
A Survey of Word Embedding Algorithms for

Textual Data Information Extraction

Eugen Vušak*, Vjeko Kužina*, and Alan Jović*
* University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10 000 Zagreb, Croatia

{eugen.vusak, vjeko.kuzina, alan.jovic}@fer.hr

Abstract - Unlike other popular data types, such as

images, textual data cannot be easily converted into a

numerical form that machine learning algorithms can

process. Therefore, text must be embedded into a vector

space using embedding algorithms. These algorithms attempt

to encapsulate as much information as possible from the text

into a resulting vector space. Natural language is complex

and contains numerous layers of information. Information

can be obtained from a sequence of characters or subword

units that make up the word. It can also be derived from the

context in which a word occurs. For this reason, a variety of

word embedding algorithms have been developed over time,

which use different pieces of information in different ways.

In this paper, the currently available word embedding

algorithms are described and it is shown what kind of

information these algorithms use. After analyzing these

algorithms, we discuss how it can be advantageous to use

combinations of different types of information in different

research and application areas.

Keywords - word embedding, textual data, natural

language processing, word space, text mining

I. INTRODUCTION

Some might argue that natural language is the most
complicated invention in human history. It is an ever-
evolving system that allows us to express even the most
elaborate ideas and is seemingly limitless. It is also one of
the primary means of communication, as most knowledge
is stored in some form of natural language. Natural
language has formed over a very long period of time,
resulting in a highly complex system that can represent
large amounts of information in a very condensed form.
This is often because some information can be inferred
from prior knowledge and does not need to be said
explicitly. Another reason is that closely related words have
a similar internal structure and therefore the meaning of a
word can be inferred even for unfamiliar words. This
suggests that there are multiple layers of information in a
given text, and knowledge of this information is crucial for
designing an appropriate text mining algorithm.

In order for machine learning algorithms to work with
textual data, the data must first be transformed into
numerical data that is understandable to an algorithm. This
is not as straightforward as with images, which can be
directly represented by numbers. Textual data is usually
transformed into vectors by word embedding algorithms.
These are, by and large, models trained to perform a
mapping of words or phrases into a real-valued vector of
fixed size such that some desirable semantic properties and
linguistic word relations are satisfied. Word embedding

algorithms are de facto standard for improving model
performance in numerous Natural Language Processing
(NLP) tasks.

The aim of this paper is to describe the currently
available word embedding algorithms and to highlight
which information sources they use. For each algorithm,
the focus is on transforming from a variable-length word or
phrase to a fixed-dimensionality vector representation. The
algorithm may use the entire available text to determine in
which context a word or phrase occurs frequently, or
subword units to obtain a representation. When subword
units are the smallest possible, we speak of character-level
information extraction. In this paper, we distinguish
between word embeddings and contextualized word
embeddings, where the latter can represent a word with
different vector representations based on the context
surrounding that word. While contextualized word
embedding algorithms have proven themselves in most
NLP applications with remarkable results, there is still
room for (uncontextualized) word embeddings when no
context is available, which may be the case when dealing
with structured data or when computational resources are
scarce.

The structure of this paper is as follows. Section II
introduces and discusses related work. Sections III to V
deal with information used to learn traditional word
embeddings. Section III describes algorithms that use
context to learn embeddings, while Section IV gives an
overview of models that use additional information
available in subword units. Section V gives an overview of
algorithms that consider the word as a sequence of
characters to represent it as a vector. Section VI gives a
brief overview of some important recent advances in
contextualized word embeddings. Finally, section VII
draws concise conclusions about the topics covered in the
paper.

II. RELATED WORK

Because of the vast amount of data stored as natural
language and the implications that understanding it has for
the study of human intelligence, the NLP field is active and
well researched. Word embedding is one of the first steps
in most NLP-related tasks and, accordingly, many papers
have appeared that describe it systematically. In this paper,
the problems faced by researchers, solutions to these
problems and challenges of current methods are mentioned.
In this section, an analytical evaluation of several recent
scientific reviews dealing with word embeddings is
provided.

In their study, Camacho-Collados and Pilehvar [1] have
mainly described vector space models and word
embeddings. Despite their flexibility and success in
capturing the semantics of words, the embedding
algorithms have significant limitations. These limitations
stem from the fact that a word is usually represented by a
single vector, which severely limits the ability of
algorithms to generalize. They point out that words with
multiple meanings may have a different definition
depending on the context. For example, the word "cut" can
have 70 different meanings and can even be interpreted as
a noun, verb, or an adjective. The authors of the paper refer
to this limitation as meaning conflation deficiency. They
conclude that an accurate distinction of different senses is
needed, which can be achieved by representing the different
meaning of words, i.e., word senses as independent
representations. The authors of the paper review several
models that learn representations for such word senses.

