has some 

problems, most notably the inability to represent multiple 

possible meanings of the same word. Therefore, novel 

models, called contextualized word embeddings, have 

been proposed. These models can have representations 

change based on context and are therefore better suited for 

usual unstructured text if resources are ample. 

A. ELMo 

Embedding from Language Models (ELMo) was 

introduced in 2018 by Peters et al. [21] to capture complex 

properties and variations across linguistic contexts of word 

use. The first step of the ELMo model is to compute 

uncontextualized word embeddings, which is purely 

character-based. This is achieved by convolutional filters, 

followed by two highway layers and a linear projection. 

Using these representations, ELMo essentially defines two 

language models with biLSTM network, one that models 

the probability of a token for previous tokens, and one that 

models the probability of a token for future tokens.  

B. GPT 

Radford et al. [22] introduced Generative Pre-Training 

(GPT) model. Instead of a bidirectional language model, 

GPT uses a unidirectional language model. For feature 

extraction, instead of LSTM layers, the GPT model uses 

the Transformer, a novel architecture that has proven to be 

very powerful in many different NLP tasks. This allows 

GPT to store more structured memory for handling long-

term dependencies in the text, resulting in a more general 

model. BPE is used to extract subword information. 



C. BERT 

Devlin et al. [23] proposed Bidirectional Encoder 

Representations for Transformers (BERT), which uses a 

bidirectional transformer architecture instead of one-way 

architecture like GPT. They also introduced two 

unsupervised tasks for pre-training BERT: (1) Masked LM 

(MLM), where words are randomly masked and the goal 

is to predict the original vocabulary ID of a masked word 

based only on its context, (2) Next Sentence Prediction, in 

which the goal is to predict whether A follows B or not, for 

sentences A and B. As the successor of GPT, BERT also 

uses subword information retrieved from BPE.   

D. XLNet 

Yang et al. [24] introduced XLNet, which uses the 

Transformer-XL architecture and can learn bidirectionally 

by maximizing the likelihood over all permutations of the 

factorization order. It also avoids problems BERT caused 

by adding artificial symbols such as [MASK], resulting in 

XLNet outperforming BERT on 20 tasks. XLNet was pre-

trained on subword pieces of known corpora. 

VII. CONCLUSION 

This paper has given an overview of current word 
embedding algorithms and presents a taxonomy based on 
the information used to compute word representation. We 
have shown the advantages of these sources and how they 
are used to solve some NLP challenges. Research in 
Natural Language Processing has recently gained 
momentum, and we have shown that significant progress 
has been made in word embedding methods in the last few 
years. Our analysis may allow future researchers to select 
or develop algorithms that are better suited for this task. 
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