In 2019, Kowsari et al. [2] provided a comprehensive
survey of text classification algorithms to facilitate the
selection of appropriate structures, architectures and
techniques for the text classification task. Their survey
covers a wide range of different methods that can be used
for the said task, such as feature extraction and
dimensionality reduction. Although the paper takes a more
overarching approach, the authors of the study also briefly
addressed word embeddings as it is an important step in text
classification. For the purpose of this research paper, the
authors focused on a clear description of the underlying
mechanisms for three well-known deep learning methods.
They also briefly discussed a novel approach to word
representation, Contextualized Word Representations.

In the wake of public awareness of the digital language
divide, Ruder et al. [3] authored a survey that provides an
in-depth exploration of cross-lingual word embedding
models. In this study, the authors described the benefits of
such models and compare many models that have been
proposed in recent years. Considering that many cross-
lingual embedding algorithms have been derived from
monolingual models, the authors first presented
conventional monolingual models. As one of their most
notable contributions, they also formulated a topology of
cross-lingual models based on data requirements, chosen
architecture, hyperparameters and additional fine-tuning.

The study by S. Wang et al. [4], provided an extensive
and beneficial examination of word embedding
architectures based on deep neural networks. To this end,
the authors first identified and elaborated on classical word
embedding models. They also noted some shortcomings
that such models have. The first drawback addressed is the
inability to represent words that were not present in the
dataset used for training, also known as Out-of-Vocabulary
(OOV) words. They presented a few state-of-the-art models
that are able to represent such words with a vector derived
from that word itself. Then, the authors focused on popular
embedding models that are adapted to uniquely represent a
word based on the context surrounding the same word. The
last challenge addressed the processing of different
languages with different linguistic structures. The paper
mentioned models developed for the Chinese language,
mainly because it is different from most European
languages targeted by classical word embeddings. In

addition, relevant neural network architectures commonly
used in NLP were briefly identified and summarized.

Y. Wang et al. [5] provided a comprehensive overview
of how word representations have evolved from static to
dynamic. Static word representations are referred to as such
because once learned, they do not change with context. As
mentioned earlier, many words or phrases can be assigned
different meanings that simpler models cannot represent.
Authors call this the polysemy problem. On the other hand,
dynamic word representations can represent the same word
with different vectors based on the context, mitigating the
polysemy problem. The paper described static embedding
models and additionally presents some efforts to solve the
polysemy problem. Next, the authors focused on recent
dynamic word representation models and attempted to
demonstrate how such models mitigate the said problem.
They also provided insight into methods and datasets used
for intrinsic and extrinsic evaluation of word embeddings.
Finally, cross-lingual word embedding models were
addressed, for both static and dynamic models.

III. CONTEXT-LEVEL LEARNED MODELS

Word embedding models that use only other words

enclosing the selected word to learn word representations

are called context-level learned models. Models of this

type were developed on the basis of famously articulated

Firth’s 1957 notion "you shall know a word by the

company it keeps." This means that semantically similar

words or phrases often occur in a similar context. For

example, suppose two very similar sentences. "A bee is

buzzing around." and "A fly is buzzing around". We can

conclude that bee and fly are closely related, which in a

sense they are. This allows us to capture many semantic

properties that a word may have, especially for more

commonly used words. One of the most notable drawbacks

of these models is their inability to effectively represent

OOV words. Newer context-level learned models are

computationally efficient and still desirable for this reason.

They can also be extended with subword data.

A. NNLM

In 2001, Bengio et al. [6] published an innovative

paper, in which they presented a novel idea of using neural

networks to model the sequence as a joint conditional

probability of the next word given all the previous words

in a sequence, also known as neural network language

model (NNLM). The language model can be expressed by:

����, ��, … ��	 = � ����|��, … ����	�
���

�1	

The authors proposed to associate each unique word in a

vocabulary with a dense real-valued vector of fixed size.

The size of the feature vector representation was chosen to

be much smaller than the size of the vocabulary,

consequently alleviating the well-known curse of

dimensionality. Feature vectors were computed for a given

sequence and used to represent the joint probability

function (1) with the neural network. Feature vectors and

function parameters can, therefore, be learned

simultaneously. NNLM uses a multilayer neural network

where the first layer maps a word from a sequence to its

real-valued vector representation using an embedding �.

These representations are concatenated and used to

compute probability scores using a feedforward neural

network with ���ℎ activation function and softmax layer

to normalize the probabilities. Because the feature vectors

are concatenated and fed into a feedforward network, the

context length must be fixed, which prevents the network

from using a longer context. Training of the neural

network was accomplished by maximizing the log-

likelihood on a training corpus. Optimization parameters

are embedding � and network parameters θ. Although the

authors focused on a specific model architecture, they

pointed out that more complex architectures can be used in

conjunction with the same embedding type.

B. SENNA

Following the work of Bengio et al., whose goal was to

model the probability of a word given previous words in a

sentence, Collobert et al. [7] proposed an architecture that

instead uses a pairwise ranking criterion to compute scores

describing the acceptability of a piece of text. Formally

speaking, for a window � = ���, ��, … ��	 the ���|θ	 is

the score with the network parameters θ. In this case, hinge

loss is defined using ranking criterion as:

� �{�∈� 0� !"# , 1 − f��|θ	 + f'���	(θ)}, �2	

where #denotes the set of all possible text windows with

n words, � is a dictionary of words and ���	 denotes a text

window which is created by replacing the central word

from � by the word � . This was done because a large

dictionary size leads to a very complex computation of the

normalization term in the softmax layer and would require

more elaborate approximations. The architecture used in

this work was named “SENNA” (Semantic/syntactic

Extraction using a Neural Network Architecture) and is

similar to NNLM, the main difference being the previously

mentioned scoring. Some other notable differences are: (1)

the removal of skip connections, (2) the use of ℎ�,-.��ℎ

instead of ���ℎ . The paper also introduced a variable

window that encompasses the whole sentence and then

retrieves a fixed representation by using convolutional

layer with max-over-time pooling.

C. Word2vec

Given the extended training times of previous work,

Mikolov et al. [8] introduced Word2Vec, a novel word

embedding architecture that extends the work of Bengio et

al. by removing nonlinearity from NNLM to reduce

computational complexity. They also adopt hierarchical

softmax to reduce the problem of large number of classes.

Hierarchical softmax represents the vocabulary as a

Huffman binary tree and assigns short binary codes to

frequent words, which further increases the training speed.

In this paper, two different approaches for training word

embeddings are proposed. The first is called Continuous

Bag-of-Words (CBOW) and is similar to NNLM, where

the non-linear layer is excluded and the projection layer,

that maps the word indices of a context to a vector space,

is shared across all words. The second architecture,

Continuous Skip-gram or Skip-gram for short, is similar to

CBOW, but instead of predicting a current word based on

context, it attempts to predict surrounding words based on

a current word.

In a follow-up paper, Mikolov et al. [9] provide

additional optimizations to the word2vec algorithm. One

of these optimizations is the implementation of the

Negative Sampling method that is used to reduce the

number of negative samples. This is done by selecting only

random / negative samples instead of using them all.

D. GloVe

Pennington et al. [10] introduced the Global Vector or

GloVe model to address some limitations that algorithms

like word2vec have. The authors pointed out that such

algorithms can only learn semantic similarities based on a

limited local context window but are unable to use all the

global statistical information available in the dataset. For

this reason, GloVe uses a global word-word co-occurrence

matrix to make efficient use of statistics. If we annotate

this matrix with 0, then each element 0�1 represents the

number of times the word �1 occurred in the context of a

word �� . The cost function is then defined as:

2 = � �'0�1)'��3�45 + 6� + 647 − 89:0�1)�;
�,1�� , �3	

where = denotes the size of the vocabulary and � is a

weighting function used to weigh down rare co-

occurrences, because they are usually noisy and carry less

information.

IV. SUBWORD-LEVEL LEARNED MODELS

Despite their popularity and success, context-level

learned models have some weaknesses. They model words

independently and disregard any internal morphological

structure, resulting in their inability to represent rare or

morphologically complex words. To counter this, models

have been developed that use subword information, either

alone or in conjunction with context-level information.

This approach is closer to how words are formed in natural

language. For example, consider the terms "breakable" and

"biased" and assume that we know their meaning. If we

then learn that "unbreakable" is exactly the opposite of

"breakable" we can conclude with enough data that the

prefix "un" negates adjectives. Therefore, even if we have

never heard the term "unbiased," we can infer that its

meaning is the opposite of the term "biased". By using

subword-level information, these models can significantly

reduce problems with the words that are rare and OOV.

For this reason, subword-level learned models are

appropriate for tasks where morphological word structure

contains fair amount of information. They are also

practical for applications where there is no context

available or plenty words are expected to be absent from

vocabulary.

A. MorphoRNN

To better exploit the complex internal structures of

English, Luong et al. [11] proposed a new model of

architecture that compiles word representations using

morphemes of words, called Morphological RNN

(morphoRNN). For this purpose, the authors used an

unsupervised morphological segmentation toolkit, called

"Morfessor", which recursively splits words using hidden

Markov models and labels morphemes with the tags �,>

(prefix), ?�@ (stems) and ?A� (suffixes). For efficient

learning, the input form of words is assumed to be �,>∗ ?�>@ ?A�∗. After the morphemes are retrieved, they

are encoded by a simple embedding matrix described by

Collobert et al. The encoded representations of the

morphemes are then recurrently joined into a parent word �. For a pair: stem vector �DEFG and affix vector �HII�J , �

is constructed as follows:

 � = �'KG'L�DEFG; �HII�JN + 6GN). �4	

This forms the basis of the context-insensitive

Morphological RNN (cimRNN), but to improve

performance, the authors present a context-sensitive

version called csmRNN that adopts the training approach

proposed by Collobert et al. by adding a neural language

model with a pairwise ranking criterion.

B. Byte Pair Encoding

Byte Pair Encoding (BPE) is not a word embedding

algorithm, but a general-purpose data compression

algorithm described by Gage in 1994 [12]. The BPE

algorithm iteratively replaces all instances of most

frequent pairs of adjacent bytes with a byte that was not in

the original data. This is done until there are no more

unused bytes or no more frequently occurring pairs.

In their 2016 paper, Sennrich et al. [13] focus on

translating rare words using subword units due to the

advantages described earlier. Their goal was to achieve an

open vocabulary by using BPE with characters instead of

bytes. Their algorithm works similarly to the original, but

instead of bytes, the most frequent pairs of characters are

merged to form a new character and added to the

vocabulary. Although strictly speaking their study does not

focus on word embedding, they introduced the novel idea

of using BPE to construct subword units.

Recently, Heinzerling and Strube [16] extended this

idea by introducing Byte-Pair Embedding (BPEmb).

BPEmd is basically BPE applied to text, using the resulting

symbols in combination with the GloVe word embeddings.

C. FastText

FastText [14][15] was developed in 2017 at Facebook

as a direct extension of word2vec's Skip-Gram model, but

taking subword information into account. Instead of

predefined morphological structures, fastText models the

morphology of words by representing them with character

n-grams. Additionally, special boundary symbols < and >

are added at the beginning and end of words to distinguish

prefixes and suffixes from other strings. In practice,

multiple � -grams of words are calculated for different

values of � . The word � is also included to learn

representations for each word. The Skip-Gram model is

used to learn vector representations for � -grams (and

word), and then the final word embedding is computed as

the sum of all vector representations for a word.

V. CHARACTER-LEVEL LEARNED MODELS

Since words are essentially sequences of characters,

some algorithms use character-level information to

represent words as vectors. There are a few reasons to do

this. For example, languages like Chinese do not use the

alphabet, they use a logographic system of characters. This

means that words are made up from symbols instead of

letters, and each symbol can have its own meaning.

Another reason is to avoid handcrafting features such as

affixes and allow the model to learn the complex

morphological structure. Empirically, end-to-end models

have usually shown better results and higher generalization

ability. Moreover, the number of unique characters is

much more limited than the number of unique words.

Especially when dealing with digitally written text, where

characters are selected from a finite set. This fact allows

models to correctly represent OOV words. Character-

learned models should be used when subword information

is insufficient as they are normally more elaborate. They

should also often be combined with learned context-level

models that can "memorize" the word semantic.

A. CWE

Chen et al. [18] proposed a new model for joint learning of

character and word embeddings, which they named

Character-enhanced Word Embedding model (CWE).

Their goal was to take advantage of both internal

characters and external context to create a model that is

better adapted to languages where characters contain rich

internal information. Their study used the CBOW model

to demonstrate the CWE framework. CWE mainly consists

of two different vocabularies. The first one is a Chinese

character set, denoted with � and the second one is a

Chinese word vocabulary, denoted as K. Each character Q� ∈ � is represented by a vector Q�̅ and each word �� ∈ K

is represented by a vector �S� The final representation of

the word �̅1 is represented as a composition between a

vector �1 and the average of the embeddings of the

characters forming this word. The authors considered two

options for composition, addition and concatenation, but

empirically found that concatenation does not significantly

outperform addition and is more time-consuming. For this

reason, they opted for addition. Consequently, a final

representation for �̅1 can be written as:

�4S = 12 T�4UUU + 1V1 � QWS
XY

W�� Z . �5	

In their work, Chen et al. also proposed several methods

that assign multiple vectors to a single character. These

methods are position-based, cluster-based, nonparametric

cluster-based, and position-cluster-based character

embeddings.

B. Word embeddings based on convolutional neural

networks

Convolutional neural networks (CNN) are a famously

proven network architecture for computer vision because

they can learn spatial features, eliminating the need for

feature extraction steps. The same advantages can be

applied to word representation tasks. We can view a word

or phrase as a one-dimensional image. For example, when

we see a date or an address, we immediately know what it

is by just looking at it. The fact that CNNs are very good

at learning internal structures can be extended to learning

complicated morphological structures that words may

have. Because of this fact, many CNN-based approaches

have been implemented over the years.

Dos Santos and Zadrozny [17] proposed such a method

in 2014. They presented a deep neural network for

performing part-of-speech (POS) tagging using joint

representations at context and character levels. Their

approach, called CharWNN, can be seen as an extension

of the SENNA model, since for a given sentence network,

it also takes the fixed-sized window of words around the

target word to score it. Instead of using only a simple

matrix-based word embedding, CharWNN also uses a

convolutional layer to capture character-level information.

Each character in a word is first transformed into a

character embedding using a complementary embedding

matrix. Then, using one-dimensional convolution, a

matrix-vector operation is applied to each successive

window in a sequence. Finally, max polling is used for all

character windows in the word to extract a fixed size

feature vector. Word-level embeddings were pre-trained in

an unsupervised manner using the word2vec model. The

character-level and word-level embeddings are then

concatenated to form a final word representation.

Kim et al. [19] used a convolutional neural network at

the character-level whose output serves as input to the

language model. However, unlike the previously described

model, this model did not use word embeddings. Given the

large vocabulary, the word embedding matrices have

numerous parameters that must be learned. When the

authors removed these, they obtained a much smaller

model. As they pointed out, this may be desirable in

applications where resources do not support large models

(e.g., embedded and mobile devices). In their model,

words were embedded in the following steps: (1)

characters were embedded through a small embedding

matrix, (2) a one-dimensional character-level

convolutional layer was used to extract features, (3) max-

over-time pooling was applied to retrieve fixed-size word

representations, (4) the resulting features were passed

through a highway layer that further captures complex

interactions between features. The authors showed that

step 4 is not necessary, but it slightly improves

performance. These word representations are then fed into

a Long Short-Term Memory (LSTM) recurrent neural

network with a softmax output to obtain distributions over

the next word. Training is done by minimizing the cross-

entropy loss between these distributions over the next

word and the actual next word.

An interesting approach was proposed by Rama and

Çöltekin [20], which used an LSTM autoencoder to

compute representations for word pronunciations.

Autoencoders traditionally have an hourglass shape where

the first half, the encoder, learns to represent the input as

an information-dense vector, and the second part of the

model, the decoder, mirrors the first and learns to

reconstruct the original input data from this compressed

vector. After the autoencoder model is trained, the

resulting dense vector in the middle is called the latent

representation. Instead of the traditional autoencoder

architecture, the encoder here is an LSTM network that

"rolls" the word or phrase into a latent space, and then the

decoder LSTM network "unrolls" it back to the original

word or phrase. Thus, the model can learn word

representations on an unlabeled dataset with variable

input. Because the latent space representation is much

smaller than the original vocabulary size, the model is

forced to learn a sophisticated internal word structure and

remove noise. Authors used this model primarily to

visualize dialect shifts, but the same model could be

adopted for many conventional NLP tasks.

VI. CONTEXTUALIZED WORD EMBEDDINGS

In the previous sections, we have focused mainly on the

information used to train a model, and assumed that

inference uses only one word to compute its vector

representation. As mentioned, this approach has some

problems, most notably the inability to represent multiple

possible meanings of the same word. Therefore, novel

models, called contextualized word embeddings, have

been proposed. These models can have representations

change based on context and are therefore better suited for

usual unstructured text if resources are ample.

A. ELMo

Embedding from Language Models (ELMo) was

introduced in 2018 by Peters et al. [21] to capture complex

properties and variations across linguistic contexts of word

use. The first step of the ELMo model is to compute

uncontextualized word embeddings, which is purely

character-based. This is achieved by convolutional filters,

followed by two highway layers and a linear projection.

Using these representations, ELMo essentially defines two

language models with biLSTM network, one that models

the probability of a token for previous tokens, and one that

models the probability of a token for future tokens.

B. GPT

Radford et al. [22] introduced Generative Pre-Training

(GPT) model. Instead of a bidirectional language model,

GPT uses a unidirectional language model. For feature

extraction, instead of LSTM layers, the GPT model uses

the Transformer, a novel architecture that has proven to be

very powerful in many different NLP tasks. This allows

GPT to store more structured memory for handling long-

term dependencies in the text, resulting in a more general

model. BPE is used to extract subword information.

C. BERT

Devlin et al. [23] proposed Bidirectional Encoder

Representations for Transformers (BERT), which uses a

bidirectional transformer architecture instead of one-way

architecture like GPT. They also introduced two

unsupervised tasks for pre-training BERT: (1) Masked LM

(MLM), where words are randomly masked and the goal

is to predict the original vocabulary ID of a masked word

based only on its context, (2) Next Sentence Prediction, in

which the goal is to predict whether A follows B or not, for

sentences A and B. As the successor of GPT, BERT also

uses subword information retrieved from BPE.

D. XLNet

Yang et al. [24] introduced XLNet, which uses the

Transformer-XL architecture and can learn bidirectionally

by maximizing the likelihood over all permutations of the

factorization order. It also avoids problems BERT caused

by adding artificial symbols such as [MASK], resulting in

XLNet outperforming BERT on 20 tasks. XLNet was pre-

trained on subword pieces of known corpora.

VII. CONCLUSION

This paper has given an overview of current word
embedding algorithms and presents a taxonomy based on
the information used to compute word representation. We
have shown the advantages of these sources and how they
are used to solve some NLP challenges. Research in
Natural Language Processing has recently gained
momentum, and we have shown that significant progress
has been made in word embedding methods in the last few
years. Our analysis may allow future researchers to select
or develop algorithms that are better suited for this task.

ACKNOWLEDGMENT

This work has been carried out within the project
“Digital platform for ensuring data privacy and prevention
of malicious manipulation of the personal data – AIPD2”,
funded by the European Regional Development Fund in the
Republic of Croatia under the Operational Programme
Competitiveness and Cohesion 2014 – 2020.

REFERENCES

[1] J. Camacho-Collados and M. T. Pilehvar, ‘From Word To Sense
Embeddings: A Survey on Vector Representations of Meaning’,
Journal of Artificial Intelligence Research, vol. 63, pp. 743–788,
Dec. 2018, doi: 10.1613/jair.1.11259.

[2] K. Kowsari, K. J. Meimandi, M. Heidarysafa, S. Mendu, L. E.
Barnes, and D. E. Brown, ‘Text Classification Algorithms: A
Survey’, Information, vol. 10, no. 4, p. 150, Apr. 2019, doi:
10.3390/info10040150.

[3] S. Ruder, I. Vulić, and A. Søgaard, ‘A Survey Of Cross-lingual
Word Embedding Models’, jair, vol. 65, pp. 569–631, Aug. 2019,
doi: 10.1613/jair.1.11640.

[4] S. Wang, W. Zhou, and C. Jiang, ‘A survey of word embeddings
based on deep learning’, Computing, vol. 102, no. 3, pp. 717–740,
Mar. 2020, doi: 10.1007/s00607-019-00768-7.

[5] Y. Wang, Y. Hou, W. Che, and T. Liu, ‘From static to dynamic
word representations: a survey’, Int. J. Mach. Learn. & Cyber., vol.
11, no. 7, pp. 1611–1630, Jul. 2020, doi: 10.1007/s13042-020-
01069-8.

[6] Y. Bengio, R. Ducharme, and P. Vincent, ‘A Neural Probabilistic
Language Model’, in Advances in Neural Information Processing

Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. MIT
Press, 2001, pp. 932–938.

[7] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, ‘Natural Language Processing (almost) from Scratch’,
arXiv:1103.0398 [cs], Mar. 2011, Accessed: Oct. 29, 2020.
[Online]. Available: http://arxiv.org/abs/1103.0398.

[8] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘Efficient
Estimation of Word Representations in Vector Space’,
arXiv:1301.3781 [cs], Sep. 2013, Accessed: Oct. 27, 2020.
[Online]. Available: http://arxiv.org/abs/1301.3781.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
‘Distributed Representations of Words and Phrases and their
Compositionality’, in Advances in Neural Information Processing

Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp.
3111–3119.

[10] J. Pennington, R. Socher, and C. Manning, ‘GloVe: Global Vectors
for Word Representation’, in Proc. of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP),
Doha, Qatar, Oct. 2014, pp. 1532–1543, doi: 10.3115/v1/D14-1162.

[11] T. Luong, R. Socher, and C. Manning, ‘Better Word
Representations with Recursive Neural Networks for Morphology’,
in Proc. 17th Conference on Computational Natural Language
Learning, Sofia, Bulgaria, Aug. 2013, pp. 104–113, Accessed: Oct.
29, 2020. [Online]. Available:
https://www.aclweb.org/anthology/W13-3512.

[12] P. Gage, ‘A New Algorithm for Data Compression’, The C Users

Journal, vol. 12, no. 2, pp. 1–14, 1994.

[13] R. Sennrich, B. Haddow, and A. Birch, ‘Neural Machine
Translation of Rare Words with Subword Units’, arXiv:1508.07909
[cs], Jun. 2016, Accessed: Oct. 23, 2020. [Online]. Available:
http://arxiv.org/abs/1508.07909.

[14] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, ‘Bag of Tricks
for Efficient Text Classification’, arXiv:1607.01759 [cs], Aug.
2016, Accessed: Oct. 29, 2020. [Online]. Available:
http://arxiv.org/abs/1607.01759.

[15] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘Enriching
Word Vectors with Subword Information’, Transactions of the

Association for Computational Linguistics, vol. 5, pp. 135–146,
2017, doi: 10.1162/tacl_a_00051.

[16] B. Heinzerling and M. Strube, ‘BPEmb: Tokenization-free Pre-
trained Subword Embeddings in 275 Languages’, presented at the
LREC 2018, Miyazaki, Japan, May 2018, Accessed: Oct. 23, 2020.
[Online]. Available: https://www.aclweb.org/anthology/L18-1473.

[17] C. N. Dos Santos and B. Zadrozny, ‘Learning character-level
representations for part-of-speech tagging’, in Proc. 31st ICML,
vol. 32, Beijing, China, Jun. 2014, p. II-1818-II–1826, Accessed:
Nov. 10, 2020. [Online].

[18] X. Chen, L. Xu, Z. Liu, M. Sun, and H. Luan, ‘Joint Learning of
Character and Word Embeddings’, in Proceedings of IJCAI'15, pp.
1236–1242, 2015.

[19] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, ‘Character-Aware
Neural Language Models’, arXiv:1508.06615 [cs, stat], Dec. 2015,
Accessed: Oct. 23, 2020. [Online]. Available:
http://arxiv.org/abs/1508.06615.

[20] T. Rama and Ç. Çöltekin, ‘LSTM Autoencoders for Dialect
Analysis’, in Proc. 3rd Workshop on NLP for Similar Languages,

Varieties and Dialects (VarDial3), Osaka, Japan, Dec. 2016, pp.
25–32, Accessed: Oct. 27, 2020. [Online]. Available:
https://www.aclweb.org/anthology/W16-4803.

[21] M. E. Peters et al., ‘Deep contextualized word representations’,
arXiv:1802.05365 [cs], Mar. 2018, Accessed: Oct. 23, 2020.
[Online]. Available: http://arxiv.org/abs/1802.05365.

[22] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever,
‘Improving Language Understanding by Generative Pre-Training’,
preprint, p. 12, May 2018.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding’, arXiv:1810.04805 [cs], May 2019, Accessed: Oct.
27, 2020. [Online]. Available: http://arxiv.org/abs/1810.04805.

[24] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q.
V. Le, ‘XLNet: Generalized Autoregressive Pretraining for
Language Understanding’, arXiv:1906.08237 [cs], Jan. 2020,
Accessed: Jan. 31, 2021. [Online]. Available:
http://arxiv.org/abs/1906.08237

